
HETS User Guide

– Version 0.3 –

Till Mossakowski

Department of Computer Science
and Bremen Institute for Safe Systems,

University of Bremen, Germany.

Comments to: hets@tzi.de

February 17, 2004

1 Introduction

The Heterogeneous Tool Set (HETS) is the main analysis tool for the specification
language heterogeneous CASL. Heterogeneous CASL (HETCASL) combines the
specification language CASL with CASL extensions and sublanguages, as well as
completely different logics and even programming languages such as Haskell.
HETCASL extends the structuring mechanisms of CASL: Basic specifications are
unstructured specifications or modules written in a specific logic. The graph
of currently supported logics is shown in Fig. 1, and the degree of support by
HETS in Fig. 2.

With heterogeneous structured specifications, it is possible to combine and
rename specifications, hide parts thereof, and also translate them to other logics.
Architectural specifications prescribe the structure of implementations. Specifi-
cation libraries are collections of named structured and architectural specifica-
tions.

HETS consists of logic-specific tools for the parsing and static analysis of
the different involved logics, as well as a logic-independent parsing and static
analysis tool for structured and architectural specifications and libraries. The
latter of course needs to call the logic-specific tools whenever a basic specification
is encountered.

An introduction to CASL can be found in the CASL User Manual [3]; the
detailed language reference is given in the CASL Reference Manual [9]. These
documents explain both the CASL logic and language of basic specifications as
well as the logic-independent constructs for structured and architectural specifi-
cations. Corresponding documents explaining the HETCASL language constructs
for heterogeneous structured specifications are forthcoming, until then, [7] may

1

Haskell HASCASL CSP-CASL

CASL

OO 77ppppppppppp

Figure 1: Graph of logics currently supported by HETS.

Language Parser Static Analysis Prover
CASL x x -
HASCASL x (x) -
Haskell x x -
CSP-CASL (x) - -
Structured specifications x x (x)
Architectural specifications x - -

Figure 2: Current degree of HETS support for the different languages.

serve as a short introduction. Moreover, the main heterogeneous constructs will
be illustrated in Sect. 4 below.

An overview of HASCASL is given in [13]; the language is summarized in [12].
The latter document is also available on the CD-ROM in Tools/Hets/doc. The
definitive reference for Haskell is [10], see also www.haskell.org. An introduc-
tion to CSP-CASL is given in [11].

2 Getting started

The latest HETS version can be obtained from the CoFI tools home page

http://www.cofi.info/Tools

Since HETS is being improved constantly, it is recommended always to use the
latest version.

HETS currently is available for Linux, Solaris and Mac OS-X. You can either
start the script Tools/Hets/hets (the script automatically finds the binary for
your architecture). Or you can install HETS on your local file system (which is
strongly recommended, since only then HETS can write intermediate .env files
that are needed for compilation of library downloads). This is done by opening
a shell, cding into Tools/Hetson the CD-ROM1 and then calling

./install <dir>

where <dir> is the directory where HETS should be installed.
MacIntosh users need to install some libraries from Tools/Hets/hets/macintosh

1For Linux and Solaris users: you may need to mount the CD-ROM first. You can lookup
in /etc/fstab where it is mounted, typcial locations are /media/cdrom or /mount/cdrom. For
MacIntosh users: cd into /Volumes and look there for the CD-ROM.

2

cp libreadline.4.3.dylib /usr/local/lib
tar xzf Haskell-libs.tgz -C /Library/Frameworks

The install script installs these automatically for you. Note that you may
have to be root in order to be able to do this. See

http://www.osxfaq.com/Tutorials/Root User Creation/index.ws

for instructions how to create a root user.
If you want to compile HETS from the sources, please follow the instructions

of the Tools/Hets/src/INSTALL file.

daVinci

For the display of development graphs, HETS uses daVinci. daVinci is main-
tained by b-novative and b-novative holds all rights. This release may be ac-
companied with free binary releases of daVinci Version 2.1, but daVinci 2.1 is no
longer supported or maintained. However, you are encouraged to obtain the lat-
est version of daVinci Presenter (currently 3.0.5) from http://www.b-novative.com.
It needs a license key, but is free for academic purposes.

