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Abstract

The development of programs in modern functional languages such as
Haskell calls for a wide-spectrum specification formalism that supports
the type system of such languages, in particular higher order types,
type constructors, and polymorphism, and that contains a functional
language as an executable subset in order to facilitate rapid prototyp-
ing. We lay out the design of HasCasl, a higher order extension of
Casl that is geared towards precisely this purpose. Its semantics is
tuned to allow program development by specification refinement, while
at the same time staying close to the set-theoretic semantics of first or-
der Casl. The number of primitive concepts in the logic has been kept
as small as possible; advanced concepts, in particular general recursion,
can be formulated within the language itself. This document provides a
detailed definition of the HasCasl syntax and an informal description
of the semantics, building on the existing Casl Summary [CoF01].
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About this document

This document gives a detailed summary of the syntax and intended seman-
tics of HasCasl. It is intended for readers already familiar with Casl. In
particular, since HasCasl reuses the institution-independent mechanisms
of Casl for structured and architectural specifications and libraries, these
concepts will not be described here; for a summary of these language fea-
tures, see [CoF01]. Like [CoF01], this document provides little or nothing
in the way of discussion or motivation of design decisions; for such matters,
see in particular [SM02].

In principle, HasCasl extends full Casl, i.e. all Casl features are also
contained in HasCasl, and the same syntax can be used to invoke them.
This does not, however, necessarily mean that all Casl specifications are
parsable in HasCasl, since due to the additional language features of Has-
Casl, in particular the implicit application operator customary in higher
order languages, the parsing of mixfix terms may require more brackets in
HasCasl than in Casl.

Structure

The document consists of only one part, still called Part I in correspondence
to the numbering of the parts of [CoF01], dealing with basic specifications.
Chapters 1 and 2 describe the basic logic of HasCasl including subtyping;
since even in the most basic version, total function types are subtypes of
partial function types, a separate treatment of subtyping as in [CoF01] is
not really feasible for HasCasl. Chapters 3 and 4 introduce the so-called
internal logic, and Chapters 5 and 6 deal with general recursive functions,
i.e. with functional programming, thus reflecting the bootstrap design of
HasCasl. For each step, the first of the two chapters summarizes the
main semantic concepts, and the second presents the (concrete and abstract)
syntax of the associated HasCasl language constructs and indicates their
intended semantics.

Like [CoF01], this document provides appendices containing the abstract
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ABOUT THIS DOCUMENT vi

syntax (Appendix A) and the concrete syntax (Appendix C) of basic Has-
Casl specifications.

Future extensions of HasCasl will also cover a definite description oper-
ator, as well as special syntax for the specification of monadic programs
(using the so-called do-notation and a monad independent modal logic, see
[SM03, SM]). Another important feature currently missing in HasCasl is
existential types. Support for concise specification of datatypes like infi-
nite lazy lists would also be desirable; to this end, HasCasl could possibly
import constructs from CoCasl [MSRR03].



Part I

Basic Specifications
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Chapter 1

Basic Concepts

First, before considering the particular concepts underlying HasCasl, here
is a brief reminder of how specification frameworks in general may be for-
malized in terms of so-called institutions [GB92] (some category-theoretic
details are omitted) and proof systems.

A basic specification framework may be characterized by:

• a class Sig of signatures Σ, each determining the set of symbols
|Σ| whose intended interpretation is to be specified, with morphisms
between signatures;

• a class Mod(Σ) of models, with homomorphisms between them,
for each signature Σ;

• a set Sen(Σ) of sentences (or axioms), for each signature Σ;

• a relation |= of satisfaction , between models and sentences over the
same signature; and

• a proof system , for inferring sentences from sets of sentences.

A basic specification consists of a signature Σ together with a set of
sentences from Sen(Σ). The signature provided for a particular declaration
or sentence in a specification is called its local environment . It may be a
restriction of the entire signature of the specification, e.g., determined by an
order of presentation for the signature declarations and the sentences with
linear visibility , where symbols may not be used before they have been
declared; or it may be the entire signature, reflecting non-linear visibility .

The (loose) semantics of a basic specification is the class of those models in
Mod(Σ) which satisfy all the specified sentences. A specification is said to
be consistent when there are some models that satisfy all the sentences, and

2



1.1. THE PARTIAL λ-CALCULUS 3

inconsistent when there are no such models. A sentence is a consequence
of a basic specification if it is satisfied in all the models of the specification.

A signature morphism σ : Σ → Σ′ determines a translation function
Sen(σ) on sentences, mapping Sen(Σ) to Sen(Σ′), and a reduct function
Mod(σ) on models, mapping Mod(Σ′) to Mod(Σ).1 Satisfaction is re-
quired to be preserved by translation: for all S ∈ Sen(Σ),M ′ ∈ Mod(Σ′),

Mod(σ)(M ′) |= S ⇐⇒ M ′ |= Sen(σ)(S).

The proof system is required to be sound, i.e., sentences inferred from a
specification are always consequences; moreover, inference is to be preserved
by translation.

Sentences of basic specifications may include constraints that restrict the
class of models, e.g., to reachable ones.

The rest of this chapter introduces the HasCasl logic in three steps: firstly,
the partial λ-calculus is recalled, secondly, product types are added, and
finally, polymorphism, type constructors, type constructor classes, subtypes
and subkinds are defined on top of this. This leads, in the version presented
here, only to an rps preinstitution [SS93], i.e. the satisfaction condition holds
only in the direction leading from the extended to the reduced model. A
general mechanism for transforming rps preinstitutions into institutions is
presented in [SM04].

The subsequent chapter considers many-sorted basic specifications of the
HasCasl specification framework, and indicates the underlying signatures,
models, and sentences. The abstract syntax of any well-formed basic speci-
fication determines a signature and a set of sentences, the models of which
provide the semantics of the basic specification.

1.1 The partial λ-calculus

The natural generalization of the simply typed λ-calculus to the setting of
partial functions is the partial λ-calculus as introduced in [Mog86, Mog88,
Ros86]. The basic idea is that function types are replaced by partial function
types, and λ-abstractions denote partial functions instead of total ones.

A simple signature consists of a set of sorts and a set of partial operators
with given profiles (or arities) written f : s̄→ t, where t is a simple type
and s̄ is a multi-type , i.e. a (possibly empty) list of types. A type is either

1In fact Sig is a category, and Sen(.) and Mod(.) are functors. The categorical aspects
of the semantics of Casl are emphasized in its formal semantics [CoF03].
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x : s in Γ
Γ � x : s

Γ � ᾱ : t̄
f : t̄→ u

Γ � f(ᾱ) : u
Γ,∆ � α : u

Γ � λ∆ • α : ∆ →?u

Figure 1.1: Typing rules for the partial λ-calculus

a sort or a partial function type

s̄→?t,

with s̄ and t as above (one cannot resort to currying for multi-argument
partial functions [Mog86]). Following [Mog86], we assume application op-
erators in the signature, so that application does not require extra typing
or deduction rules. For t̄ = (t1, . . . , tm), s̄ →?t̄ denotes the multi-type
(s̄ →?t1, . . . , s̄ →?tm), not to be confused with the (non-existent) ‘type’
s̄ →?t1 × · · · × tm. A morphism between two simple signatures is a pair
of maps between the corresponding sets of sorts and operators, respectively,
that is compatible with operator profiles.

A signature gives rise to a notion of typed terms in context according to the
typing rules given in Figure 1.1, where a context Γ is a list (x1 : s1, . . . , xn :
sn), shortly (x̄ : s̄), of type assignments for distinct variables. More precisely,
we speak simultaneously about terms and multi-terms, i.e. lists of terms
also denoted shortly in the form ᾱ instead of (αi, . . . , αn). The judgement
Γ � α : t reads ‘(multi-)term α has (multi-)type t in context Γ’. The empty
multi-term () doubles as a term of ‘type’ (), where the latter is also denoted
as Unit. When convenient, we use a context to denote the associated multi-
type, as e.g. in Γ →?t; moreover, we write λ-abstraction in the form λΓ • α
where suitable.

