Two Classical Theorems Revisited

R.Morales-Bueno!, I.Fortes?, LL.Mora! and F.Triguero!
'Dpto. Lenguajes y C.Computacion. E.T.S.LInformética.
Campus de Teatinos. 29071 Médlaga, Spain
{morales,llanos}@lcc.uma.es,triguero@ctima.uma.es
’Dpto. Matematica aplicada. ifortes@ctima.uma.es

1 Introduction

This paper describes the essential contents of a seminar to enhance the theo-
retical aspects of a first programming course. The main objective is to show
that from a few control structures we can derive the rest. Another bene-
fit for students is the acquisition of a good grasp of two classical theorems
from a strictly programming point of view. These two theorems are: the
Boéhm-Jacopini theorem and the normal form Kleene theorem. A construc-
tive proof for each theorem is given. In more specific terms, we show how
unconditional and conditional jumps can be replaced by while statements
(Bohm-Jacopini’s theorem). This is the basis of structured programming.
Also, we show, in a constructive way, that each program has an equivalent
program with only one while statement (normal form Kleene’s theorem).
In this paper, only the necessary results will be developed. Other results
that complete the seminar can be seen in ([3, 4, 8]).

The next section presents the syntax and semantics of the LOOP language
and some LOOP programs are given. The following section is dedicated to
develop the WHILE language in a similar way. Finally, the constructive
proof for each theorem is presented.

2 The LOOP Language

We begin by informally introducing the LOOP language. We study a pro-
gramming language, whose programs compute certain functions. The LOOP
language contains zero, increment, and assignment statements, and, in ad-
dition, a ”loop” statement which functions much like a DO-loop. For this
reason, these programs are called LOOP programs. The only data in LOOP
programs are natural numbers which are stored in variables.

The syntax of LOOP programs is defined inductively: if X1 and X2 are names
of variables, then X1:=X2, X1:=X1+1 and X1:=0 are LOOP programs. We
only have the simplest of operations. We cannot add, multiply, divide, or
whatever. All these will have to be implemented by programs using only
these as primitive functions. Furthermore, if P and Q are LOOP programs,
then P;Q is a LOOP program, as is DO X TIMES P 0D. This statement is
called a DO-loop (or simply loop). The variable X is the loop variable; the
sequence P, the body of the loop statement; and DO X TIMES the head and
0D the tail of the loop statement.

Regarding the semantics of LOOP programs, that is, the manner in which
they are to be executed, we could say the following: assignment statements
are executed in the obvious way so that the variable values are changed in
the appropriate fashion. A LOOP program of the form P;Q is executed by
executing the program P first, and then (with the values P leaves in the
variables remaining intact) executing program Q. A program of the form DO
X TIMES P 0D executes program P as many times as the value of X at the
beginning of the loop.

In addition to specifying the LOOP program itself, it is necessary to specify
which of the variables are to be understood as input variables, and which as
output variables. (Typically, there is only one output variable).

The function f : N* — N computed by a LOOP program (with n input
variables) is defined as follows:

flay,... ,a,), with a; € N, is the value of the output variable after the
program is run with ¢; 1 <4¢ < n in the i-th input variable and 0 in all
other variables at the beginning of execution.

In the next sections, both the syntax of LOOP and the semantics of LOOP
will be defined.

2.1 Syntax of LOOP programs

In this section we will define the set of all legal LOOP programs. The syntax
of LOOP is defined using Backus-Naur form (BNF).