Linux: the Linux binary release of daVinci 2.1 relies on the old shlibs5 that
must be installed on your system (if ./daVinci cannot be found/executed, then
shlibs5 are missing)

Solaris: the Solaris binary release of daVinci 2.1 should work without prob-
lems

Macintosh (Darwin): there is no release of daVinci for Macintosh, but b-
novative may have one in the mean time

For best quality, get the latest version of daVinci from b-novative.

Environment variables

The script in Tools/Hets/hets sets the following environment variables:
For HETS to find daVinci, the environment variables DAVINCIHOME and UNIDAVINCI

must be set to the installation directory of daVinci and to the actual executable,
respectively.

export DAVINCIHOME=<path>/daVinci_V2.1
export UNIDAVINCI=<path>/daVinci_V2.1/daVinci

The environment variable HETS LIB should be set to a location where speci-
fication libraries are stored. By default, it is set to the Libraries directory on
the CD-ROM (or the corresponding copy on your local file system).

3 Analysis of Specifications

Consider the following CASL specification:

spec Strict Partial Order =

3

sort Elem
pred < : Elem × Elem
∀x , y , z : Elem
• ¬(x < x) %(strict)%

• x < y ⇒ ¬(y < x) %(asymmetric)%

• x < y ∧ y < z ⇒ x < z %(transitive)%

%{ Note that there may exist x, y such that
neither x < y nor y < x. }%

end

HETS can be used for parsing and checking static well-formedness of specifi-
cations.

Let us assume that the example is in a file named Order.casl (actually,
this file is provided with the HETS distribution). Then you can check the well-
formedness of the specification by typing (into some shell):

hets Order.casl

HETS checks both the correctness of this specification with respect to the CASL

syntax, as well as its correctness with respect to the static semantics (e.g.
whether all identifiers have been declared before they are used, whether opera-
tors are applied to arguments of the correct sorts, whether the use of overloaded
symbols is unambiguous, and so on). The following flags are available in this
context:

-p, --just-parse Just do the parsing – the static analysis is skipped.

-s, --just-structured Do the parsing and the static analysis of (heteroge-
neous) structured specifications, but leave out the analysis of basic specifi-
cations. This can be used to quickly produce a development graph showing
the dependencies among the specifications (cf. Sect. 5).

-L DIR, --hets-libdir=DIR Use DIR as the directory for specification libraries
(equivalently, you can set the variable HETS LIB before calling HETS).

4 Heterogeneous Specification

HETS accepts plain text input files with the following endings:

Ending default logic structuring language
.casl CASL CASL

.het CASL CASL

.hs Haskell Haskell

Although the endings .casl and .het are interchangeable, the former should
be used for libraries of homogeneous CASL specifications and the latter for
HETCASL libraries of heterogeneous specifications (that use the CASL struc-
turing constructs). Within a HETCASL library, the current logic can be changed
e.g. to HASCASL in the following way:

4

logic HasCASL

The subsequent specifications are then parsed and analysed as HASCASL

specifications. Within such specifications, it is possible to use references to
named CASL specifications; these are then automatically translated along the
default embedding of CASL into HASCASL (cf. Fig. 1). (Heterogeneous constructs
for explicit translations between logics will be made available in the future.)

The ending .hs is available for directly reading in Haskell programs, and
hence supports the Haskell module system. By contrast, in HETCASL libraries
(ending with .het), the logic Haskell has to be chosen explicitly, and the CASL

structuring syntax needs to be used:

library Factorial

logic Haskell

spec Factorial =
fac :: Int -> Int
fac n = foldl (*) 1 [1..n]
end

Note that according to the Haskell syntax, Haskell function declarations and
definitions need to start with the first column of the text.

