Educational Matters

Hans-Jorg Kreowski

January 1999

Welcome to the first Educational Matters Column of the year 1999. I wish you health
and good luck, peace and happiness for this last year of the millenium (although some
people claim that it is only the last but one and others apply other calendars anyway).
I wish me many contributions to the column which you are dearly asked to send to

Prof. Dr. Hans-Jorg Kreowski
Fachbereich Mathematik und Informatik
Universitat Bremen

Postfach 33 04 40

D-28334 Bremen

E-Mail: kreo@informatik.uni-bremen.de

Fax: ++49-421-218-4322

Without further preliminaries, I refer you now to the main part of this column. If you
find my report on the teaching of theoretical computer science at the University of
Bremen interesting, you may consider to come up with something similar on your area
of teaching at your site.

The Teaching of TCS
at the University of Bremen

Hans-Jorg Kreowski

This report on the teaching of theoretical computer science (TCS) at the University of
Bremen concerns mainly the undergraduate phase. There will be eventually a second
part completing the picture.

Curricular Requirements

As everywhere, TCS is a constitutional part of the computer science curriculum at the
University of Bremen. While most students enjoy their studies of computer science
for about 6 years, they run officially for 4 1/2 years. The first 2 years form the
undergraduate phase which ends with the “Vordiplom”. The graduate phase of 2 1/2
years follows. The last half year of it is devoted to the writing of a diploma thesis. If

all this is passed successfully, the “Diplom” is conferred. A study year is split into 2
semesters. The teaching period of the summer term (from April to September) lasts
13 weeks, the teaching period of the winter term (from October to March next year)
lasts 15 weeks.

The course programme of the undergraduate phase sums up to 84 semester week hours
(SWH’s), i.e. 21 hours per week and semester in average. This is devided into 5 areas
listed with the number of SWH’s and the number of courses in brackets:

Mathematics 22 (4)
TCS 8 (2)
Practical Computer Science 22 (4)
Technical Computer Science 12 (3)
Applied Computer Science 20 (4)

(including Computer & Society)

The whole programme is obligatory. Only with respect to one of the courses in ap-
plied computer science, the students can choose among various application areas. The
“Vordiplom” requires the successful participation in the course programme and an oral
examination in each of the 5 areas. Under certain conditions, the oral examinations
can be replaced by written exercises.

The structure of the graduate phase is more complicate and cannot be quantified in
terms of SWH’s properly. The diploma requires — in addition to the thesis — the partic-
ipation in a students’ project, 4 oral examinations and 5 course certificates (confirming
the successful participation usually based on written exersises or essays). A students’
project runs for 2 years and consists of 15 to 30 students usually supervised by a pro-
fessor and an assistant. A typical goal of a project is the development of a software
system in some practical or applied context. Together with some introductory courses,
the project covers about a third of the graduate phase. The rest consists of courses in
theoretical, practical and applied computer science. Usually 2 such courses provide the
subject of an oral examination. None of the courses is obligatory, but the subjects of
the oral examinations and of the certified courses are required to stem from pairwise
different subareas. One of the oral examinations and one of the course certifications
are requested for TCS, the same for applied computer science and twice the same for
practical computer science. The fifth certified course can belong to any area. In TCS,
the subjects can be chosen out of the 4 subareas algorithms and complexity, formal
languages, theory of programming, and others (like Petri net, theory of concurrency,
theory of rule-based systems, syntactic methods of picture generation, etc. depending
on the courses on offer).

The Aims of the TCS Courses for Undergraduates

The 2 TCS courses in the undergraduate studies are meant to introduce the foundations
of computability, complexity and formal languages. They are presented in the 2nd and

3rd semesters and consist each of lectures and exercises (both 2 hours per week).
Exercises take place in small groups of about 15 students. According to the regulation
of computer science studies, the goals of the TCS courses are:

o examplary knowledge and insights that are typical for the field,

o knowledge of basic facts, which are useful in various contexts and shed some light
an the relationship of TCS to other areas,

¢ understanding of the mathematical foundations and basic questions of computer
science, in particular, of sense and nature of exactness, precise conception and
proving,

e understanding of the interrelation between intuition and firm insights.

Although T was involved in the formulations of these aims and T still believe that they
are reasonable, my personal aims are more modest whenever I teach the courses (what
I do quite regularly). Otherwise the job would be too frustrating. The number of
participants is about 100. Unfortunately, one cannot expect that most of them are
well-motivated and enthusiastic about TCS. On the contrary, many are indifferent and
ignorant, some are even horrified, and only a very few are really interested. But all of
them may change their mind during the courses. Hence 1 try very hard to keep the
interested interested and to convince the others that TCS is not so bad. Hence I try
very hard to present the material in a motivating, attractive and entertaining way (as
far as the topics and my abilities permit). My intention is that all students or at least as
many as possible learn the fundamental facts of TCS and get a good idea of their value.
I dare say, however, that I lose more and more my confidence in the effectiveness of these
efforts. The results of the written exercises and the oral examinations are acceptable
and the students’ attitudes towards TCS seem to be improved after the courses. But
whenever [meet the same students later in the graduate courses, the have lost nearly
all remembrance of the learnt notions, results and fundamental ideas.

