AG Theorie der künstlichen Intelligenz

FB Mathematik und Informatik, Universität Bremen Prof. Dr. Carsten Lutz Cartesium 2.59 clu@uni-bremen.de Tel.: 0421/218-64431

2. Aufgabenblatt für die Vorlesung "Beschreibungslogik"

Aufgabe 1: 20%

Beweise die offenen Punkte von Lemma 2.8: für alle generellen TBoxen \mathcal{T} und \mathcal{ALC} -Konzepte C, D gilt:

- (a) C ist erfüllbar bzgl. \mathcal{T} gdw. $\mathcal{T} \not\models C \equiv \bot$
- (b) $\mathcal{T} \models C \equiv D \text{ gdw. } \mathcal{T} \models \top \sqsubseteq C \leftrightarrow D$

Use the definitions, luke!

Aufgabe 2: 30%

Für jedes der Interpretationspaare $\mathcal{I}_i, \mathcal{J}_i$ auf der gegenüberliegenden Seite bestimme ob es ein \mathcal{ALC} -Konzept C gibt mit $d \in C^{\mathcal{I}_i}$ und $e \notin C^{\mathcal{I}_i}$ oder umgekehrt. Wenn dies der Fall ist, gib das Konzept C explizit an. Wenn nicht, gib eine Bisimulation an, die zeigt, dass $(\mathcal{I}_i, d) \sim (\mathcal{J}_i, e)$.

Aufgabe 3: 30%

Beweise oder widerlege, dass für alle Interpretationen $\mathcal I$ und $\mathcal J$ gilt:

- (a) wenn ρ_1 und ρ_2 Bisimulationen zwischen \mathcal{I} und \mathcal{J} sind, dann auch $\rho_1 \cup \rho_2$
- (b) wenn ρ_1 und ρ_2 Bisimulationen zwischen \mathcal{I} und \mathcal{J} sind, dann auch $\rho_1 \cap \rho_2$
- (c) wenn ρ_1 Bisimulation zwischen \mathcal{I} und \mathcal{J} ist und ρ_2 Bisimulation zwischen \mathcal{J} und \mathcal{K} , dann ist $\rho_1 \circ \rho_2 = \{(d,e) \mid \exists f: d \ \rho \ f \ \text{und} \ f \ \rho \ e\}$ Bisimulation zwischen \mathcal{I} und \mathcal{K} .

Aufgabe 4: 20%

Beweise, dass die folgenden Formeln der Prädikatenlogik nicht in \mathcal{ALC} ausdrückbar sind:

- (a) $\exists y \exists z (r(x,y) \land r(x,z) \land r(y,z))$
- (b) $\forall y (A(y) \rightarrow r(x, y))$

Verwende Bisimulation und verfahre wie im Beweis von Theorem 3.3.

Aufgabe 5: 20% (Zusatzaufgabe)

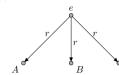
Betrachte folgenden Algorithmus zum Berechnen einer Bisimulation zwischen gegebenen Interpretationen $\mathcal{I},\,\mathcal{J}$:

- Starte mit der Relation $R = \{(d, e) \in \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \mid d \in A^{\mathcal{I}} \text{ gdw. } e \in A^{\mathcal{I}} \text{ für alle Konzeptnamen } A\}.$
- Wiederhole erschöpfend:
 - wenn $(d,e) \in R$, $(d,d') \in r^{\mathcal{I}}$ und es kein $(e,e') \in r^{\mathcal{J}}$ gibt mit $(d',e') \in R$, dann entferne (d,e) aus R
 - wenn $(d,e) \in R$, $(e,e') \in r^{\mathcal{I}}$ und es kein $(d,d') \in r^{\mathcal{I}}$ gibt mit $(d',e') \in R$, dann entferne (d,e) aus R.

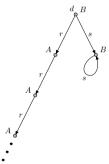
Zeige folgendes:

- (a) R ist eine Bisimulation;
- (b) Für jede Bisimulation B zwischen \mathcal{I} und \mathcal{J} gilt $B \subseteq R$ (R ist die größte Bisimulation zwischen \mathcal{I} und \mathcal{J}).

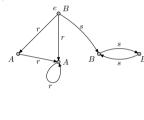
 \mathcal{J}_1 :



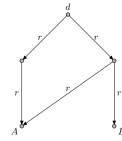
 \mathcal{I}_2 :



 \mathcal{J}_2 :



 \mathcal{I}_3 :



 \mathcal{J}_3 :

