__! : | Nat -> Nat; |
__ ^ __ : | Real × Nat -> Real; |
-__ , abs: | Real -> Real; |
trunc : | Real -> Nat; |
sign : | Real -> Int |
isNat, | |
isInt, | |
nonZero: | Real; |
__ ! __ : | Sequence × Nat -> Real; |
constSeq: | Real -> Sequence; |
N,0,1,2 : | Sequence ; |
__+__,__-__, __*__: | Sequence × Sequence -> Sequence; |
__ ^ __ , __/__ , | |
__div__,__mod__ : | Sequence × Sequence ->? Sequence; |
-__, trunc, sign : | Sequence -> Sequence; |
__! : | Sequence ->? Sequence; |
partialSums : | Sequence -> Sequence; |
ifnz__theN__elsE__ : | Sequence × Sequence × Sequence -> Sequence; |
__<__,__ < __, | |
__>__,__ > __, | |
__==__ : | Sequence × Sequence -> Sequence |
def (a div b) <=> | forall k:Nat . |
isInt(a!k) /\ isInt(b!k) /\ nonZero(b!k) |
def (a mod b) <=> | forall k:Nat . |
isInt(a!k) /\ isInt(b!k) /\ nonZero(b!k) |
(ifnz a theN b elsE c) !n = | b!n when nonZero(a!n) else |
c!n |
__ -> __ : | Sequence * Real; |
converges,isCauchy : | Sequence |
a->r <=> | forall epsilon:Real . epsilon > 0 => |
(exists n:Nat . forall m:Nat . | |
m > n => abs(a!m - r) < epsilon ) |
isCauchy(a) <=> | forall epsilon:Real . epsilon >0 => |
( exists n:Nat . forall m,k:Nat . | |
m > n /\ k > n => abs(a!m - a!k) < epsilon ) |