5 Development Graphs

Development graphs are a simple kernel formalism for (heterogeneous) struc-
tured theorem proving and proof management. A development graph consists
of a set of nodes (corresponding to whole structured specifications or parts
thereof), and a set of arrows called definition links, indicating the dependency
of each involved structured specification on its subparts. Arising proof obliga-
tions are attached as so-called theorem links to this graph. Details can be found
in the CASL Reference Manual [9, IV:4].

The following options let HETS show the development graph of a specification
library:

-g, --gui Shows the development graph in a GUI window.

-G, --only-gui Shows the development graph in a GUI window, and sup-
presses the writing of an output file.

Here is a summary of the types of nodes and links occurring in development
graphs:

Named nodes correspond to a named specification.

Unnamed nodes correspond to an anonymous specification.

5

Elliptic nodes correspond to a specification in the current library.

Rectangular nodes are external nodes corresponding to a specification down-
loaded from another library.

Black links correspond to reference to other specifications (definition links in
the sense of [9, IV:4]).

Blue links correspond to hiding (hiding definition links).

Red links correspond to open proof obligations (theorem links).

Green links correspond to proved proof obligations (theorem links).

Solid links correspond to global (definition or theorem) links in the sense of
[9, IV:4].

Dashed links correspond to local (definition or theorem) links in the sense of
[9, IV:4].

We now explain the menus of the development graph window. Most of
the pull-down menus of the window are daVinci-specific layout menus; their
function can be looked up in the daVinci documentation. The exception is the
Edit menu. Moreover, the nodes and links of the graph have attached pop-up
menus, which appear when clicking with the right mouse button.

Edit This menu has two submenus:

Unnamed nodes With the “Hide” submenu, it is possible to reduce the
complexity of the graph by hiding all unnamed nodes; only nodes
corresponding to named specifications remain displayed. Paths be-
tween named nodes going through unnamed nodes are displayed as
links. With the “Show” submenu, the unnamed nodes re-appear.

Proofs This menu allows to apply some of the deduction rules for devel-
opment graphs, see Sect. IV:4.4 of the CASL Reference Manual [9].
However, it is still experimental and far from being completely imple-
mented. Moreover, in the future HETS will be interfaced with various
logic-specific theorem proving, rewriting and consistency checking
tools.

Pop-up menu for nodes Here, the number of submenus depends on the type
of the node:

Show signature Shows the signature of the node.

Show sublogic Shows the logic and, within that logic, the minimal sublogic
for the signature and the axioms of the node.

Show origin Shows the kind of CASL structuring construct that led to
the node.

6

Show just subtree (Only for named nodes) Reduce the complexity of
the graph by just showing the subtree below the current node.

Undo show just subtree (Only for named nodes) Undo the reduction.
Show referenced library (Only for external nodes) Open a new win-

dow showing the development graph for the library the external node
refers to.

Pop-up menu for links Again, the number of submenus depends on the type
of the node:

Show morphism Shows the signature morphism of the link. It consists
of two components: a logic translation and a signature morphism in
the target logic of the logic translation. In the (most frequent) case of
an intra-logic signature morphism, the logic translation component
is just the identity.

Show origin Shows the kind of CASL structuring construct that led to
the link.

Show proof status (Only for theorem links) Show the proof status.

6 Reading, Writing and Formatting

HETS provides several options controlling the types of files that are read and
written.

-i ITYPE, --input-type=ITYPE Specify ITYPE as the type of the input file.
The default is het (HETCASL plain text). ast is for reading in abstract
syntax trees in ATerm format, while ast.baf reads in the compressed
ATerm format.

-O DIR, --output-dir=DIR Specify DIR as destination directory for output
files.

-o OTYPES, --output-types=OTYPES OTYPES is a comma separated list of out-
put types:

(ast|[fh]?dg(.nax)?).(het|trm|taf|html|xml)
|(pp.(het|tex|html))
|(graph.(dot|ps|davinci))

The default is dg.taf, which means that the development graph of the
library is stored in textual ATerm format (taf). This format can be read
in when a library is downloaded from another library, avoiding the need
to re-analyse the downloaded library.

