Go up to Subsorting Concepts
Go forward to Models

Signatures

A  subsorted signature Sigma=(S,TF,PF,P, < S) consists of a many-sorted signature (S,TF,PF,P) together with a pre-order < S of subsort embeddings on the set S of sorts. < S is extended to sequences of sorts. We may drop the subscript S when obvious from the context.

For a subsorted signature, we can define overloading relations for function and predicate symbols. Let f1:w1 -> s1 < F f2:w2 -> s2 hold if w1 < w2, s1 and s2 have a common supersort, and f1=f2; similarly for predicate symbols, let p1:w1 < P p2:w2 hold if w1 < w2 and p1=p2.

A  subsorted signature morphism sigma: Sigma -> Sigma' is a many-sorted signature morphism that preserves the pre-order < S and the overloading relations < F and < P.

With each subsorted signature Sigma=(S,TF,PF,P, < S) a many-sorted signature Sigma# is associated, extending (S,TF,PF,P) for each pair of sorts s < S s' by a total embedding function (from s into s'), a partial projection function (from s' onto s), and a membership predicate (testing whether values in s' are embeddings of values in s). We assume that the symbols used for embeddings, projections and membership are not used otherwise in Sigma.


CoFI Tentative Document: LanguageSummary --Version 0.95-- March 6, 1997.
Comments to cofi-language@brics.dk