A partial λ-theory T is a signature Σ together with a set A of axioms
that take the form of existentially conditioned equations: an (existential)
equation ᾱ1

e= ᾱ2 is read ‘ᾱ1 and α2 are defined and equal’. Equations
ᾱ

e= ᾱ are abbreviated as def ᾱ and called definedness judgements. An
existentially conditioned equation (ECE) is a sentence of the form
def ᾱ⇒Γ φ, where ᾱ is a multi-term and φ is an equation in context Γ, to
be read ‘φ holds on the domain of ᾱ’. By equations between multi-terms,
we can express conjunction of equations (e.g. def(α, β) ≡ def α∧def β); true
will denote def ().

In Figure 1.2, we present a set of proof rules for existential equality in a par-
tial λ-theory. The rules are parametrized over a fixed context Γ. We write
def ᾱ `Γ φ if an equation φ can be deduced from def ᾱ in context Γ by means
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(var)
x : s in Γ

def x
(st)

def f(ᾱ)
def ᾱ

(unit)
x : Unit in Γ

x
e= ()

(sym)
ᾱ

e=¯̄β
¯̄β e= ᾱ

(tr)

ᾱ
e= β̄

β̄
e= γ̄

ᾱ
e= γ̄

(cg)

ᾱ
e= β̄

def f(ᾱ)

f(ᾱ) e= f(β̄)

(ax)

def ᾱ⇒ȳ:t̄ φ ∈ A
ȳ : t̄ in Γ

def ᾱ
φ

(sub)

def ᾱ `ȳ:t̄ φ

def(β̄, ᾱ[ȳ/β̄])

φ[ȳ/β̄]

(η)
x : t̄→?u in Γ

λ ȳ : t̄ • x(ȳ) e= x
(β)

ȳ : t̄ in Γ

(λ ȳ : t̄ • α)(ȳ) s= α
(ξ)

∆ � α
s= β

λ∆ • α
e= λ∆ • β

Figure 1.2: Deduction rules for existential equality in context Γ

of these rules; in this case, def ᾱ⇒Γ φ is a theorem . The rules are essen-
tially a version of the calculus presented in [Mog86], adapted for existential
(rather than strong) equations. Of course, there is no reflexive law, since
α

e= α is false if α is undefined. For conciseness, subderivations are denoted
in the form def ᾱ `∆ φ, where the context ∆ and the assumption def ᾱ are to
be understood as extending the ambient context and assumptions. Strong
equations ∆ � α

s= β, or just α s= β, are abbreviations for ‘def α `∆ def β
and def β `∆ α

e= β’; in particular, rule (β) is really two rules. Rule (ξ)
implies that all λ-terms are defined.

The higher order rules (ξ) and (β) show a slight preference for strong equa-
tions. Note, however, that the usual form of the η-equation, λ ȳ : t̄ • α(ȳ) =
α, is an ECE, not a strong equation.

A translation between partial λ-theories is a signature morphism which
transforms axioms into theorems.

Remark 1 An essential feature of partial equational logic are conditioned
terms α resβ, which denote the restriction of a multi-term α to the domain
of a multi-term β [Bur93, Mog88]. In our setting, conditioned terms can
be coded using projection operators. Conditioned terms, in turn, provide a
coding for λ-abstraction of multi-terms.

Remark 2 A notion of predicates is provided in the shape of terms
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Γ � α : Unit, for which we write α in place of def α. The sentence def β
can be coded as the predicate (λx • ∗)(β).

The expressive power of ECEs is greatly increased in the presence of an
equality predicate (see also [CO89, Mog86]):

Definition 3 A partial λ-theory has internal equality if there exists, for
each type s, a binary predicate (cf. Remark 2) eqs such that

eqs(x, y) ⇒x,y:s x
e= y and true ⇒x:s eqs(x, x)

Such a predicate allows coding conditional equations as ECEs. In com-
bination with λ-abstraction, it gives rise to a fully-fledged intuitionistic
logic [CO89, LS86, SM02].

The notion of model we choose for the partial λ-calculus and thus, in effect,
for HasCasl, is that of intensional Henkin model . Briefly, this means
that not only may the sets interpreting partial function types fail to contain
all set-theoretic partial functions, but they may also contain several elements
describing the same set-theoretic function. Henkin models may be described
as syntactic λ-algebras modeled on the corresponding notion defined for the
total λ-calculus in [BTM85]:

Definition 4 A syntactic λ-algebra for a partial λ-theory T is a family
of sets [[s]], indexed over all types of T , together with partial interpretation
functions

[[Γ. α]] : [[Γ]] → [[t]]

for each term Γ � α : t in T , where [[Γ]] denotes the extension of the interpre-
tation to contexts via the cartesian product. This interpretation is subject
to the following conditions:

(i) [[Γ. xi]], where Γ = (x̄ : s̄), is the i-th projection;

(ii) [[ȳ : t̄. γ]] ◦ [[Γ. β]] = [[Γ. γ[ȳ/β]]], where Γ � β : t̄ is a multi-term, with
the interpretation extended to multi-terms in the obvious way;

(iii) whenever φ `Γ α
e= β in T and [[Γ. φ]](x) holds (i.e. is defined), then

[[Γ. α]](x) = [[Γ. β]](x) are defined.

A model morphism between two syntactic λ-algebras is a family of func-
tions hs, where s ranges over all types, that satisfies the usual homomor-
phism condition for partial algebras w.r.t. all terms. A syntactic λ-algebra
satisfies an ECE def ᾱ⇒Γ β

e= γ if

[[(). λΓ • β res ᾱ]] = [[(). λΓ • γ res ᾱ]] and
[[(). λΓ • def(β, ᾱ)]] = [[(). λΓ • def ᾱ]].
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It is shown in [Sch03] that such models are essentially equivalent to categor-
ical models involving partial cartesian closed categories.

Remark 5 Having to interpret all λ-terms can be avoided by using combi-
nators instead of λ-abstraction. In fact, it is implicit in [Mog88] that syn-
tactic λ-algebras are equivalent to the combinatorically defined λp-algebras
considered there; however, it is unclear whether λp-algebras can be finitely
axiomatized.

A translation σ : T1 → T2 of partial λ-theories gives rise to a reduct func-
tor from the model category of T2 to that of T1: given a model M of T2,
M |σ interprets each type and each term in T1 by the interpretation of its
translation along σ in M .

1.1.1 Product types

In a first extension step, we add product types to the partial λ-calculus,
i.e. essentially promote multi-types to types. In a signature with product
types Σ, the set T of types is generated from the set S of sorts by the
grammar

T ::= S | T × · · · × T | T →?T,

with types of the form s̄→?t coded as s1×· · ·×sn →?t; operators, however,
have profiles consisting as before of a multi-type describing their arguments
and a result type. Product types s1 × · · · × sn are equipped with tuple
formation and projection operators ( , . . . , ) : s̄ → s1 × · · · × sn and pri :
s1 × · · · × sn → si. Terms for Σ are defined as before, but using these
new operators. Morphisms of such signatures are are defined as for simple
signatures; of course, compatibility with operator profiles now refers to an
extension of the translation that takes product types into account. A partial
λ-theory with product types is a signature with product types equipped
with a set of ECEs, where ECEs can now be restricted to have a definedness
condition for a term (rather than a multi-term) as their premise.

The semantics of a partial λ-theory T with product types is given by a
translation into a partial λ-theory T ′: the sorts of T ′ are the sorts and the
non-trivial product types of T . This gives rise to an obvious translation of
types in T to types in T ′. The operators of T ′ are, then, the operators of T
with accordingly translated profiles. This, in turn, induces to a translation
of terms; the axioms of T ′ are the correspondingly translated axioms of T ,
extended by axioms stating that tuple formation and projections are mutual
inverses, i.e.

true ⇒x̄:s̄ pri(x1, . . . , xn) e= xi and

true ⇒x:s1×···×sn (pr1(x), . . . , prn(x)) e= x.
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The models of T are defined to be the models of T ′, and an ECE in T holds in
such a model M iff its translation to an ECE in T ′ holds in M . Translations
of partial λ-theories give rise to translations of the corresponding simple
signatures and hence to reduct funcors.

