
I P R A
M FORTRAN 90/95

Hans J. Schneider
Universität Erlangen-Nürnberg – Institut für Informatik

(Lehrstuhl 2)
Martensstraße 3, D-91058 Erlangen

schneider@informatik.uni-erlangen.de

Abstract

Parallelism is an interesting theme in many areas of computer science
and its applications. Nevertheless, students try very hard to design par-
allel solutions to problems of which they know efficient sequential solu-
tions. Studying the theoretical foundations may facilitate understanding
parallelism. Nevertheless, it seems necessary to make run the algorithms
in order to bridge the gap between theory and practice. By way of exam-
ple, we show how to make students familiar with SIMD parallelism both
by introducing the theory and by implementing the algorithms in a suitable
programming language.

1 Introduction

In a previous paper [13], we have shown how to embed the theory of computable
functions into an introductory course on programming. The students were simul-
taneously made familiar with programming in S and the theory of com-
putable functions. Now, we consider the converse situation: We had to give a
course on the fundamentals of parallel algorithms, and we have made the theoreti-
cal algorithms run by implementing them in a suitable programming language. A
major problem has been that students have learned to think sequentially; they use
an assembler, B, F, P, C, or some other sequential programming
language including the object-oriented languages such as J. Parallelism is usu-
ally considered only on the level of tasks, e.g., in courses on operating systems.
Another reason why students are trying very hard is that sequential algorithms
often introduce data dependencies to reduce the number of operations to be per-
formed, thus preventing the operations to be executed in parallel. Therefore, the

1

main focus of our course has not been how to parallelize well-known algorithms,
but to show the maximal degree of parallelism a given problem allows. (Only
in one chapter, we have mentioned the restrictions imposed by communication
structures and data distribution.) The course has been based on the concept of the
parallel random access machine (PRAM). It has closely followed the presentation
of parallel algorithms for shared-memory machines given by Karp and Ramachan-
dran [10].
Of course, the most important fields to apply parallel algorithms are science and
engineering. Realistic numerical problems, however, need too much time to pro-
vide the students with the information necessary to understand the algorithms.
Therefore, we mainly present the standard techniques using problems which ev-
ery computer science student is familiar with, and we illustrate how to apply them
to a wide range of problems, e.g., with the aid of matrix multiplication, we show
that the fundamental techniques are also part of numerical algorithms.
F is not our preferred programming language, but it is the most used lan-
guage in scientific and engineering applications, and it has evolved considerably
from its origins to the most recent versions. In our course, we have used a sub-
set of F 90/95 which is called F [4, 8, 9]. This dialect supports modular
programming as well as structured control-flow, including recursive procedures.
PRAM parallelism can be expressed by manipulating whole arrays and array sec-
tions. F provides the programmer only with the modern constructs; we do not use
the historically ballast of F IV.
The paper is organized as follows. First, we review the definition of the parallel
random access machine, and we characterize the constructs of F 95 that
we need. Section 4 gives an example how to divide a problem into smaller ones
if the logical and the physical structure of the data agree, whereas Section 6 con-
siders the case that they do not. An application of Brent’s principle to improve an
algorithm and the bitonic sorting algorithm complete the presentation.

2 Parallel Random Access Machine (PRAM)

The aim of the course is to study the logical structure of parallel algorithms with-
out referring to special hardware. Therefore, we need a virtual machine model that
is as simple as possible and makes explicit the maximal degree of parallelism.
The parallel random access machine has proved extremely useful to meet these
requirements despite its disadvantages.
A Random Access Machine (RAM) is an idealized Von Neumann style computer
[6]: It consists of a finite control, called the program, one or more accumula-
tor registers, an instruction counter, and an infinite collection of memory cells.
The instruction set contains instructions influencing flow of control (unconditional

2

jump, conditional jump), instructions transferring data between accumulator(s)
and memory (load from memory, store into memory), and instructions performing
arithmetic and logical operations. The Parallel Random Access Machine (PRAM)
is the parallel analogue of the RAM [7, 12]: It consists of several independent
sequential processors, each with its private memory, communicating with one an-
other through a global memory. In one unit of time, each processsor can read one
global or local memory location, execute a single RAM operation, or write into
one global or local memory location; all processors perform the same operation,
but some of them may skip the operation (do nothing).
The PRAM can not be considered a physically realizable model. As the number
of processors or the size of the global memory scales up, it becomes impossible to
provide a constant-length data path from any processor to any memory cell. Fur-
thermore, it assumes that some processors may access the same memory cell at the
same time. This leads to a hierarchy of PRAM models defined by the restrictions
in accessing the global memory:

(1) An algorithm running on an EREW PRAM must ensure that different pro-
cessors do not simultaneously access any memory location (exclusive-read/
exclusive-write).