The Contents of the TCS Courses for Undergraduates

In the first course, conplexity and computability are introduced and discussed based
on the equational specification language CE-S, which is particularly tailored for the
purposes of this course, and on the small imperative programming language designed
by Kfoury, Moll and Arbib for their book on Programming Approach to Computability
(published 1982 by Springer). This provides an intuitive approach to the issues of
computability and complexity as well as to fundamental aspects of formal semantics
and correctness and allows to relate the considerations with the students’ experiences
in every-day programming.

Kfoury’s, Moll’s and Arbib’s imperative language has got a state transition semantics
that can be extended into a proper denotational and fixed-point semantics and yields

the notion of computable functions on (non-negative) integers. The language is well-
suited to handle the basic questions of computability including the halting problem
and the existence of universal functions and to explain the role of Church’s thesis.

The language CE-S is based on the data types of strings, integers and Boolean values
and allows to specify operations on these types by means of conditional equations. Us-
ing term rewriting, one gets an interpreter for CE-S that illustrates the concept of oper-
ational semantics. If one combines the equational calculus with the inductive definition
of strings, one gets a proof technique to show the correctness of specified functions with
respect to requirements that are also given in the form of equations. Moreover, by re-
interpretation of the defining equations, one obtains recurrence equations for the time
complexity of the specified functions in terms of numbers of applications of equations.
In nice cases, the recurrence equations allow to deduce proper upper bounds for the
time complexity. This approach is quite intuitive because the recurrence equations
for the complexity functions reflect the work of the interpreter. It allows to analyse
complexity in nontrivial cases explicitly within the introduced framework. The results
coincide with classical notions of complexity whenever the steps of the intepreter can
be performed in constant time.

A typical example of a specification in CE-S is the following specification of sorting by
merging:

mergesort
uses: merge,left right
opns: sort : A* — A*
vars: 1 € A, u € A*
equs: sort(A) = A
sort(x) = x
sort(u) = merge(sort(left(u)), sort(right(u))) if length(u) > 2

where merge, left and right are specified elsewhere. The operation merge merges 2
strings respecting the order of the alphabet. The operations left and right partition a
string in left and right halves with u = le ft(u)right(u) and length(left(u)) = n if u has

length 2n or 2n 4+ 1. Using this, the last equation induces the recurrence
Tsort(2n> - Tmerge<2n> + Tleft(2n> + Tright(2n> +2 Tsort(”) +1

where T',,(m) denotes the complexity function of the operation op applied to the sum
of the lengths of the string arguments of op. By a straightforward induction, one can
show that T, is of order n - log n (proving in advance in the same way that T',c.ge, Tiepe
and T,z are of linear order).

Moreover, matrix multiplication including Strassen’s algorithm is analysed to address
complexity issues with respect to a famous example as encountered in the literature.
And again with the aim to relate the presentation of the course with a more traditional

approach, the notion of Turing machines is introduced and shown to be equivalent to
CE-S specifications.

As the following table of contents shows, the second course is organised in the tradi-
tional way of formal language theory using the problem of syntax analysis as the thread
and picture generation by means of chain code picture languages as a second source of
motivation:

syntax of programming languages and syntax analysis
Chomsky grammars

examples

recursive enumerability of typ 0 languages

word problem of monotone languages

finite automata

rightlinear grammars

PO NSOt W

regular languages

©w

push-down automata
translation of contextfree grammars into push-down automata
leftmost derivations

—_ =
o= o

contextireeness lemma

—_
b

Cocke-Younger-Kasami algorithm

14. derivation trees

15. pumping lemma

16. undecidable problem for contextfree grammars

For both courses, the students are provided with lecture notes in printed form, but
which are also available via access to my homepage. The first chapter is devoted to
the motivation of TCS including a series of scenarios. Each scenario sketches a fictive
situation in which some data processing problem occurs. And it ends with the question
Is this possible? or How can this be done?

Instead of a Conclusion

As T mentioned above, I am not fully content with the outcome of teaching the under-
graduate TCS courses. I think that the conception is OK and mirrors my understanding
of TCS properly. Nevertheless, something is wrong. The simple reason may be that 1
spend much more time to prepare my lectures than each student to get the facts and
essence of the discussed issues. I am interested in TCS, they doubt its usefulness. Ilove
it, they rather fear and dislike it. T am not willing to accept the students’ ignorance
because TCS offers quite important and helpful knowledge and methods. But what
more can be done about it?