1.2 Signatures

We now proceed to define actual HasCasl signatures, which will then be
translated into simple signatures as defined in the previous section.

As it is standard in higher-order logic, operations are just constants of an ap-
propriate (possibly higher-order) type. Moreover, the type of constants may
be polymorphic, containing type variables that may be instantiated later on.
Type constructors map types to types. More generally, also higher-order
type constructors are allowed, mapping type constructors to type construc-
tors (where types are regarded as nullary type constructors). Declaration
and application of type constructors is subject to correct kinding. Kinds
can be regarded as sets of type constructors. Higher-order type construc-
tors have higher-order kinds.

As in Haskell, a type constructor class is a user-declared subkind of a given
kind, such that all members of the constructor class come with a bunch
of operations (also called methods). Type constructors may be overloaded
with several kinds built from different classes, but only if all these kinds are
of the same shape, formalized as raw kind.

Finally, type synonyms just are abbreviations of more complex types by
names.

A gentle introduction into polymorphic types, type constructors, kinds, and
type classes is given in [HPF99].

A signature Σ = (C,≤C , T, A,O,≤) consists of:

• a set C of type constructor classes (or just classes) with assigned
raw kinds;

• a subclass relation ≤C between classes and kinds

• a set T of type constructors consisting of their name and a set of
kinds called profiles;

• a set A of type synonyms, where a type synonym associates a name
to a pseudotype (i.e. a λ-term at the level of types; see below), its
expansion ; and

• a set O of constant symbols with assigned type schemes.
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• a subtype relation between type constructors and pseudotypes.

The sets K and RK of kinds and raw kinds, respectively, are defined by the
grammar

K ::= C | {V • V ≤ P} | Type | K ∩K | K → K | K+ → K | K− → K

RK ::= Type | RK → RK | RK+ → RK | RK− → RK,

where Type is the kind of all types, P is the set of all pseudotypes, and
V is a set of type variables. The downset kind {a • a ≤ t} denotes the
kind of all subtypes of a given pseudotype t. The +/− superscripts indicate
covariant or contravariant dependency on the type arguments, respectively,
for purposes of subtyping. A class Cl is associated to its raw kind Kd by
writing Cl : Kd . The raw kind of a kind Kd is obtained by replacing each
class occurring in Kd with its raw kind and each downset kind with the
raw kind of the corresponding pseudotype as defined below. The formation
of the intersection kind Kd1 ∩ Kd2 is allowed only when Kd1 and Kd2

have the same raw kind, which is then also the raw kind of Kd1 ∩ Kd2.
We require that, whenever Cl ≤C Kd , then the raw kinds of Cl and Kd
are in the subkind relation. The subclass relation is extended to an order
relation ≤K on kinds by the rules shown in Figure 1.3; note that co- and
contravariant constructor kinds are subkinds of the corresponding construc-
tor kind without variance information. The rule for intersection kinds works
in both directions. By induction over the derivation length, it is shown that
Kd1 ≤K Kd2 implies that the same relation holds for the associated raw
kinds, i.e. that the latter are identical up to possible removal of variance
annotations. Note that a class or kind is not necessarily a subkind of its
raw kind (e.g., given a class Ord of ordered types, Ord → Ord has raw kind
Type → Type, but is not a subkind of that kind.); however, for a class Cl of
raw kind Type, it is required that Cl ≤C Type.

By writing t : Kd , we express that a type t is associated to a kind Kd . We
require that all the kinds assigned to a type constructor are of the same raw
kind, which is then regarded as the raw kind of the type constructor (kinds
derivable for the type constructor may have a greater raw kind). There are
built-in type constructors

× : Type+ → Type+ → Type,

→? , → : Type− → Type+ → Type, and
Unit : Type

for products, partial and total function spaces, and the singleton type, re-
spectively (with, in fact, an n-ary product type constructor × · · · × ,
covariant in all arguments, for each n).

A signature induces a set P of pseudotypes, where a pseudotype, formed
in a type context Θ of type variables, is either a type variable, a type
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Cl ≤C Kd
Cl ≤K Kd

Kd1 ≤K Kd2 Kd3 ≤K Kd4

Kd (+/−/.)
2 → Kd3 ≤K Kd (+/−/.)

1 → Kd4

.

Kd ≤K Kd i, i = 1, 2
Kd ≤K Kd1 ∩Kd2

t1 ≤ t2
{a • a ≤ t1} ≤K {a • a ≤ t2}

Kd (+/−)
1 → Kd2 ≤K Kd1 → Kd2

Kd ≤K Kd
Kd1 ≤K Kd2 Kd2 ≤K Kd3

Kd1 ≤K Kd3
.

Figure 1.3: Subkinding rules

constructor, an application, or an abstraction. The type context consists
of distinct type variables with assigned extended kinds, denoted (a1 :
Kd1, . . . , an : Kdn) or, briefly, (ā : Kd). Here, an extended kind is a kind,
possibly annotated with a variance (+/−) (called its outer variance), as
used in argument kinds of constructor kinds Kd1 → Kd2.

More precisely, pseudotypes are formed and kinded according to the rules
shown in Figure 1.4. A judgement of the form Θ � t : Kd is to be read ‘t is
a type constructor of kind Kd in context Θ which depends on the variables
in Θ with the indicated variance’. The contexts Θ−1 and Θ0 denote Θ with
all outer variances reversed or removed, respectively. In the kinding rule
for type abstraction, the variance of the abstracted variable in the premise
must, of course, be identical to the variance of the argument kind in the
conclusion. A pseudotype of kind Type is called a type . The (unique) raw
kind of a pseudotype can be calculated by the essentially the same set of
rules, with the following modifications:

• type constructors are introduced with their raw kind instead of with
one of their profiles

• type contexts contain only variables of raw kinds

• exact fits are required where the kinding rules have subkinding con-
straints, i.e. ≤K is replaced by = throughout.

Note that the raw kind of a type constructor or pseudotype t need not be a
derivable kind for t! The corresponding raw kinding judgements are written
Θ �raw t : Kd .

It is easy to show that the kinds derivable for a pseudotype are upwards
closed w.r.t the subkind relation (which is why we can require exact fits in
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t : Kd1 in Σ
Kd1 ≤K Kd2

Θ � t : Kd2

a : Kd (+/−/.)
1 in Θ

Kd1 ≤K Kd2

Θ � a : Kd2

Θ � t : Kd1

Θ � s : Kd1 → Kd2

Θ0 � s t : Kd2

Θ � t : Kd1

Θ � s : Kd+
1 → Kd2

Θ � s t : Kd2

Θ−1 � t : Kd1

Θ � s : Kd−
1 → Kd2

Θ � s t : Kd2

Θ, a : Kd (+/−/.)
1 � t : Kd2

Kd3 ≤K Kd1

Θ � λ a : Kd1 • t : Kd (+/−/.)
3 → Kd2

Figure 1.4: Kinding rules for type constructors

the application rules). All kinds derivable for a pseudotype are of its raw
kind. Moreover, kinding is invariant under substitution and hence under β-
equality (but not under η-equality, which is therefore not imposed on type
constructors).

The subtype relation ≤ between type constructors and pseudotypes is ex-
tended to two preorders ≤ and ≤∗ on pseudotypes. The intuition behind this
distinction is that certain subtypes will be mapped injectively into a super-
type (recall that this is assumed for all subtypes in first order Casl), while
others may have non-injective coercion functions (e.g., function restriction).

The subtyping relation implicitly contains

→ ≤ →? ,

i.e. total functions can be regarded as partial when required. From this
extended relation, the preorders on the set of pseudotypes are defined by
the rules in Figure 1.5. Like kinding judgements, subtyping judgements are
parametrized by a type context; however, for subtyping, the outer variances
of type variables are irrelevant.