(2) An algorithm running on a CREW PRAM must ensure that different proces-
sors do not simultaneously write into any memory location, but simultane-
ous read operations are allowed (concurrent-read/exclusive-write).

(3) An algorithm running on a CRCW PRAM may use both simultaneous read
and simultaneous write operations (concurrent-read/concurrent-write).
Write conflicts can be resolved in different ways:

(3a) An algorithm running on a COMMON PRAM has to ensure that all proces-
sors writing into the same location write the same value.

(3b) An algorithm running on an ARBITRARY PRAM should work correctly re-
gardless of which of the processors, participating in a common write opera-
tion, succeeds.

(3c) On a PRIORITY PRAM, the processors are linearly ordered; in a concurrent-
write operation, the minimum numbered processor succeeds.

This classification introduces the PRAM models in increasing order of their power,
i.e., each algorithm running correctly on one of the models also runs correctly on
all models subsequently defined. On the other hand, any algorithm running on
a PRIORITY PRAMă with p(n) processors in time t(n) can be simulated on the
EREW PRAM in time t(n)s(p(n)) without increasing the number of processors,
where s(p) is the number of steps needed to sort p items [14].

3

3 The Programming Language

F was the first problem-oriented programming language developed in the
1950s by an IBM team led by John Backus [1]. It has evolved considerably over
the years. The first standard was published in 1966 (F 66) and revised
in 1978 (F 77). During the following years, a lot of language extensions
have been proposed, implemented, and tested. In 1991, a new standard (F
90) has changed the appearance and the expressive power of the language sub-
stantially. The new features include better control structures, user-defined data
types and pointers, recursion, modules, etc. F 95 has added some minor
features that we do not need in this paper. In our course, we have used the lan-
guage F1 [9, 17], that is a subset of both F 90 and F 95 [4, 8]. We
have preferred this subset because it is restricted to the features supporting modern
programming concepts.
The array processing operations of F are the main feature to implement data par-
allelism of the PRAM. If we have declared a vector x(1:n) of n components, we
can access all the components of this vector simultaneously by writing x(1:n)
(or simply x) on the left-hand or on the right-hand side of a statement. But we
can also access special sections of the vector, e.g., the first half by x(1:n/2) or
the even numbered components by x(2:n:2), where the third parameter deter-
mines that every other element is selected. Let us consider a statement reducing
the vector x to a vector y of half size by combining the components two by two:

y(1:n/2) = x(1:n-1:2) + x(2:n:2).

Another example is computing the odd numbered components of a vector z by
adding the component of x with the same index to the preceding component of z:

z(1:n:2) = z(0:n-1:2) + x(1:n:2).

In this example, z is assumed to start at 0ů. Now, we consider a vector simulating
a linked list: The vector val associates a value with each index, and the vector
suc defines the index where the next element can be found. At each position, the
value should be changed by adding the value associated with the successor index:

val(1:n) = val(1:n) + val(suc(1:n)).

In this statement, suc(1:n) is used as a vector of indices, i.e., the second operand
is a vector consisting of the components of val, but rearranged according to the
values of suc. The statement may be abbreviated by val = val + val(suc).
The next example replaces the link to the successor component by a link to the
component after the next:

1F is a trademark of The Fortran Company.

4

suc(1:n) = suc(suc(1:n)).

The examples with succmay run into some difficulty: We have assumed that each
component defines a successor. This holds true if the links define a ring. If the
list, however has a last element, i.e., a component without a successor, we must
avoid an undefined operation. A possible solution is to use a special index nil
indicating that there is no successor. Then, we can exclude this component from
being processed by masking the statements:

where (suc(1:n) /= nil)

val(1:n) = val(1:n) + val(suc(1:n))

suc(1:n) = suc(suc(1:n))

endwhere.

F requires that all declarations are given explicitly, the implicit declarations of
traditional F are not allowed. Furthermore, the intented use (in, out,
or inout) of formal parameters must be specified in functions and subroutines.
Overall, we can say that F implements the CREW PRAM.

