From syllogism to common sense . . .

Exercise Sheet 7: Conditionals

To be discussed on 19 January 2012

Unfortunately, we made a mistake on Slides 27, 28 on conditionals, which we have corrected in the meantime. Due to this mistake, the original versions of Exercises 1, 2 are wrong. We have corrected them here, and added two exercises which show the combinations of "paradox avoided/not avoided" that were originally intended. For didactic reasons, you should proceed in the order 3a), 4b), 3b), 4a), 1, 2.

- 1. (Slide 28.) Show that the paradox of contraposition is not avoided
 - a) with strict implication and classical negation;
 - b) with intuitionistic implication and intuitionistic negation.
- **2.** (Slide 28.) Show the same for *ex falso quodlibet*: $\models \Box((p \land \neg p) \to q)$ and (intuitionistically) $\models (p \land \neg p) \to q$.
- **3.** (Slide 27.) Show that the paradox of an implication being true due to its antecedent being false
 - a) is avoided with strict impl. and classical negation: $\neg p \not\models \Box(p \rightarrow q)$;
 - b) is not avoided in intuitionistic logic, i.e., $\neg p \models p \rightarrow q$.

For a), it suffices to construct a Kripke frame (W, R), a valuation V and a world $w \in W$ such that $w \models \neg p$ but $w \not\models \Box(p \to q)$.

For b), show that, for any intutionistic Kripke frame M and any world x in M: whenever $M_x \models \neg p$, it holds that $M_x \models p \rightarrow q$.

- **4.** (Slide 28.) Show the opposite for the paradox "everything implies a true proposition":
 - a) $\models \Box(p \rightarrow (q \lor \neg q))$ with strict impl. and classical negation
 - b) $\not\models p \to (q \vee \neg q)$ in intuitionistic logic

For a), show the following. For any Kripke frame (W, R), any valuation V that maps each of the propositional variables p, q to a set of worlds, and any world $w \in W$: $w \models \Box(p \to (q \lor \neg q))$. Use the satisfaction condition that $p(\neg p)$ is true in all worlds in V(p) $(W \setminus V(p))$.

For b), construct an intuitionistic Kripke frame M and a world x in M with $M_x \not\models p \to (q \lor \neg q)$.