Let G = (N,T,R,S) be a grammar where:

T = {p0,0D,::=,TIMES, +,0,1,2,3,4,5,6,7,8,9,X,;}

N = {program, assignment, sent, sentences, identi fier, num}

The set of rules R is:

1 S=<program> = {(n,p,<sentences>)|n,1 < p}

2 <sentences> = <sent>

3 | <sentences>;<sent>

4 <sent> = <assignement>

5 | DO<identifier>TIMES< assignment>0D
6 <assignement> = <identifier>:=0

7 | <identifier>:=<identifier>

8 | <identifier>:=<identifier>+1

9 <identifier> = X<num>

10 <num> == (1|2/3]4|5|6|7|8|9){0|1|2|3|4|5|6|7|8|9}

Then, a LOOP program is defined as (n,p,P) consisting of two natural
numbers and a sequence P of statements. The variables occurring in the
sequence P are called the program variables. The number p specifies that
{X1,...,Xp} are the variables used in the sequence P. The number n spec-
ifies how many of these variables are the input variables and which are:
X1,...,Xn The only output variable is X1. The general idea is that, given
input values, a program determines a computation on these input values,
which terminates after some finite time producing a result. Each line of
a program (n,p,P) contains: an assignment statement, a DO-head (DO Xi
TIMES) or a DO-tail (OD).

To clarify the notation, we will use X,Y,Z,V,I instead of X1,... ,X5 as given
variables. If the program has only one input variable, it will be X, and if
there are two input variables, they will be X and Y, and so on. Of course,
the output variable is X. LOOP programs are not designed to ease program-
ming, but to be as simple as possible. LOOP programs are as powerful as
any other programming language without indefinite loops.

Example 1
The IF-statement is very intuitive, and will be used frequently. The IF-
statement, IF X# 0 THEN P FI, can be obtained from only DO-statements
as it is shown:
Y:=0;
DO X TIMES
Y:=0;
Y:=Y+1
0D;
DO Y TIMES
P
oD
We propose for the reader to implement the case IF X# 0 THEN P ELSE P’
FI using only DO-statements.

Example 2
An example of a function that can be computed by using only LOOP pro-
grams is addition. The program (2,2,P) computes the function

addition : N> —» N

defined as addition(z,y) = = + y, where P is:
DO Y TIMES
X:=X+1
0D
Now, we introduce the intuitive semantics of LOOP programs and give some
examples of the power of this language.

2.2 Semantics of LOOP programs

The meaning of a program, and in particular of a LOOP program, is the set
of all computations described by the program. The set of all pairs (initial
value, final value) determined by these computations is the input/output
relation computed by the program. This is always a functional relationship,
since the computation proceeds deterministically.

The computations associated with a LOOP program (n,p,P) consist of the
repeated application of operators of the state vector z € NP representing the
values of all the p program variables.

Which operator is to be applied will be formally defined now. Let a € N* be
input values. Then the state vector z is initialized to (a1, a2, . .. ,ay,0,...,0).
That is, input variables get their value as determined by the input; all other
program variables are set to zero. The actual computation starts on this
initialized state vector with the first statement of the program, i.e., initial-
izing is not considered part of the computation. The computation proceeds
sequentially in accordance with the program text and the meaning of the
individual statements. There are two types of statements: assignment state-
ments and loop statements.

The execution of assignment statements (X:= 0, X:=Y, X:=Y+1) transforms
the current value of the state vector by replacing a component value by 0,
the value of the other component and the addition of one to the value of the
other component, respectively . This transformation is considered a single
step in the computation.

The sequence P in a loop statement DO X TIMES P 0D is to be executed as
many times as indicated by X.

Through this way of execution, the program terminates after executing the
last statement. The output value is the value of the first component in the
state vector.

Example 3

In example 2 the LOOP program is (2,2,P) where X, Y are the input variables
and X is the output variable. Also, (X,Y) are the program variables. In this
example the loop statement is executed Y times, hence the output value of
X is finally 4+ y. Let us assume that Y is 0, then the loop is not executed
and the content of X remains z.

2.3 The Power of the LOOP Language

Now, we show the power of the LOOP language through some programs.
Also, these programs and constructions will be useful for the next section
where the WHILE language will be introduced. We show that all statements
except indefinite loops can be constructed from LOOP programs.