4 Collecting and Broadcasting

Our first example is the prefix sum algorithm [11]. Given an array x1, x2, . . . , xn of
n elements from a domain D on which an associative operation + is defined. The
problem is to compute si = x1 + x2 + . . .+ xi =

∑i
j=1 x j for i = 1, 2, . . . , n. The idea

of the parallel algorithm is to reduce the problem size by adding each element
at an odd position to its right-hand neighbor and then applying this procedure
recursively. The recursion yields the final results at the even positions. In the last
step, we compute the results at the odd positions. (The result at position 1 has
already been set in the first line of the algorithm.)

recursive function prefix_sum (n, x) result (s)

integer, intent(in) :: n

integer, dimension (:), intent(in) :: x

integer, dimension (1:n) :: s

integer, dimension (1:n/2) :: y

s(1) = x(1)

if (n > 1) then

y(1:n/2) = x(1:n-1:2) + x(2:n:2)

s(2:n:2) = prefix_sum (n/2, y)

5

s(3:n:2) = s(2:n-1:2) + x(3:n:2)

end if

end function prefix_sum

As an immediate consequence of dividing the problem size by 2 in each step, the
algorithm is efficient in the sense that it is an O(log(n))-algorithm. But it is not
optimal in the sense discussed below.
A closer look at the operations to be simultaneously performed shows that this
is an EREW-program. The same holds true for the next program that copies the
information stored in location x(0) into all the components of x such that proces-
sors can subsequently access them by exclusive-read operations:

subroutine broadcast (n, x)

integer, intent(in) :: n

integer, dimension (0:), intent(inout) :: x

integer :: d, l, i

integer, dimension (0:n-1) :: id

id = (/ (i, i=0,n-1) /)

d = 1

do l = 1, ceil_log(n)

where ((id + d) < n)

x(id+d) = x(id)

endwhere

d = 2*d

enddo

end subroutine broadcast

The idea of the algorithm is that in each step, we double the number of proces-
sors that have received the correct value. In the first step, each processor sends
its value to the “right-hand” neighbor, i.e., to the processor with the address in-
creased by 1. After this step, the correct value is available at the processors 0 and
1, all other processors have copied irrelevant information. In the next step, the
distance is doubled such that processors 2 and 3 receive the correct values from
0 and 1, respectively. The where-clause ensures that nothing is copied beyond
processor n-1. (The vector id associates its index with each position.) Again, we

6

get an O(log(n))-algorithm2 since d runs through the powers of 2. From an archi-
tectural point of view, it is worth noting that this algorithm can efficiently run on
a hypercube.

5 Brents’s Principle

Given a problem of size n, a parallel algorithm is called optimal if the number of
steps t(n) and the number of processors p(n) it needs to solve the problem satisfy:

t(n) = polylog(n)
p(n) · t(n) = O(T (n))

where T (n) is the time complexity of best sequential algorithm. It is called efficient
if it satisfies

t(n) = polylog(n)
p(n) · t(n) = O(T (n) · polylog(n))

In this sense, the parallel prefix-sum algorithm is efficient, but not optimal. It is an
instructive example how to apply Brent’s principle: If a computation can be per-
formed in time t with q operations and sufficiently many processors, then it can be
performed in time t+ q−t

p with p processors [3]. The parallel prefix-sum algorithm
is not optimal since we get p(n)t(n) = O(n log(n)). Brent’s principle suggests
that we get an optimal algorithm if we can reduce the number of processors to
n/ log(n). This principle works fine if the processor allocation is not too difficult.
In case of the prefix-sum problem, the trick is to combine the non-optimal parallel
algorithm with the sequential one: We divide the given sequence of length n into
subsequences of length q = log(n) each of which is associated with one processor.
Each processor sums up the elements of its subsequence sequentially, then the
non-optimal algorithm is applied to the sequence of subtotals using the reduced
number of processors, and finally each processor sequentially computes the prefix
sums in its subrange:

function opt_prefix_sum (n, x) result (s)

integer, intent(in) :: n

integer, dimension (:), intent(in) :: x

integer, dimension (1:n) :: s

integer :: p ! No. of processors

2Function ceil_log(n) computes dlog2 ne.