The pp format is for pretty printing, either as plain text (het), LATEXinput
(tex) or HTML (html). A formatter with pretty-printed output currently
is available only for the CASL logic. For example, it is possible to generate
a pretty printed LATEX version of Order.casl by typing:

7

hets -o pp.tex Order.casl

This will generate a file Order.pp.tex. It can be included into LATEX
documents, provided that the style hetcasl.sty coming with the HETS

distribution (LaTeX/hetcasl.sty)) is used.

The option -r RAW or --raw=RAW allows one to influence the formatting in
more detail. Here, RAW is (ascii|text|(la)?tex)=STRING, and STRING
is passed to the appropriate pretty-printer. The deatils of these options
are to be fixed in the future only.

The other output formats are for future usage.

7 Miscellaneous Options

-v[Int], --verbose[=Int] Set the verbosity level according to Int. Default
is 1.

-q, --quiet Be quiet – no diagnostic output at all. Overrides -v.

-V, --version Print version number and exit.

-h, --help, --usage Print usage information and exit.

+RTS IntM -RTS Increase the stack size to Int megabytes (needed in case of a
stack overflow). This must be the first option.

8 Limits of HETS

HETS is still intensively under development. In particular, the following points
are still missing:

• There is no static analysis for architectural specifications.

• Distributed libraries are always downloaded from the local disk, not from
the Internet.

• Version numbers of libraries are not considered properly.

• The proof engine for development graphs has not been completed.

HETS has been built based on experiences with its precursors, CATS and
MAYA. The CASL Tool Set (CATS) [6, 8] comes with similar analysis tools as
HETS (only for CASL). CATS should be used if a static analysis of architectural
specifications is needed, because this is not available in HETS yet. The manage-
ment of development graphs is not integrated in CATS, but is provided with a
stand-alone version of the tool MAYA [2, 1]. CATS and MAYA can be obtained
from the CoFI tools home page [5].

8

?

?

?

?

?

?

?

?

J
JJ

��QQ

�� QQ

!!aa

�� QQ

'

&

$

%

'

&

$

%

'

&

$

%

-

�
�

�
�

�

�

�

�

�
�

�
� �

�
�
�

�
�

�
�

-

Text

Parser

Abstract syntax

Static analysis

(Signature, Sentences)

Interfaces

XML, ATerms

CASL

CoCASL CASL-LTL

CSP-CASL

SB-CASLHasCASL

SubFOL= PFOL=

FOL=

Horn=• •

Basic specifications

(logic-specific tools for

CASL and extensions)

Graph of CASL Structured and

architectural

specifications

Text

Parser

Abstract syntax

Static analysis

Development graph

Interfaces

XML, ATerms

(e.g. CCC)
Consistency checker

(e.g. HOL-CASL)

Theorem prover

Management of proofs & change

Heterogeneous proof engine

MAYA
(e.g. ELAN-CASL)

Rewriter

proposed extensions

sublanguages and

Figure 3: Architecture of the heterogeneous tool set.

9 Architecture of HETS

HETS is written in Haskell. Its parser uses combinator parsing. The user-defined
(also known as “mixfix”) syntax of CASL calls for a two-pass approach. In the
first pass, the skeleton of a CASL abstract syntax tree is derived, in order to
extract user-defined syntax rules. In a second pass, which is performed during
static analysis, these syntax rules are used to parse any expressions that use
mixfix notation. The output is stored in the so-called ATerm format [4], which
is used as interchange format for interfacing with other tools.

HETS provides an abstract interface for institutions, so that new logics can
be integrated smoothly. In order to do so, a parser, a static checker and a prover
for basic specifications in the logic have to be provided.

The architecture of HETS is shown in Fig. 3.
If your favourite logic is missing in HETS, please tell us (hets@tzi.de). We

will take account your feedback when deciding which logics and proof tools to
integrate next into HETS. Help with integration of more logics and proof tools
into HETS is also welcome.

HETS is mainly maintained by Christian Maeder (maeder@tzi.de) and Till
Mossakowski (till@tzi.de). The mailing list is hets@tzi.de.