Example 4

Notice that the assignment <identifier>:=<identifier>-1 is not allowed in
our syntax. So, at this moment we cannot compute the subtraction function
straightforwardly. However, the function f(z) = x — 1 can be computed by
a LOOP program (1,2,P) in this way:

DO X TIMES
X:=Y;
Y:=Y+1

0D

Initially Y is 0. The difference between Y and X is constant and equal to one
after every execution of the loop statement; the loop statement is executed
x times, hence the value of Y is finally z, and the value of X (output) is z—1.

Example 5
The subtraction function f : N> — N defined as f(z,y) = = — y can be
computed by a LOOP program (2,3,P). First,
DO Y TIMES
X:=X-1
0D
and replacing X:=X-1 with the corresponding code we obtain:
DO Y TIMES

DO X TIMES
X:=Z;
Z:=7+1

0D

oD

In the construction of programs we will use statements corresponding to
functions that have been proved to be computed by LOOP programs. Ex-
amples of this are X:=Y-1,X:=X+Z,X:=Y-Z.

We encourage the reader to compute the product function with a LOOP

program.
Now, we show how any condition that appears in an IF statement can be
obtained from condition X# 0. For example, a sentence IF X# (0 AND Y# 0
THEN P FI can be replaced by:

Z:=X+Y;

Z:=7-1

IF Z#0 THEN P FI

where Z is the variable associated with the condition ”X# 0 AND Y# 07, that
is, Z# 0 if and only if ”X# 0 AND Y# 0”.

Also X#Y can be computed by X-Y# 0 AND Y-X# 0 replacing the corre-
sponding code.

If Z is the associated variable to a condition C, then the associated variable
to NOTC is T, obtained by

T:=0;

T:=T+1;

IF Z# 0 THEN T:=0 FI

Finally, the case X=Y can by computed by NOT X#Y, and X=0 by NOT X# 0.
It is easy to check that the Boolean operator OR and all the relational op-
erators <,>,<,>,= can be computed with LOOP programs. It is known
that the functions computable by LOOP programs are precisely primitive
recursive functions [3, 8].
Now, let us see the restrictions of the LOOP language. Every LOOP com-
puted function is total. So, LOOP programs cannot compute partial func-
tions. This is a restriction of this language; another restriction is related to
functions that grow very quickly.
More precisely, assume the function f : N - N

1 ifz=20
f(=) = { diverges otherwise
This function is computable and partial. So, no LOOP program can compute
it. Examples of functions that grow very quickly (non-LOOP-computable)
are the Ackermann function [1] and a version of the busy-beaver function

[7].

3 The WHILE Language

In this section, we modify the LOOP language in order to include all com-
putable functions. Let us see now what rules must be replaced and what
rules must be added in order to obtain this new language. We replace the
loop statement by a while statement (for this reason, we will call this lan-
guage "the WHILE language”) and we add the statement X:=X-1.

Example 6
The function f(z):
1 ifz=0

=)= { diverges otherwise
can be computed by the following program:
WHILE X0 DO

X:=X+1
0D;
X:=X+1

The grammar for this language is similar to the one described in section 1.1;
we must replace rule number 5 by a new rule 5, and add rule number 8, to
those grammars:

5 < sent > m= WHILE < identifier ># 0 DO < sent > OD.
8" < assignement > = X:=X-1

We will now see how the DO-statement, which has been suppressed in the
language, can be simulated in the new language.

Example 7
The fragment of program:
DO X TIMES
P

0D
is equivalent to:
Y:=X
WHILE Y0 DO

P

Y:=Y-1
0D
where Y must be a new variable not used until now.
With this example we verify that all programs written in the LOOP language
can be written in the WHILE language. Example 6 shows that the class of
functions computed by WHILE programs is a proper superclass of the one
computed by LOOP. It can be proved that the class of functions computed by
WHILE programs and the class of recursive functions are the same [3, 4, 8].

4 Bohm-Jacopini’s theorem

In this section we will prove, in an intuitive manner, the Bohm-Jacopini
theorem, [2]. This theorem in its original version says ”...every Turing ma-
chine is reducible into, or in a determined sense is equivalent to, a program

written in a language which admits as formation rules only composition and
iteration”. In current programming terminology, this statement can be re-
stated as follows: for every program written in an unstructured language,
there is an equivalent program in a structured language.