Type synonyms are intended as shorthands for pseudotypes; they are not
meant as a means of constructing recursive types. More formally, expansion
of type synonyms is required to be non-recursive, i.e. the relation ‘the expan-
sion of a contains b’ on synonyms must be well-founded. A named pseu-
dotype (as opposed to an anonymous pseudotype) is a pseudotype that can
be constructed from type constructors, type synonyms, and its type context
using only application (not λ-abstraction). Of course, any pseudotype can
be made into a named pseudotype by just introducing suitable synonyms.
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s ≤ t in Σ
Θ � s ≤ t

Θ � s ≤ t

Θ � s ≤∗ t

Θ �raw t : Kd+
1 → Kd2

Θ � s1 ≤ s2

Θ � t s1 ≤ t s2

Θ �raw t : Kd+
1 → Kd2

Θ � s1 ≤∗ s2

Θ � t s1 ≤∗ t s2

Θ �raw t : Kd−
1 → Kd2

Θ � s2 ≤∗ s1

Θ � t s1 ≤∗ t s2

Θ � t1 ≤ t2
Θ � t1 s ≤ t2 s

Θ � t1 ≤∗ t2
Θ � t1 s ≤∗ t2 s

Θ, a : Kd1 � t ≤ s
Kd1 ≤K Kd2

λ a : Kd2 • t ≤ λ a : Kd1 • s

Θ, a : Kd1 � t ≤∗ s
Kd1 ≤K Kd2

λ a : Kd2 • t ≤∗ λ a : Kd1 • s

Figure 1.5: Subtyping rules for pseudotypes

HasCasl features ML-polymorphism , i.e. constants of types that contain
type variables, implicitly or explicitly universally quantified on the outer-
most level. Thus, the types are complemented by type schemes: A type
scheme consists of a type context Θ and a named type t in that context (the
variables of the type scheme will stem either from an explicit quantification
or from a global or local variable declaration), together with a coherence
flag stating whether or not instances are required to be coherent w.r.t. sub-
typing (typically, recursively defined polymorphic functions will be coherent,
while predicates and functions used only for specification purposes may fail
to be so); see also Section 1.3. Such a type scheme is written ∀Θ • t, with
the coherence flag left implicit. Types will be regarded as type schemes with
empty type context.

The constant symbols are given, like symbols in first order Casl, by
their names with associated profiles, the difference being that a profile is
now represented by a single type scheme. A constant symbol with name f
and profile t is written f : t. An operator is called monomorphic if t is
a type, otherwise polymorphic. O contains the following distinguished
constants:

• the unique inhabitant of the unit type, () : Unit;

• for each partial or total function type s →? t or s → t an implicit
application operator of profile (s→? t)×s→? t or (s→ t)×s→ t,
respectively;

• for each pair s ≤ t of types, a downcast operator as s : t→?s



1.2. SIGNATURES 13

Note that constant symbols may be overloaded , i.e. different profiles can
be associated to the same name. To ensure that there is no ambiguity in sen-
tences at this level, constant symbols f are always qualified by their profile
t when used, written ft. (The language considered in Chapter 2 allows the
omission of such qualifications when these are unambiguously determined
by the context.) In fact, we require signatures to be embedding-closed (see
also [SMT+01]), i.e. the profiles associated to a given name must be upwards
closed under ≤∗.2 (Of course, embedding-closure is provided implicitly, so
that the user is not actually required to specify all these profiles). This also
makes sense of the profile of the upcast operator: : s implicitly has profiles
u→ t for all u, t with u ≤ s ≤ t.

A signature morphism

σ : (C1,≤C , T1, A1, O1,≤) → (C2,≤C , T2, A2, O2,≤)

consists of mappings from C1 to C2, from T1 to T2 +A2, from A1 to A2, and
from O1 to O2. These maps are required to preserve

• raw kinds of classes and type constructors

• the subclass relation in the sense that Cl ≤C Kd implies Cl ≤K Kd .

• kinding judgements for type constructors in the sense that assigned
kinds are mapped to derivable kinding judgements,

• expansions of type synonyms,

• profiles of constant symbols,

• all distinguished constants, and

• the subtyping relation ≤, again in the sense that subtyping judgements
must be derivable in the target signature.

Moreover, distinguished constants must also be reflected (this in order to
avoid ambiguities in the notation of signature morphisms). (This means
that we could have omitted them for purposes of describing the signature
category; they are included in the set of constants mainly in order to simplify
the presentation of the typing and deduction rules.)

Remark 6 Note that the above definition explicitly allows type construc-
tors to be mapped to type synonyms; this allows instantiating type construc-
tors with pseudotypes, albeit at the cost of having to define an synonym first.
A consequence is that the signature category fails to be cocomplete (while its
non-full subcategory consisting of the signature morphisms that map type
constructors to type constructors is cocomplete). However, the pushouts

2This requirement makes it superfluous to define overloading relations as in Casl.
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required for instantiating parametrized specifications do exist, which is all
that is needed for HasCasl structured specifications.

1.3 Models

The models of a signature Σ are defined by a translation of Σ into a partial
λ-theory with products Th(Σ) to be defined below — i.e. the models of Σ
are defined to be the syntactic λ-algebras for Th(Σ), correspondingly for
model morphisms.

An instance of a kind is a closed named pseudotype of that kind, taken
modulo β-equality. The sorts of Th(Σ) are the loose types of Σ, where a
loose type is an application of a type constructor other than the built-in
type constructors ×, →?, →, and Unit, to an instance of its argument kind.
This gives rise to a recursively defined translation of kind instances in Σ
to types in Th(Σ) (and conversely), since in β-normal types, λ-abstractions
can only occur nested inside loose types. We leave this translation implicit
in the notation.

The operators of Th(Σ) are defined to be

• for each operator f with profile ∀ā : Kd • t a family of operators fs̄ :
t[s̄/ā], indexed over all instances s̄ : Kd ;

• for each pair (s, t) of types in Th(Σ) such that s ≤∗ t holds for the
corresponding types in Σ, an embedding operator

ems,t : s→ t.

Finally, Th(Σ) has the following axioms (all expressible as ECEs):

• coherence of subtyping essentially as in Casl;

• overloading axioms stating for each pair (s, t) of types in Th(Σ)
and each constant c : s that

ems,t(c : s) = c : t

(where the profile c : t is in Σ by embedding closure).

• injectivity of subtype embeddings ems,t for s ≤ t (not, more gener-
ally, for s ≤∗ t), expressed by their mutual inverse property with the
corresponding downcast operators (also as in Casl);

• coherence of correspondingly flagged polymorphic operators w.r.t.
subtyping: if f : ∀ā : Kd • t is a coherent polymorphic operator, and
s̄ and ū are instances of Kd such that t[s̄/ā] ≤∗ t[ū/ā], then

fū = emt[s̄/ā],t[ū/ā](fs̄).
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A signature morphism σ : Σ1 → Σ2 induces a morphism Th(σ) : Th(Σ1) →
Th(Σ2) of simple signatures with products. The reduct functor for σ is
defined to be that of Th(σ).

1.4 Sentences

Sentences for a signature Σ are built from atomic formulas using quantifica-
tion (over sorted variables) and logical connectives, as well as outer universal
quantification over type constructor variables. An inner quantification over
a variable makes a hole in the scope of an outer quantification over the same
variable, regardless of the types (or kinds) of the variables. Quantification
over type variables produces a local type context. Implication may be taken
as primitive (together with the always-false formula), the other connectives
being regarded as derived.

The atomic formulas are:

• fully-qualified terms of sort Unit, regarded as predicates qua implicit
definedness assertions

• definedness assertions def for fully-qualified terms

• existential and strong equations e= and = , respectively, between
fully-qualified terms of the same sort.

Here, a fully-qualified term (or, when no confusion is likely, just a term) is
a term in Th(Σ) (with the context determined by enclosing quantifications).
A fully-qualified term in type context Θ (arising from enclosing universal
quantifications over type variables) is a fully-qualifed term in Σ + Θ, where
Σ + Θ is obtained by extending Σ with the variables in Θ, regarded as type
constructors of the appropriate kinds (with raw kinds determined by their
unique kinds).

