Universität Bremen  
  FB 3  
  AG BKB > Publikationen > Suche > Deutsch
English
 

Suche nach Veröffentlichungen - Detailansicht

 
Art der Veröffentlichung: Artikel in Konferenzband
Autor: Thomas Münder, Thomas Röfer
Herausgeber: Hidehisa Akiyama, Oliver Obst, Claude Sammut, Flavio Tonidandel
Titel: Model-based Fall Detection and Fall Prevention for the {NAO} Robot
Buch / Sammlungs-Titel: RoboCup 2017: Robot World Cup XXI
Band: 11175
Seite(n): 312 – 324
Serie / Reihe: Lecture Notes in Artificial Intelligence
Erscheinungsjahr: 2018
Verleger: Springer
Abstract / Kurzbeschreibung: Fall detection and fall prevention are crucial for humanoid robots when operating in natural environments. Early fall detection is important to have sufficient time for making a stabilizing movement. Existing approaches mostly analyze the sensor data to detect an ongoing fall. In this paper, we use a physical model of the robot to detect whether the measured sensor data indicates a fall in the near future. A trajectory for the foot is calculated to compensate the rotational velocity and acceleration of the fall. In an evaluation with the humanoid robot NAO, we demonstrate that falls can be detected significantly earlier than with traditional sensor classification with little false-positive detections during staggering. Falls due to small to medium impacts can be prevented.
PDF Version: http://www.informatik.uni-bremen.de/kogrob/papers/RC-Muender-Roefer-18.pdf
Status: Reviewed
Letzte Aktualisierung: 11. 11. 2022

 Zurück zum Suchergebnis
 
   
Autor: Automatisch generierte Seite
 
  AG BKB 
Zuletzt geändert am: 9. Mai 2023   impressum