Acknowledgement HETS has been programmed by the following people:

9

Katja Abu-Dib, Carsten Fischer, Jorina Freya Gerken, Sonja Gröning, Wiebke
Herding, Martin Kühl, Klaus Lüttich, Christian Maeder, Maciek Makowski, Till
Mossakowski, Daniel Pratsch, Felix Reckers, Markus Roggenbach, and Pascal
Schmidt.

HETS also benefited much from contributions by Serge Autexier, Dieter Hut-
ter and Bartek Klin (through work on its precursors CATS and MAYA).

References

[1] S. Autexier, D. Hutter, T. Mossakowski, and A. Schairer. The development
graph manager Maya (system description). In H. Kirchner and C. Ringeis-
sen, editors, Algebraic Methods and Software Technology, 9th International
Conference, AMAST 2002, Saint-Gilles-les-Bains, Reunion Island, France,
Proceedings, LNCS Vol. 2422, pages 495–502. Springer, 2002.

[2] Serge Autexier and Till Mossakowski. Integrating Hol-Casl into the
development graph manager Maya. In A. Armando, editor, Fron-
tiers of Combining Systems, 4th International Workshop, FroCoS 2002,
Santa Margherita Ligure, Italy, Proceedings, LNCS Vol. 2309, pages 2–17.
Springer, 2002.

[3] Michel Bidoit and Peter D. Mosses. CASL User Manual, volume 2900 of
Lecture Notes in Computer Science. Springer, 2003. To appear.

[4] M. G. J. van den Brand, H. A. de Jong, P. Klint, and P. Olivier. Efficient
annotated terms. Software, Practice & Experience, 30:259–291, 2000.

[5] CoFI (The Common Framework Initiative) Tools Group. Home page.
http://www.cofi.info/Tools.

[6] Till Mossakowski. Casl: From semantics to tools. In S. Graf and
M. Schwartzbach, editors, Tools and Algorithms for the Construction and
Analysis of Systems, 6th International Conference, TACAS 2000, Berlin,
Germany, Proceedings, LNCS Vol. 1785, pages 93–108. Springer, 2000.

[7] Till Mossakowski. Foundations of heterogeneous specification. In M. Wirs-
ing, D. Pattinson, and R. Hennicker, editors, Recent Trends in Alge-
braic Development Techniques, 16th International Workshop, WADT 2002,
Frauenchiemsee, Germany, 2002, Revised Selected Papers, LNCS Vol. 2755,
pages 359–375. Springer, 2003.

[8] Till Mossakowski, Kolyang, and Bernd Krieg-Brückner. Static semantic
analysis and theorem proving for Casl. In F. Parisi-Presicce, editor, Recent
Trends in Algebraic Development Techniques, 12th International Work-
shop, WADT’97, Tarquinia, Italy, 1997, Selected Papers, LNCS Vol. 1376,
pages 333–348. Springer, 1998.

10

[9] Peter D. Mosses, editor. CASL Reference Manual, volume 2960 of Lecture
Notes in Computer Science. Springer, 2004. To appear.

[10] S. Peyton-Jones, editor. Haskell 98 Language and Libraries — The Revised
Report. Cambridge, 2003. also: J. Funct. Programming 13 (2003).

[11] Markus Roggenbach. CSP-Casl – A new integration of process algebra
and algebraic specification. In F. Spoto, G. Scollo, and A. Nijholt, editors,
Algebraic Methods in Language Processing, AMiLP 2003, TWLT Vol. 21,
pages 229–243. Univ. of Twente, 2003.

[12] L. Schröder, T. Mossakowski, and C. Maeder. HASCASL – Integrated
functional specification and programming. Language summary. Available at
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
CoFI/HasCASL

[13] Lutz Schröder and Till Mossakowski. HasCasl: Towards integrated
specification and development of Haskell programs. In H. Kirchner and
C. Ringeissen, editors, Algebraic Methods and Software Technology, 9th
International Conference, AMAST 2002, Saint-Gilles-les-Bains, Reunion
Island, France, Proceedings, LNCS Vol. 2422, pages 99–116. Springer, 2002.

11