As syntactical sugar over these sentences, one has the following additional
features:

• for each pair (s, t) of types in Th(Σ), an elementhood operator ∈ s :
t→? Unit abbreviating λx : t • def x as s;

• a total λ-abstraction λ x̄ : s̄ • !α which abbreviates a downcast of the
partial λ-abstraction to the type of total functions;

• syntactical support for emulation of non-strict functions by the
procedural lifting method : let ?t abbreviate the type Unit →?t. We
admit terms formed using two additional typing rules: a function that
expects an argument of type t (possibly as part of a product type) may
be applied to a term α of type ?t, which is then implicitly replaced by
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α(); conversely, a function that expects an argument of type ?t accepts
arguments β of type t, which are implicitly replaced by λx : Unit • β
(where x is a fresh variable).

• let-terms: for a term α : t in type context Θ = (ā : s̄), a variable x,
and a term β in operator context x : ∀Θ • t, one has a term

let ∀Θ • x = α in β;

here, a term in operator context x : ∀Θ • t is a term in the signature
obtained from Σ by adding a constant x : ∀Θ • t. Such a let-term
abbreviates β with all occurrences xs̄ of x substituted by α[s̄/ā].

• recursive datatypes are syntactical sugar for the usual no-junk-no-
confusion axioms; details are laid out in Section 2.7.

1.5 Satisfaction

The satisfaction of a sentence in a model M is determined as usual by the
holding of its atomic formulas w.r.t. assignments of (defined) values to all the
variables that occur in them, the values assigned to variables of sort s being
in sM . The value of a term w.r.t. a variable assignment may be undefined,
due to the application of a partial function during the evaluation of the term.
Note, however, that the satisfaction of sentences is 2-valued (as is the holding
of open formulas with respect to variable assignments). The satisfaction of
a universal quantification over type variables is defined as satisfaction of all
instances of that formula (this is possible because quantifications over type
variables are allowed only at the outermost level).

A term of type Unit holds as an atomic formula if it is defined in M . A
definedness assertion concerning a term holds iff the value of the term is
defined (thus it corresponds to the application of an operator a → Unit to
the term). An existential equation holds iff the values of both terms are
defined and identical, whereas a strong equation holds also when the values
of both terms are undefined.

Since the type context has been ‘substituted away’, every term α occurring
in the expanded formulas is a term in Th(Σ). The value of α is determined
as follows: the given variable assigment for the context Γ is an element x of
[[Γ]] (cf. Definition 4); the value of α is defined to be [[Γ. α]](x).



Chapter 2

Basic Constructs

This chapter indicates the abstract and concrete syntax of the constructs
of basic specifications without internal logic and general recursion, and de-
scribes their intended interpretation.

For an introduction to the form of grammar used here to define the ab-
stract syntax of language constructs, see Appendix A, which also provides
the complete grammar defining the abstract syntax of the entire HasCasl
specification language. For the ASCII input of mathematical symbols dis-
played in LATEX we refer to Section C.4.

BASIC-SPEC ::= basic-spec BASIC-ITEMS*

A well-formed many-sorted basic specification BASIC-SPEC in the Has-
Casl language is written simply as a sequence of BASIC-ITEMS constructs:

BI1 . . . BIn

The empty basic specification is not usually needed, but can be written ‘{ }’.

This language construct determines a basic specification within the underly-
ing HasCasl institution, consisting of a signature and a set of sentences of
the form described in Chapter 1. This signature and the class of models over
it that satisfy the set of sentences provide the semantics of the basic speci-
fication. Thus this chapter explains well-formedness of basic specifications,
and the way that they determine the underlying signatures and sentences,
rather than directly explaining the intended interpretation of the constructs.

While well-formedness of specifications in the language can be checked stati-
cally, the question of whether the value of a term that occurs in a well-formed
specification is necessarily defined in all models may depend on the specified
axioms (and it is not decidable in general).

17
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BASIC-ITEMS ::= CLASS-ITEMS | SIG-ITEMS

| GENERATED-ITEMS | FREE-DATATYPES

| GENERIC-VARS | LOCAL-VAR-AXIOMS | AXIOM-ITEMS

A BASIC-ITEMS construct is always a list, written:

plural -keyword X1 ; . . . Xn ;

The plural -keyword may also be written in the singular (regardless of the
number of items), and the final ‘;’ may be omitted.

Each BASIC-ITEMS construct determines part of a signature and/or some
sentences (except for GENERIC-VARS, which merely declares some global vari-
ables). The order of the basic items is generally significant: there is linear
visibility of declared symbols and variables in a list of BASIC-ITEMS con-
structs (except within a list of datatype declarations). Verbatim repetition
of the declaration of a symbol is allowed, and does not affect the semantics
(some tools may however be able to locate and warn about such duplications,
in case they were not intentional).

A list of class declarations CLASS-ITEMS determines part of a signature.
A list of signature declarations and definitions SIG-ITEMS determines
part of a signature and possibly some sentences. A generation construct
GENERATED-ITEMS determines part of a signature, together with some sen-
tences stating term generatedness. A FREE-DATATYPE construct determines
part of a signature together with some sentences. A list of variable decla-
ration items GENERIC-VARS determines object variables (each with a type)
and type variables (each with a kind) that are implicitly universally quanti-
fied in the subsequent axioms of the enclosing basic specification; note that
variable declarations do not contribute to the signature of the specification
in which they occur. A LOCAL-VAR-AXIOMS construct restricts the scope of
the variable declarations to the indicated list of axioms. (Variables may
also be declared locally in individual axioms, by explicit quantification.) An
AXIOM-ITEMS construct determines a set of sentences.

Signature Declarations

SIG-ITEMS ::= TYPE-ITEMS | OP-ITEMS | FUN-ITEMS | PRED-ITEMS

A list TYPE-ITEMS of type declarations determines one or more type con-
structors. A list OP-ITEMS or a list FUN-ITEMS of operation declarations
and/or definitions determines one or more constant symbols, and possibly
some sentences; similarly for a list PRED-ITEMS of predicate declarations
and/or definitions. Constant and predicate symbols may be overloaded, be-
ing declared with several different profiles in the same local environment.
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The difference between OP-ITEMS and FUN-ITEMS is that the former en-
tail coherence of different polymorphic instances with respect to subtyping,
whereas the latter (as well as PRED-ITEMS) do not.

2.1 Classes

A type constructor class is a user-declared subkind of a given kind, such that
all members of the constructor class come with a bunch of operations (also
called methods) and satisfy certain interface axioms.

CLASS-ITEMS ::= SIMPLE-CLASS-ITEMS | INSTANCE-CLASS-ITEMS

SIMPLE-CLASS-ITEMS ::= class-items CLASS-ITEM+

A list SIMPLE-CLASS-ITEMS of class declarations determines one or more
classes. It is written:

classes CI1 ; . . . CIn ;

INSTANCE-CLASS-ITEMS are described below.

2.1.1 Class Declarations

CLASS-DECL ::= SIMPLE-CLASS-DECL | SUBCLASS-DECL

SIMPLE-CLASS-DECL ::= class-decl CLASS-NAME+

SUBCLASS-DECL ::= subclass-decl CLASS-NAME+ KIND

A simple class declaration SIMPLE-CLASS-DECL is written:

c1 , . . . , cn

It declares classes c1 , . . . , cn as subkinds of the kind Type.

A subclass declaration SUBCLASS-DECL is written:

c1 , . . . , cn < k

It declares classes c1 , . . . , cn as subkinds of the kind k . In the case that k is
another class, the ci are also called subclasses of k .

2.1.2 Class Items

CLASS-ITEM ::= class-item CLASS-DECL BASIC-ITEMS*

A class item CLASS-ITEM consisting of a class declaration CD and a list of
basic items BIs is written:
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CD{ BIs }

It expands to the class declaration CD followed by the basic items BIs, and
attaches all the axioms generated by BIs as interface axioms to the classes
in CD .