7

integer :: q ! No. of operands per processor

integer, allocatable, dimension (:) :: y, z, zs, f

integer :: i, j

p = ceiling(n/dual_log(n))

q = ceiling(real(n)/real(p))

allocate (y(1:p), z(1:p), zs(1:p), f(1:p))

f = (/ ((i-1)*q, i=1,p) /)

! first component of processor i

! Phase 1: Each processor sums up a subsequence

y = 0

do j = 1,q

where (f+j <= n)

y = y + x(j:n:q)

endwhere

enddo

! Phase 2: Prefix sums of subtotals

z = prefix_sum(p, y)

! Phase 3: Each vector computes prefix sums

! in its subrange

z = (/ 0, z(1:p-1) /)

do j = 1,q

where (f+j <= n)

z = z + x(j:n:q)

s(j:n:q) = z

endwhere

enddo

deallocate(y, z, zs)

end function opt_prefix_sum

Since the number of processors depends on the parameter n, we must use dy-
namic storage allocation in the F version. The where-clauses ensure that the last
processor does not access components with an index larger than n.

8

6 Linked Lists

The algorithms presented in the previous sections take advantage of the fact that
the logical and the physical arrangement agree. If we have a linked list, the log-
ical neighbor of an element, i.e., the successor or the predecessor, may be stored
anywhere in the memory, and we have a link pointing to it. In this case, it is im-
possible to decide immediately on whether an element is at an even position of
the list or not. We assume a linked list to be represented by two arrays. val(i)
gives the value of the element at location i and suc(i) defines the location of
the logical successor. Furthermore, we assume existence of a special address nil
indicating that an element has no successor.3 If we need a doubly linked list, we
can construct the pointers to the predecessors in constant time:

where (suc /= nil)

pred(suc) = id

endwhere

pred(head) = nil

A fundamental technique to reduce the size of linked lists is pointer jumping. We
consider the list ranking problem as an example. The problem is to compute the
suffix sums, i.e., rank(i) is the sum of the values at position i and at all the
positions that follow element i in the list. Wyllie’s algorithm [15, 16, quoted
from [10]] can be implemented as follows:

function list_ranking (n,val,suc) result (rank)

integer, intent(in) :: n

integer, dimension (:), intent(in) :: val, suc

integer, dimension (1:n) :: rank

integer, dimension (1:n) :: v, s

integer :: k

v = val ! copy the given vectors

s = suc

do k = 1, ceil_log(n)

where (s /= nil)

v(1:n) = v(1:n) + v(s(1:n))

s(1:n) = s(s(1:n))

endwhere

3Without loss of generality, we may choose -1. In [10], the last element points to itself. This
leads to a CREW-algorithm.

9

enddo

rank = v

end function list_ranking

In the first step of the loop, the value at the successor position is added to the
original value, and the pointer s is replaced by the pointer to the element after
the next. This distance is doubled in the next step, etc. Contrary to the prefix
sum example, the operations are performed at each position and not only at every
second.
But, how to divide a linked list into subsequences without running through the
whole list? The students are very surprised when learning that it is possible to
construct a dlog ne-ruling set in constant time [5]. For convenience, we link the
last element to the first to avoid distinguishing special cases at the beginning and
at the end of the list. Given a list L of n elements, we construct a sublist S such
that no two adjacent elements of L are in S , and for each e ∈ L, there is a path of
length ≤ dlog ne from e to an e′ ∈ S . The following F program marks the elements
belonging to S :

function ruling_set(n, suc) result (marked)

integer, intent(in) :: n

integer, dimension (0:), intent(in) :: suc

logical, dimension (0:n-1) :: marked

integer, dimension (0:n-1) :: id, pred, q, l

logical, dimension (0:n-1) :: b, loc_min, loc_max, avail

integer :: i

id = (/ (i, i=0,n-1) /)

pred(suc) = id

marked = .false.

q = diff_pos(id, id(suc))

b = diff_bit(id, id(suc))

loc_min = (q <= q(pred) .and. q <= q(suc))

loc_max = (q >= q(pred) .and. q >= q(suc))

where (loc_min)

marked = (.not. loc_min(pred) &

.and. .not. loc_min(suc)) .or. b

endwhere

10

avail = .not. marked .and. &

.not. marked(pred) .and. &

.not. marked(suc) .and. loc_max

where (avail)

marked = marked &

.or. (.not. avail(pred) &

.and. .not. avail(suc)) .or. b

endwhere

end function ruling_set

The vector id identifies each processor. The function diff_pos(x,y) deter-
mines the least-significant bit position where x differs from y, i.e., the identifica-
tion of a processor differs from the identification of its (logical) successor. The
position is given as a power of two4:

h = max(x,y) - min(x,y)

l = h - 1

r = ieor(h,l)

q = (r+1)/2

The function diff_bit(x,y) computes the value of the bit at this position:

b = (iand(x, diff_pos(x, y)) > 0)

We mark the elements that are local minima if both neighbors are not.5 If one
of them is also a local minimum, we take the element which has value 1 at the
distinguished bit position. (In the program, we use .true. and .false. instead
of 1 and 0.) Then, we apply the analogous procedure to the local maxima, if
both neighbosr are not yet marked. The distance of two marked elements can not
exceed the number of bits we need to represent the number n.

