Let R*:= R u {-infty, +infty}7 denote the real numbers adjoined with -infty and +infty. A subset S c R* is a screen if
and
Sb,l := { 0 } u { x = * m ·be | * e {+,-}, e e Z, m=SUMi=1l x[i] b-i, x[i] e {0,1, ..., b-1}, x[1] =/= 0 }
S(b,l,e1,e2) := { x e Sb,l | e1 < e < e2 },where
S(b,l)* := S(b,l) u {-infty, +infty}, and S(b,l,e1,e2)* := S(b,l,e1,e2) u {-infty, +infty}.
A rounding is a map r: R* -> S to a screen S such that
forall s e S: r(s) =s.We call it monotone if furthermore
forall x,y e R*: x < y => r(x) < r(y).For example the mappings
phi: {where |_| denotes the greatest upper and |¯| the least upper bound of a set in S, are monotone roundings.and psi: {
R* -> S x |-> |_| { s e S | s < x }
R* -> S x |-> |¯| { s e S | s > x },