2.1.3 Class instance declarations

INSTANCE-CLASS-ITEMS ::= instance-class-items CLASS-ITEM+

A class instance declaration INSTANCE-CLASS-ITEMS is written:

class instances CI1 ; . . . CIn ;

It declares one or more classes, but has an additional well-formedness con-
dition, namely that each class being declared as a subclass of another class
satisfies all interface axioms of the superclass. More precisely, the interface
axioms have to be satisfied for all models of the local environment and (in
the case of true type constructors) all argument types satisfying the interface
axioms of their respective classes.

2.2 Kinds

A kind can be regarded as a set of type constructors.

KIND ::= TYPE-UNIVERSE | CLASS-KIND | INTERSECTION-KIND

| DOWNSET-KIND | FUN-KIND

TYPE-UNIVERSE ::= type-universe

CLASS-KIND ::= class-name CLASS-NAME

INTERSECTION-KIND::= intersection KIND+

DOWNSET-KIND ::= downset TYPE

FUN-KIND ::= fun-kind EXT-KIND KIND

EXT-KIND ::= ext-kind KIND VARIANCE

VARIANCE ::= covariant | contravariant | invariant

The kind type-universe of all ground types is written Type. A
CLASS-KIND is written c and just denotes the class c. An intersection kind
INTERSECTION-KIND is written

(k1 , . . . , kn)

and denotes the intersection of the kinds k1 , . . . , kn . A DOWNSET-KIND is
written

{a • a ≤ t}
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and denotes the set of all type constructors that are less than or equal to
(in the subtype relation) the type constructor t .

Finally, a FUN-KIND is written

k+
1 → k2 , or k−1 → k2 or k1 → k2

It denotes the kind of all type constructors from k1 to k2. The variances
covariant, contravariant and invariant are written as +, − or no su-
perscript to the argument kind. (In ISO Latin-1 or ASCII input syntax,
instead of superscripts, the + or − is written directly after the kind.) The
variance is used in the subtyping rules when inheriting subtyping from ar-
guments to results of type constructors. Kinds with + and − annotations
are also called extended kinds.

2.3 Type constructors

TYPE-ITEMS ::= SIMPLE-TYPE-ITEMS | INSTANCE-TYPE-ITEMS

SIMPLE-TYPE-ITEMS ::= type-items TYPE-ITEM+

INSTANCE-TYPE-ITEMS ::= instance-type-items TYPE-ITEM+

A list SIMPLE-TYPE-ITEMS of type constructor declarations is written:

types TI1 ; . . . TIn ;

while a list INSTANCE-TYPE-ITEMS is written:

type instances TI1 ; . . . TIn ;

Both forms declare one or more type constructors and/or type syn-
onyms, and possibly some subtype relations and axioms. The
INSTANCE-TYPE-ITEMS has an additional well-formedness condition, namely
that each type constructor being declared as a member of some class satisfies
all interface axioms of that class. More precisely, the interface axioms have
to be satisfied for all models of the local environment and (in the case of
true type constructors) all argument types satisfying the interface axioms of
their respective classes.

TYPE-ITEM ::= TYPE-DECL | SYNONYM-TYPE | DATATYPE-DECL

| SUBTYPE-DECL | ISO-DECL | SUBTYPE-DEFN

For the description of DATATYPE-DECL see Section 2.7.



2.3. TYPE CONSTRUCTORS 22

2.3.1 Type Constructor Declarations

TYPE-DECL ::= type-decl TYPE-NAME+ KIND

A type constructor declaration TYPE-DECL is written:

tn1 , . . . , tnn : k

It declares each of the type constructors in the list tn1 , . . . , tnn with kind
k .

The concrete syntax for TYPE-DECL further supports a notation where the
kind may be omitted. In this case all type constructors are assumed to have
kind Type. Furthermore a type constructor declaration may be written via
a TYPE-PATTERN, that is:

tn : k1 → . . .→ kn → k

may be written:

tn a1 . . . an : k

where ai are type arguments with extended kinds ki .

2.3.2 Type Synonym Declarations

SYNONYM-TYPE ::= synonym-type TYPE-NAME TYPE-ARG* TYPE

TYPE-ARG ::= type-arg TYPEVAR EXT-KIND

A type synonym declaration SYNONYM-TYPE is written:

tn a1 . . . an := t

It declares tn with type arguments a1 . . . an to be a synonym for the type
t , where the ai may occur within t .

A type argument TYPE-ARG is written tv : k and declares the type variable
tv to have the extended kind k . The concrete syntax for TYPE-ARG allows
to omit the kind for variables of kind Type. Furthermore the variance may
be part of the type variable.

2.3.3 Subtype Declarations

SUBTYPE-DECL ::= subtype-decl TYPE-NAME+ TYPE

A subtype declaration SUBTYPE-DECL is written

tn1 , . . . , tnn < t
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It declares all the type constructors tn1 , . . . , tnn . The kind for these type
constructors is taken from the type t which must already be declared in the
local environment. The tni must be distinct and must not occur in the type
t .

For compatibility with Casl, an undeclared type name t will be treated as
declaration with kind Type.

When a subtype declaration occurs in a generation construct, the embedding
and projection operations between the subtype(s) and the supertype are
treated as declared operations with regard to the generation of types.

Introducing an embedding relation between two types may cause opera-
tion symbols to become related by the overloading relation, so that values
of terms become equated when the terms are identical up to embedding.
Moreover, new operation profiles are generated while closing the signature
under composition with embeddings.

2.3.4 Isomorphism Declarations

ISO-DECL ::= iso-decl TYPENAME+

An isomorphism declaration ISO-DECL is written:

tn1 = . . . = tnn = tn

It declares all the type constructors tn1 , . . . , tnn , as well as their embeddings
as subtypes of each other including tn. The tni must be distinct. The kind
is taken from tn that must have been declared before.

Again, for compatibilty with CASL, an undeclared type name tn will be
declared with kind Type.

2.3.5 Subtype Definitions

SUBTYPE-DEFN ::= subtype-defn TYPE-NAME TYPE-ARG* VAR TYPE FORMULA

A subtype definition SUBTYPE-DEFN is written:

tn a1 . . . an = {v : t • F}

It provides an explicit specification of the values of the subtype tn a1 . . . an

of t , in contrast to the implicit specification provided by using subtype
declarations and overloaded operation symbols. The ai may occur in t .

The subtype definition declares the type constructor tn; it declares the em-
bedding of tn a1 . . . an as a subtype of t , which must already be declared
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in the local environment; and it asserts that the values of tn a1 . . . an are
precisely (the projection of) those values of the variable v from t for which
the formula F holds.

The scope of the variable v is restricted to the formula F . Any other vari-
ables occurring in F must be explicitly declared by enclosing quantifications.

Note that the terms of type t cannot generally be used as terms of type
tn a1 . . . an . But they can be explicitly projected to tn a1 . . . an , using a
cast.

Defined subtypes may be separately related using subtype (or isomorphism)
declarations—implication or equivalence between their defining formulas
does not give rise to any subtype relationship between them.

2.4 Types

TYPE ::= TYPE-NAME | TYPE-APPL

| PRODUCT-TYPE | LAZY-TYPE | KINDED-TYPE | FUN-TYPE

Types are constructed from type constructors and their applications. A
type name is uniquely identified as variable or constructor and uniquely
associated to a raw kind, because type names can only be overloaded for
kinds with the same raw kind. PRODUCT-TYPE, LAZY-TYPE and FUN-TYPE
are special type applications and all their type components are expected to
have the raw kind Type.

2.4.1 Type Applications

TYPE-APPL ::= type-appl TYPE TYPE

Types can be applied by juxtaposition. The concrete syntax allows to put
types in parentheses; furthermore, Unit is a built-in type consisting of the
emtpy tuple only, Pred a is a built-in type synonym for a →? Unit, and
Logical is a built-in type synonym for Pred Unit.

Product Types

PRODUCT-TYPE ::= product-type TYPE+

Product types denote the types for tuples and are written:

t1 × . . .× tn
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In contrast to Casl, product types (and tuples) may be nested using paren-
theses.

Lazy Types

LAZY-TYPE ::= lazy-type TYPE

A lazy type is built using an application of a special type constructor ‘?’,
see Section 1.4. It is written:

?t

Note that in function and datatype definitions a ‘?’ following a colon is
interpreted as partiality of the corresponding function type.