7 Bitonic Sort

Although Batcher’s sorting algorithm [2] has been designed for comparator net-
works, it fits well into the other material. Contrary to the sequential sorting algo-
rithms the students already know, this algorithm is oblivious, i.e., the pairs to be
compared do not depend on the outcome of previous comparisons.

4Contrary to the discussion in [10], it is not necessary to compute the number of the position
itself, since we use these positions only in comparisons.

5The &-sign indicates that the end of the line is not the end of the statement.

11

The algorithm uses a property of special sequences X = (x0, x1, . . . , x2m−1) of
even length. X is called unimodal if it has at most one local extremum6, and it is
called bitonic if it is a cyclic shift of a unimodal sequence. Trivially, shifting a
bitonic sequence yields a bitonic sequence again, and concatenating an increasing
sequence with a decreasing one (or vice versa) gives a unimodal sequence, and
therefore a bitonic sequence. Batcher defines two operations on sequences that
can easily be performed in parallel:

L(X) := (min(x0, xm),min(x1, xm+1), . . . ,min(xm−1, x2m−1))
U(X) := (max(x0, xm),max(x1, xm+1), . . . ,max(xm−1, x2m−1))

He has shown that if X is bitonic, then L(X) and U(X) are bitonic, too, and
max(L(X)) < min(U(X)). Furthermore, if L(X) and U(X) are sorted in nonde-
creasing order, then their concatenation is sorted in nondecreasing order. This
results in a simple recursive algorithm to sort bitonic sequences: Compute L(X)
and U(X) and store them in the lower and upper part of X, respectively. Then
apply this procedure recursively to both parts.
The algorithm to sort non-bitonic sequences starts with considering the unsorted
sequence as a list of n/2 sequences of length 2. Trivially, sequences of length 2
are bitonic, and in the first step (l = 1), we sort these subsequences alternately
into nondecreasing and nonincreasing order by applying L and U with m = 1.
Concatenating two of these subsequences, we get bitonic sequences of length 4,
which are recursively sorted in the next step (l = 2). Again, we alternate non-
decreasing with nonincreasing sequences, and we get bitonic sequences of length
8, etc. Figure 1 describes this process. If an arrow points from i to j, then xi is
compared to x j. If we have xi > x j, the values are exchanged. (For simplicity, we
restrict the implementation to sequences the length n of which is a power of 2.)
>From the educational point of view, it is worth mentioning that the theory of
this algorithm is much easier than implementing it. The proof of Batcher’s lemma
is straightforward even if it is lengthy. Writing the program, however, requires
some tricks to implement the “groups of arrows” and their directions. In the F
version, we have implemented the compare-exchange operations by the min- and
max-operations in the body of the inner loop. The directions are controlled by a
Boolean vector b checking the (l − 1)-th bit of the index. The vector i defines the
n/2 positions at which the comparisons are to be performed:

subroutine batcher_sort(n,x)

integer, intent(in) :: n

6Since we define a local minimum by xi−1 > xi ∧ xi < xi+1 (and a maximum analogously),
neither x0 nor x2m−1 is considered a local extremum.

12

i=0
1
2
3
4
5
6
7

l=1
m=1

?

6

?

6

m=2

?

?

6

6

l=2

?

?

6

6

m=1 m=4

?

?

?

?

?

?

?

?

l=3
m=2

?

?

?

?

m=1

Figure 1: Bitonic sort with n = 8 elements

integer, dimension (0:), intent(inout) :: x

integer :: m, h, j, k, l, p

logical, dimension (0:n/2-1) :: b

integer, dimension (0:n/2-1) :: i

integer, dimension (0:n-1) :: aux

h = 1

do l = 1, ceil_log(n)

m = h

h = 2*h

b = (/ (.not. btest(j,l-1), j = 0,n/2-1) /)

do k = l, 1, -1

i = (/ ((j+p, j=0,m-1), p=0,n-1,2*m) /)

where (b)

aux(i) = min(x(i),x(i+m))

aux(i+m) = max(x(i),x(i+m))

elsewhere

aux(i) = max(x(i),x(i+m))

