Algebraic Specification goes multimedia —
A few tentative steps*

Renate Klempien-Hinrichs and Hans-Jorg Kreowski

Department of Computer Science, University of Bremen
P.O.Box 330440, D-28334 Bremen (Germany)
Email: {rena, kreo}@informatik.uni-bremen.de

Algebraic specification is the subject of one of the courses within the computer
science studies at the University of Bremen. The course will start on October
15, 2001 and run for 15 weeks at four hours per week until February, 2002. It
will be read by the second author and assisted by the first. 40 to 60 participants
are expected.

Background

Algebraic specification is a graduate course in the area of theoretical computer
science. In the undergraduate phase, every computer science student must at-
tend and pass two courses on theoretical computer science that introduce fun-
damentals of computability, complexity, formal languages, and automata. In the
graduate phase, at least one course and an oral examination must be passed.
Subject of the exam is one of the subareas of theoretical computer science in-
cluding computability and complexity theory, formal language theory, theory
of programming, and special subareas like theory of concurrency and theory of
artificial intelligence. In practice, the exam focusses usually on the contents of
one of the courses in a subarea. The additional course must belong to a different
subarea. The students can choose from a wide spectrum of subjects. As a rule,
at least one course is offered in each subarea per academic year.

Algebraic specification belongs to the theory of programming and is offered
about every second year. The second author read algebraic specification for the
first time in 1979 and about a dozen times since then. From the very begin-
ning, the content was based on the seminal survey paper of the ADJ group
(see Goguen, Thatcher, and Wagner [GTW78]) and has not changed very much
over the years. Also from the beginning, there were class room notes consist-
ing mainly of a German translation of the ADJ survey, supplemented by more
examples and explanations. Meanwhile, one encounters a good number of text-
books on algebraic specification (see, e.g., [K1a83, EM85, EGL89, HKB89, HL&9,
LEW96]). Each has its own merits, but in the first chapters they coincide very

* This activity is partially supported by the Bundesministerium fir Bildung und
Forschung (BMBF) within the project MMISS (Multimedia Instruction in Safe Sys-
tems).

much with the ADJ survey so that there is no need to change the content of the
introductory course.

But this time, there will be a major difference. While reading algebraic spec-
ification, we will think about and try to provide some multimedia support. The
aim is not to come up with a final conception, but we will introduce some first
tentative ideas, see how they work, and discuss them with the participating
students.

Contents

A good part of computer science concerns data processing. How can it be done
systematically, efficiently, correctly? What can and should be done?

As the term “data processing” indicates, the main ingredients are on the
one hand data of various sorts, from simple ones like bits, digits, and letters to
complex structured ones like sequences, trees, networks, etc., and on the other
hand means to operate on them. Data must be generated, changed, consumed,
analyzed, compared, etc. In other words, the entities of interest in computer sci-
ence, like algorithms, data types, and whole data-processing systems, are known
to be algebras and models in mathematics. This observation motivates exploit-
ing the theory of universal algebra (or, likewise, mathematical logic) and looking
for syntactic and semantic concepts for a better support and understanding of
computing and programming. Initiated by researchers like Guttag and Horning,
Liskov and Zilles and the ADJ-group in the 70s, this line of research led to the
flourishing area of algebraic specification (see, e.g., the state-of-the-art report
[AKK99] for an up-to-date and quite complete survey).

A first syntactic feature is the signature, allowing to declare sorts and oper-
ations, with domain and codomain sorts for each operation. Semantically, one
may associate a data domain with each sort and a (functional) operation on the
respective domains with each declared operation. This defines a SIG-algebra if
SIG is the signature at hand. Moreover, SIG gives rise to a recursive genera-
tion of SIG-terms as (formal) applications of declared operations to SIG-terms
and sorted wvariables, chosen as one likes. Given a SIG-algebra A, a term can
be evaluated in A, yielding a unique value, if each operation is replaced by the
corresponding operation in A and each variable is assigned a value. It turns
out that the term generation process leads to a SIG-term algebra Ts;g(X) for
each choice of variables X and that the evaluation is the only homomorphism
from Ts;q(X) into A for each assignment of values to X. The latter means that
Tsia(X) is the free SIG-algebra over X and that Ts;g = Tsig(0), the term
algebra without variables, is the initial SIG-algebra.

Ts;q is a proper candidate to formalize the idea of abstract data types on
the level of signatures. The principle behind Ts;¢ is that all data are accessible
by repeated application of operations, and that such applications yield different
values if the applied operations are different or some of their arguments are
different. Unfortunately, many examples show that only a very few data types,
like the natural numbers with 0 and successor or the strings over some alphabet

with empty string and left (or right) addition of symbols to strings, are of this
nature. In most cases, different terms may yield the same value, as Boolean
expressions yield either TRUE or FALSE.

To cover the phenomenon of equivalent terms, one allows to specify equa-
tions by pairs of terms on the syntactic level. A SIG-algebra satisfies such an
equation if its two terms evaluate equally for each variable assignment. Hence,
a specification SPEC consists of a signature SIG and a set of equations, and a
SPEC -algebra is a SIG-algebra satisfying all equations in the set. Nicely enough,
a set of equations gives rise to a recursive construction of a congruence relation
on Ts;6(X) (for each X) that is obtained by substitution of variables by terms
and equivalence closure. This congruence relation contains exactly all equations
that are satisfied by all SPEC-algebras, and if one factors T's;g through the
respective congruence, one gets the initial SPEC-algebra Tsprc as a formal
equivalent to an abstract data type.