Let us consider programs with jump instructions and, hence, labeled in-
structions. We assume that no other structure of iteration is allowed. First,
we show with an example how to obtain an equivalent program, and then
we will present the transformation algorithm.

Example 8
Assume the following program with conditional and unconditional jumps:
S1
L1: S2
IF X#0 THEN GOTO L3
GOTO L4
L2: S3
GOTO L1
sS4
S5
L3: S6
GOTO L2
L4: S7

For this program, we write an equivalent program with only one while state-
ment and without jumps. The idea is to use a counter to indicate the number
of the line to be computed. If there is an assignment in the line, this assign-
ment is performed, and then the program passes to the following line (the
value of the counter increases by one unit); if there is a jump instruction in
the line, we decide whether to pass to the following line or to pass to the
line indicated by the jump, depending on the condition. We will use the
variable name I, instead Y or Z, to be nearer to the nomenclature used in
programming for counters. Moreover, in order to compact the program, we
will write every IF statement in a single line. The equivalent program is:
I1:=0;
I:=1I+1;
WHILE I<=11 THEN

IF I=1 THEN S1; I:=I+1 FI;

IF I=2 THEN S2; I:=I+1 FI;

IF I=3 AND X0 THEN I:=9 FI;
IF I=3 AND X=0 THEN I:=I+1 FI;
IF I=4 THEN I:=11 FI;

IF I=5 THEN S3; I:=I+1 FI;

IF I=6 THEN I:=2 FI;

IF I=7 THEN S4; I:=I+1 FI;

IF I=8 THEN S5; I:=I+1 FI;

IF I=9 THEN S6; I:=I+1 FI;

IF I=10 THEN I:=5 FI;

IF I=11 THEN S7; I:=I+1 FI;
0D
We can see that constants have been assigned to variables: I:=k is equivalent
to I:=0; I:=I+1;...(k times)...; I:=I+1. Also, variables can be compared
with constants: I=k is equivalent to Z:=k and we use the comparison I=Z.
The same for I<k.
Now, we will prove the Bohm-Jacopini theorem in a constructive way, as
suggested at the beginning. We describe a general method to convert an
unstructured program into a structured program. The algorithm is as fol-
lows:

e To number the lines from 1 upwards

e Let there be the variable I. (In every moment of the execution, this
variable contains the number of the line that must be executed.)

e To initialize the variable I to one.

e To include a while statement with the following ending condition: the
value of T is greater than the number of lines of the program being
transformed.

e For each line of the program numbered with N, the original text is
replaced by one of the following fragments:

— if the line is an assignment, i.e., S:

IF I=N THEN
S
I:=I+1

FI

— if the line is an unconditional jump, i.e., GOTO L, and the number
of the line with label L has number N1:

IF I=N THEN
I:=N1
FI

— if the line is a conditional jump, i.e., IF X # 0 THEN GOTO L, and
the line with label L has number N1:

IF I=N AND X # O THEN
I:=N1

FI;

IF I=N AND X = 0 THEN
I:=1I+1

FI

e To close the while statement (0D).

With these steps, the reader can check that an equivalent program without
jumps can be obtained for each program with jumps.

5 Kleene’s theorem

Finally, we pose the following question: how many while statements are
necessary to write any program? Generally, in order to reach clear programs,
the number of while statements is not restricted. However, from a strictly
formal point of view, would it be sufficient to use four, five or some other
number? This question was long ago answered by Kleene from a theoretical
point of view, stating the theorem named after him. This theorem in its
original version says: FEwvery recursive function is expressible in the form
Y(ey[R(z,y)]), where ¥(y) is a primitive recursive function and R(z,y)
a primitive recursive relation and(z)(Ey)R(z,Y)”, [5]. € represents the
minimization and it can be proved that it is equivalent to a while statement;
hence, Kleene’s theorem states that each program admits an equivalent
program with only one while statement [4, 8]. We will here present a
constructive and direct proof of this result. It is constructive because we
develop the equivalent program, and direct because we do not use any other
model of computation. The algorithm to obtain a program with only one
while statement, independently of the number of while statements in the
original program, is the following:

e To number the lines from 1 upwards

e Let there be the variable I. (In every moment of the execution this
variable contains the number of the line that must be executed.)