aux(i+m) = min(x(i),x(i+m))

endwhere

x = aux

m = m/2

enddo

h = 2*h

enddo

13

end subroutine batcher_sort

8 Conclusion

Of course, the concept to explain topics of theoretical computer science in a
programming-oriented way is restricted to subjects with constructive proofs. In
the course on parallel algorithms [18], we have started with the basic techniques
some of them are presented in this paper. Then, we have considered various al-
gorithms related to sorting, searching, and merging. Finally, we have applied
these techniques to problems on trees and graphs, e.g., computing spanning trees
and Euler paths. In a special chapter, we have considered the implementation on
mesh-connected arrays and on cube-connected arrays (hypercubes).
The abstract model of the PRAM is well-suited to introduce the students into think-
ing in parallel on an abstract level, because this model is simpler than real parallel
machines. Especially, the constant time algorithms, such as determining the pre-
decessors, the ruling-set algorithm, or finding the maximum of n numbers, have
convinced the students that studying parallel algorithms does not only mean sub-
dividing a given algorithm into parts that can be performed in parallel, but that
designing efficient parallel solutions means starting from scratch.
As we have already mentioned, F is not our preferred programming lan-
guage, and we were skeptical about using a F dialect in a computer science
course. The examples, however, show that the subset we have chosen is a good
tool to implement SIMD parallelism. Nevertheless, we think that other languages
should be used to implement parallelism on a higher level.
Overall we can state that explaining theoretical concepts in the usual way is much
easier than implementing them. If, however, you want to understand theory better,
you should implement the concepts. Conversely, thinking about the fundamentals
of algorithms leads to better design.

References

[1] J.W. Backus: The history of Fortran I, II, and III, ACM SIGPLAN Notices 13, 8
(1978), pp. 165-180

[2] K.E. Batcher: Sorting networks and their application, Proc. AFIPS Spring Joint
Comp. Conf. vol. 32 (1968), pp. 307-314

[3] R.P. Brent: The parallel evaluation of general arithmetic expressions, J. Assoc.
Comput. Mach. 21, 2 (1974), pp. 201-206

[4] I. Chivers/J. Sleightholme: Introducing FORTRAN 95, Springer, London, 2000

14

[5] R. Cole/U. Vishkin: Deterministic coin tossing with applications to optimal parallel
list ranking, Inform. and Control 70, (1986), pp. 32-53

[6] S.A. Cook/R.A. Reckhow: Time bounded random access machines, J. Comput. Sys-
tem Sci. 7 (1973), pp. 354-375

[7] S. Fortune/J. Wyllie: Parallelism in random access machines, Proc. 10th Ann. ACM
Symp. on Theory of Computing (1978), pp. 114-118

[8] W. Gehrke: Fortran 95 – Language Guide, Springer, Londdon, 1996

[9] W. Gehrke: Die Programmiersprache F, Springer, Berlin, 1998

[10] R.M. Karp/V. Ramachandran: Parallel algorithms for shared-memory machines,
Handbook of Theoretical Computer Science (Ed.: J. van Leeuwen), vol. A pp. 869-
941, Elsevier, Amsterdam, 1990

[11] R.E. Ladner/M.J. Fischer: Parallel prefix computation, J. Assoc. Comput. Mach. 27
(1980), pp. 831-838

[12] W.J. Savitch/M.J. Stimson: Time bounded random access machines with parallel
processing, J. Assoc. Comput. Mach. 26 (1979), pp. 103-118

[13] H.J. Schneider: Computability in an introductory course on programming, Bulletin
of the European Association for Theoretical Computer Science 73 (2001), pp. 153-
164

[14] U. Vishkin: Implementation of simultaneous memory address access in models that
forbid it, J. Algorithms 4 (1983), pp. 45-50

[15] J.C. Wyllie: The complexity of parallel computation, TR 79-387, Dept. Comp. Sc.,
Cornell Univ., Ithaca, N.Y., 1979

[16] J.C. Wyllie: The complexity of parallel computations, Ph.D. Dissertation, Dept.
Comp. Sc., Cornell Univ., Ithaca, N.Y., 1981

[17] Welcome to the F Programming Language Homepage,
http://www.swcp.com/~walt/, Link: Information about F
(Checked on 2003/08/07)

[18] Foundations of Parallel Algorithms,
http://www2.informatik.uni-erlangen.de/Lehre/WS02_03/ParAlg/

(Checked on 2004/01/05)

15