The quotient term algebra equals the desired data type (up to isomorphism)
in many examples like integers, strings, sets, arrays, etc. These correctness results
establish an excellent justification of the choice of the initial algebras as semantics
of algebraic specifications. Given some SPEC-algebra A, there is always a unique
homomorphism from Tspgc to A. If A represents certain requirements, then
this homomorphism often helps to show that Tspgc fulfils the requirements and
SPEC is correct with respect to them.

Further topics of the course concern the structured design of algebraic spec-
ification including parameterization and stepwise refinement. The course closes
with an outlook on the practical application of algebraic specification by using
algebraic specification languages and their tools.

In our experience, computer science students have no problem to grasp the
syntactic features of algebraic specification and the intuition of their semantics.
But most of them find it difficult to see and believe that the mathematical
formalization meets the intuition. They have even more difficulty with using the
term congruence to prove correctness results. This is the reason why we look for
multimedia support, as it may help students to better understand the semantic
issues of algebraic specification.

Multimedia support

First of all, one should be aware that even traditional (computer science) courses
have a multimedia dimension. Graduate courses in theoretical computer science
in Bremen, for example, combine lectures and working sessions. The blackboard
is used to develop the basic ideas, concepts, results and proofs. Transparencies
are used to summarize the attained state of affairs. Posters may be used for
the same purpose to present central issues visibly. There are classroom notes
and written exercises. And so on. In other words, if we speak about multimedia
support, we mean the additional use of digital media like the Internet. We are
not aiming at a total and revolutionary change of teaching, but a moderate
evolution of the didactic concepts by means of digital media.

In more detail, we consider and plan the following measures. As a first step,
a course website is installed that provides the classroom notes, exercises, and
any further information of interest for easy reading and printing. It may also be
a good idea to provide the written material in such a way that the students can
annotate it on screen with their own comments. Moreover, the website may offer
an on-line forum for commenting, criticizing, asking questions, and discussing
all matters of concern. These are didactic measures that are independent of the
content, can be realized for most academic courses in a similar way, and are
somewhat straightforward.

More interesting is the question how a better understanding of algebraic spec-
ification can be supported by computerized media. The key seems to be that the
initial semantics of an algebraic specification is based on two recursive processes:
term generation and congruence closure. Hence a simulation of these processes
should help. One option is the use of existing tools for term rewriting, theo-
rem proving, or interpretation of algebraic specification languages that evaluate
terms or equations within the congruence generated by the specific equations.
We will try to use the CASL tools for this purpose (see [CoF01]) because CASL
is a kind of standard algebraic specification language. Unfortunately, all existing
evaluators aim at efficiency by employing a deterministic depth-first evaluation
strategy while the congruence is more of a non-deterministic and breadth-first
nature. Another option to overcome this discrepancy would be the development
of a special tutorial system that visualizes and animates term generation and
congruence closure in the way they are defined. For automata theory, a very nice
example of a tutorial system is JFLAP [JFLO01], a tool which allows to graphi-
cally create and simulate several versions of automata (cf. also the last column
in EATCS Bulletin No. 74). But we are not at all sure that we should and can
undertake such an effort.

Concluding remarks

We have sketched the very first ideas how a course on algebraic specification may
be supported by multimedia. Admittedly, some of the considerations are still very
vague. Things will be much clearer in half a year, i.e. after the experiment. We
have reported on our plans in this early stage because we hope that some readers
can point out similar experiments, from which we can learn, or tutorial systems
that work well and serve the purpose of illustrating the behaviour of theoretical
features.

References

[AKK99] Egidio Astesiano, Hans-Jorg Kreowski, and Bernd Krieg-Briickner. Alge-
braic Foundations of Systems Specification. Springer, 1999.

[CoF01] CoFI tools. http://www.tzi.de/cofi/Tools, Sept. 14, 2001.

[EGL89] H.-D. Ehrich, M. Gogolla, and U. Lipeck, editors. Algebraische Spezifikation
abstrakter Datentypen. Teubner-Verlag, Stuttgart, 1989.

[EMS85]

[GTWT8]

[HKB8Y]
[HL8Y]
[JFLO1]

[K1a83]
[LEW6]

Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic Specification
1: Equations and Initial Semantics, volume 6 of EATCS Monographs on
Theoretical Computer Science. Springer, 1985.

Joseph A. Goguen, James W. Thatcher, and Eric G. Wagner. An initial
algebra approach to the specification, correctness, and implementation of
abstract data types. In Raymond Yeh, editor, Current Trends in Program-
ming Methodology, IV, pages 80-149. Prentice-Hall, 1978. Also as Report
RC 6487, IBM T.J. Watson Research Center, Yorktown Heights, 1976.

J. Heering, P. Klint, and J.A. Bergstra. Algebraic Specification. ACM Press
Fontier Series, 1989.

Ivo Van Horebeek and Johan Lewi. Algebraic Specifications in Software
Engineering. Springer, 1989.

JFLAP 3.1. http://www.cs.duke.edu/"rodger/tools/jflap, Sept. 14,
2001.

H.A. Klaeren. Algebraische Spezifikation. Springer, 1983.

J. Loeckx, H.-D. Ehrich, and B. Wolf. Specification of Abstract Data Types.
Wiley, 1996.