e To initialize the variable I to one.

e To include a while statement with the following ending condition: the
value of I is greater than the number of lines of the program that is
being transformed.

e For each line of the program numbered with N, the original text is
replaced by one of the following fragments:

— If the line is an assignment (i.e., S):

10

IF I=N THEN
S;
I:=I+1

FI

— If the line is a while-head (WHILE X#0 DO), and N1 is the line
number of corresponding while-tail (0OD):

IF I=N AND X#0 THEN
I:=1+1

FI;

IF I=N AND X=0 THEN
I:=N1+1

FI

— If the line is a DO-tail (0D), and N1 is the line number of its
corresponding DO-head (WHILE):

IF I=N THEN
I:=N1
FI

e To close the while statement (0D).

Example 9
1.WHILE X#0 DO
2. S1
3 WHILE Y#0 DO
4 S2
5. WHILE Z#0 DO
6. S3
7 0D
8 0D
9. WHILE V#0 DO
10. S4
11. 0D
12.0D
13.85

For this program according to the previous steps we obtain the following
equivalent program, in which there only appears one WHILE:
I1:=0; I:=I+1;
WHILE I<13 DO
IF I=1 AND X#0 THEN I:=I+1 FI;
IF I=1 AND X=0 THEN I:=13 FI;
IF I=2 THEN S1; I:=I+1 FI;

11

0D

IF I=3 AND Y#0 THEN I:=I+1 FI;
IF I=3 AND Y=0 THEN I:=9 FI;
IF I=4 THEN S2; I:=I+1 FI;

IF I=5 AND Z#0 THEN I:=I+1;

IF I=5 AND Z=0 THEN I:=8 FI;
IF I=6 THEN S3; I:=I+1 FI;

IF I=7 THEN I:=5 FI;

IF I=8 THEN I:=3 FI;

IF I=9 AND V#0 THEN I:=I+1;

IF I=9 AND V=0 THEN I:=12 FI;

IF I=10 THEN S4; I:=I+1 FI;
IF I=11 THEN I:=9 FI;
IF I=12 THEN I:=1 FI;
IF I=13 THEN S5; I:=I+1 FI

References

[1]

[2]

Ackermann W. Zum Hilbertschen Aufbau der reelen Zahlen. Math. Ann.
99, pp. 118-133. 1928.

Bohm C., Jacopini G.: Flow Diagrams, Turing Machines and Languages
with only two Formation Rules. Communications of the ACM, Vol. 9, 5,
pp-366-371. 1966.

Davis M., Weyuker E. Computability, Complexity, and Languages: Fun-
damentals of Theoretical Computer Science Academic Press 1983.

Kfoury A. J., Moll R. N., Arbib M.A. A Programming Approach to Com-
putability Springer-Verlag. 1982

Kleene S.C. General Recursive Functions of Natural Numbers. Mathe-
maticsche Annalen Band 112, Heft 5 (1936) pp. 727-742.

Meyer A. R., Ritchie D.M. The complexity of loop programs. Proc. ACM
Nat. Meeting 1976,465-469.

Morales-Bueno R., Perez-de-1a-Cruz J.L., Fortes 1., Mora L.: A new to-
tal computable function, non-computable with definite loops. Technical
Report Dept. 2000/2. Languages and Computer Science. University of
Malaga 2000.

Sommerhalder R., van Westrhenen S.C. The Theory of Computabil-
ity: Programs, Machines, Effectiveness and Feasibility. Addison- Wesley
1988.

12