Function Types

FUN-TYPE ::= fun-type TYPE ARROW TYPE

ARROW ::= partial-fun | total-fun

| cont-partial-fun | cont-total-fun

Function types denote the single argument type and the result type of a
function. By using a product type as argument, multi-argument first order
functions can be typed. A function arrow as infix symbol is right associative
and binds weaker than the symbol × of product types – for compatibility
with first-order Casl. Other prefix applications bind even stronger. The
four different flavors of functions are written:

ta →? tr

ta → tr

ta
c−→? tr

ta
c−→ tr

The long arrows denote total or partial continuous functions.

2.4.2 Kinded Types

KINDED-TYPE ::= kinded-type TYPE KIND

A type can be restricted to a specific kind instance k that must conform to
the inferred raw kind. A kinded type is written:

t : k
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or

t < d

for a downset kind of the form {a • a ≤ d}.

Type Schemes

TYPESCHEME ::= typescheme TYPE-ARG* TYPE

A type scheme TYPESCHEME with some type variables is written:

forall a1 ; . . . ; an • t

When the list of type variables is empty, the type is simply written ‘t ’.

The type scheme is polymorphic over the type variables a1 ,. . . ,an , which
may occur in t .

The concrete syntax for TYPE-VAR-DECLS in type schemes supports an ab-
breviated notation. Type variables with the same kind may be comma
separated.

2.5 Operations

OP-ITEMS ::= op-items OP-ITEM+

FUN-ITEMS ::= fun-items OP-ITEM+

OP-ITEM ::= OP-DECL | OP-DEFN

A list OP-ITEMS of operation declarations and definitions is written:

ops OI1 ; . . . OIn ;

Similarly, a list FUN-ITEMS of non-coherent operation declarations and defi-
nitions is written:

funs OI1 ; . . . OIn ;

The difference between OP-ITEMS and FUN-ITEMS is that the former en-
tail coherence of different polymorphic instances with respect to subtyping,
whereas the latter do not.

A declaration or definition of an operation symbol implicitly leads to declara-
tions of the same operation name with all profiles that are obtained from the
declared profile by composing with subtype injections (embedding-closure).
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2.5.1 Operation Declarations

OP-DECL ::= op-decl OP-NAME+ TYPESCHEME OP-ATTR*

OP-NAME ::= ID

An operation declaration OP-DECL is written:

f1 , . . . , fn : T ,A1 , . . . ,Am

When the list A1 , . . . , Am is empty, the declaration is written simply:

f1 , . . . , fn : T

It declares each operation name f1 , . . . , fn as a constant with profile as
specified by the type scheme T , and as having the attributes A1 , . . . , Am

(if any).

Operation Attributes

OP-ATTR ::= BINARY-OP-ATTR | UNIT-OP-ATTR

BINARY-OP-ATTR ::= assoc-op-attr | comm-op-attr | idem-op-attr

UNIT-OP-ATTR ::= unit-op-attr TERM

Operation attributes assert that the operations being declared (which must
be binary) have certain common properties, which are characterized by
strong equations, universally quantified over variables of the appropriate
type. (This can also be used to add attributes to operations that have
previously been declared without them.)

The attribute assoc-op-attr is written ‘assoc’. It asserts the associativity
of an operation f :

f (x , f (y , z )) = f (f (x , y), z )

The attribute of associativity moreover implies a parsing annotation that
allows an infix operation f of the form ‘ t ’ to be iterated without explicit
grouping parentheses.

The attribute comm-op-attr is written ‘comm’. It asserts the commuta-
tivity of an operation f :

f (x , y) = f (y , x )

The attribute idem-op-attr is written ‘idem’. It asserts the idempotency
of an operation f :

f (x , x ) = x
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The attribute UNIT-OP-ATTR is written ‘unit T ’. It asserts that the value of
the term T is the unit (left and right) of an operation f :

f (T , x ) = x ∧ f (x ,T ) = x

In practice, the unit T is normally a constant. In any case, T must not
contain any variables.

The declaration enclosing an operation attribute is ill-formed unless the
operation has exactly one pair argument, with both components having the
same type as the result.

2.5.2 Operation Definitions

OP-DEFN ::= op-defn OP-NAME TYPE-ARG* OP-HEAD TERM

OP-HEAD ::= TOTAL-OP-HEAD | PARTIAL-OP-HEAD

TOTAL-OP-HEAD ::= total-op-head TUPLE-ARG* TYPE

PARTIAL-OP-HEAD ::= partial-op-head TUPLE-ARG* TYPE

TUPLE-ARG ::= tuple-arg VAR-DECL*

VAR-DECL ::= var-decl VAR TYPE

A definition OP-DEFN of a total operation with some arguments is written:

f (vd11 ; . . . ; vd1m1 ) . . . (vdn1 ; . . . ; vdnmn ) : t = T

When the list of curried tuple arguments is empty, the definition is simply
written:

f : t = T

A definition OP-DEFN of a partial operation is written:

f (vd11 ; . . . ; vd1m1 ) . . . (vdn1 ; . . . ; vdnmn ) :?t = T

When the list of curried tuple arguments is empty, the definition is simply
written:

f :?t = T

It declares the operation name f as a total, respectively partial operation,
with a profile

t11 × . . .× t1m1 → . . .→ tn1 × . . .× tnmn → t

respectively

t11 × . . .× t1m1 → . . .→ tn1 × . . .× tnmn →? t

It also asserts the strong equation:

f (v11 , . . . , v1m1 ) . . . (vn1 , . . . , vnmn ) = T
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universally quantified over the declared argument variables (which must be
distinct, and are the only ones allowed in T ), or just ‘f = T ’ when the list
of arguments is empty.

As in Casl variable declarations within a tuple may be abbreviated. The
concrete syntax for VAR-DECL allows comma separated variables having the
same type (see Section 2.9).

For polymorphic operations the type variables for the final type scheme may
be given in square brackets following the name f .

f [a1 ; . . . ; an ](vd11 ; . . . ; vd1m1 ) . . . (vdn1 ; . . . ; vdnmn ) : t = T

Again, type variables with the same kind may also be comma separated.

In each of the above cases, the operation name f may occur in the term T ,
and may have any interpretation satisfying the equation—not necessarily
the least fixed point.

2.6 Predicates

PRED-ITEMS ::= pred-items PRED-ITEM+

PRED-ITEM ::= PRED-DECL | PRED-DEFN

A list PRED-ITEMS of predicate declarations and definitions is written:

preds PI1 ; . . . PIn ;

A declaration or definition of a predicate symbol implicitly leads to declara-
tions of the same predicate name with all profiles that are obtained from the
dedlared profile by composing with subtype injections (embedding-closure).

2.6.1 Predicate Declarations

PRED-DECL ::= pred-decl OP-NAME+ TYPESCHEME

A predicate declaration PRED-DECL is written:

p1 , . . . , pn : T

It declares each name p1 , . . . , pn as a predicate. Such a predicate takes
exactly one argument, that may be a tuple.
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2.6.2 Predicate Definitions

PRED-DEFN ::= pred-defn OP-NAME TYPE-ARG* TUPLE-ARG FORMULA

A definition PRED-DEFN of a polymorphic predicate with a single tuple ar-
guments is written:

p[a1 ; . . . ; an ](vd1 ; . . . ; vdm) ⇔ F

When the predicate definition is not polymorphic, it is written:

p(vd1 ; . . . ; vdm) ⇔ F

When the list of arguments is empty, the definition is simply written:

p ⇔ F

It also asserts the equivalence:

p(v1 , . . . , vm) ⇔ F

universally quantified over the declared argument variables (which must be
distinct, and are the only ones allowed in F ), or just ‘p ⇔ F ’ when the list
of arguments is empty. The name p may occur in the formula F , and may
have any interpretation satisfying the equivalence.

2.7 Datatype Declarations

The order of datatype declarations as part of a TYPE-ITEMS or a
FREE-DATATYPE is not significant: there is non-linear visibility of the
declared data types in a list. The visibility exactly corresponds to that of
Casl.

Datatype Declarations

DATATYPE-DECL ::= datatype-decl TYPE-NAME TYPE-ARG* ALTERNATIVE+

CLASS-NAME*

A polymorphic datatype declaration DATATYPE-DECL is written:

t a1 . . . am ::= A1 | . . . | An

It declares the data type constructor t such that t a1 . . . am has kind Type.
For each alternative construct A1 , . . . , An , it declares the specified construc-
tor and selector operations, and determines sentences asserting the expected
relationship between selectors and constructors. All types used in an alter-
native construct must be declared in the local environment (which always
includes the type declared by the datatype declaration itself).
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Note that a datatype declaration as part of TYPE-ITEMS allows models where
the ranges of the constructors are not disjoint, and where not all values are
the results of constructors. This looseness can be eliminated in a general
way by use of free extensions in structured specifications, or by use of free
datatypes. Some of the unreachable values can be eliminated also by the
use of generation constraints.

Like in Haskell, free data types may be declared to belong to one or more
type classes, with automatically generated axiomatization of the instances
(this is a limited form of polytypic specification). In HasCasl, only the
special type classes introduced in Chapter 6 may be used here.

t a1 . . . am ::= A1 | . . . | An deriving c1 , . . . , cl

Alternatives

ALTERNATIVE ::= TOTAL-CONSTRUCT | PARTIAL-CONSTRUCT | SUBTYPES

TOTAL-CONSTRUCT ::= total-construct OP-NAME TUPLE-COMPONENT*

PARTIAL-CONSTRUCT ::= partial-construct OP-NAME TUPLE-COMPONENT+

TUPLE-COMPONENT ::= tuple-component COMPONENTS+

A total constructor TOTAL-CONSTRUCT is written:

f (C11 ; . . . ; C1m1 ) . . . (Cn1 ; . . . ; Cnmn )

A partial constructor PARTIAL-CONSTRUCT with some components is written:

f (C11 ; . . . ; C1m1 ) . . . (Cn1 ; . . . ; Cnmn )?

(Partial constructors without components are not expressible in datatype
declarations.)

The alternative declares f as an operation. Each tuple Ci1 , . . . , Cimi specifies
a curried argument for the profile; the result type is the type declared by
the enclosing datatype declaration.

Subtypes

SUBTYPES ::= subtypes TYPE+

A subtypes alternative is written:

types t1 , . . . , tn
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As with type declarations, the plural keyword may be written in the singular.
For compatibility with Casl also the keyword sorts followed by type names
may be used.

The types ti , which must be already declared in the local environment, are
declared to be embedded as subtypes of the type declared by the enclosing
datatype declaration. (‘types t1 , . . . , tn ’ and ‘type t1 | . . . | type tn ’ are
equivalent.)

Components

COMPONENTS ::= TOTAL-SELECT | PARTIAL-SELECT | TYPE

TOTAL-SELECT ::= total-select OP-NAME+ TYPE

PARTIAL-SELECT ::= partial-select OP-NAME+ TYPE

A declaration TOTAL-SELECT of total selectors is written:

f1 , . . . , fn : t

A declaration PARTIAL-SELECT of partial selectors is written:

f1 , . . . , fn :? t

The remaining case is a component without a selector, simply written ‘t ’.

The comma separated list of selectors is again an abbreviation for n tuple
components of the same type and with the same partiality. In the first
case, each selector operation is declared as total, and in the second case, as
partial. It also determines sentences that define the value of each selector
on the values given by the constructor of the enclosing alternative.

In the last case, it provides the type t only once as an argument for the
constructor of the enclosing alternative, and it does not declare any selector
operation for that component.

Note that when there is more than one alternative construct in a datatype
declaration, selectors are usually partial, and should therefore be declared as
such; their values on constructs for which they are not declared as selectors
are left unspecified. A list of datatype declarations must not declare a
function symbol both as a constructor and selector with the same profiles.

Free Datatypes

FREE-DATATYPE ::= free-datatype DATATYPE-DECL+

A list FREE-DATATYPE of free datatype declarations is written:

free types DD1 ; . . . ; DDn ;
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(The terminating ‘;’ is optional.)

This construct is only well-formed when all the constructors declared by the
datatype declarations are total.

The free datatype declarations declare the same types, constructors, and
selectors as ordinary datatype declarations. Apart from the sentences that
define the values of selectors, the free datatype declarations determine addi-
tional sentences requiring that the constructors are injective, that the ranges
of constructors of the same sort are disjoint, that all the declared types are
inductively generated by the constructors in the sense of Section 2.8, and
that the value of applying a selector to a constructor for which it has not
been declared is always undefined.

Besides these axioms, free datatype declarations additionally give rise to a
case operator which takes a tuple of functions, one on each alternative of
the datatype, and returns a function on the whole datatype which behaves
in the prescribed way on all alternatives.

When the alternatives of a free datatype declaration are all subtypes, and
none of these subtypes have common subtypes, the declared type corre-
sponds to the disjoint union of the subtypes. When the alternatives of a
free datatype declaration are all constants, the declared type corresponds to
an (unordered) enumeration type.

Note that the axioms generated by a free datatype are by default under-
stood to belong to the logic defined in this chapter, later to be called the
external logic as opposed to the internal logic of Chapter 3. This means that
they constrain only the ‘visible’ elements of a datatype, i.e. so to speak its
extension. If this is undesired, datatype declarations can be placed inside
so-called internal logic blocks, cf. Chapter 4, so that the implicit axioms
become formulas of the internal logic.

Moreover, even with the internal logic, there is no hope at all that free
datatype declarations will be equivalent to free extensions, the difference
being that a free extension would also require all newly arising function types
to be freely term generated; this effect will not normally be desired. In fact,
if a free datatype contains newly arising function spaces as arguments for
its constructors, then its semantics will depend on the loose interpretation
of these function spaces, so that the datatype itself will in this respect be a
loose type.
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2.8 Generated Items

GENERATED-ITEMS ::= generated SIG-ITEMS+

A generated items GENERATED-ITEMS is written:

generated { SI1 . . . SIn };

When the list of SIG-ITEMS is a single TYPE-ITEMS construct, writing the
grouping signs is optional:

generated types DD1 ; . . . DDn ;

(The terminating ‘;’ is optional in both cases.)

A GENERATED-ITEMS is ill-formed if it does not declare any types. It de-
termines the same elements of signature and sentences as SI1 , . . . , SIn ,
together with a corresponding induction axiom . The declared operations
(but excluding operations declared as selectors by datatype declarations)
are called constructors.

For GENERATED-ITEMS that have neither function spaces nor applications of
type constructors as arguments of constructors, the induction axiom states
that for any sequence of predicates over the sequence of declared types
(called the induction predicates), the inductive hypothesis implies the
inductive conclusion. The inductive hypothesis expresses that the induc-
tion predicates are closed under the constructors, and the inductive conclu-
sion epxresses that they are everywhere-holding predicates. Note that the
induction axiom is a higher-order reformulation of the corresponding sort
generation constraint in Casl.1

For constructors with functional arguments, the notion of closedness of pred-
icates under the constructor only makes sense if the induction predicates are
extended to higher types. This is done as follows: the extended induction
predicate on a function space type is satisfied by a function if the function
takes values satisfying the relevant (extended or non-extended) induction
predicate on its argument type to values satisfying the relevant induction
predicate on its result type. The extended induction predicates on product
types are taken componentwise, and those on types of the local environment

1However, due to the flexibility of interpretation of higher types in Henkin models,
the higher-order reformulation is weaker than the sort generation constraint in Casl.
In particular, not all non-standard models are excluded. However, proof-theoretically,
this difference disappears — at least if the standard Casl proof system with the usual
finitary induction rule is used. Only if stronger (e.g. infinitary) forms of induction are
used, the difference becomes relevant. It also becomes relevant for monomorphicity: due
to possible non-standard interpretations of higher types, the usual free datatypes are no
longer monomorphic in HasCasl.
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are taken to be constantly true. The extended induction predicates are only
used in the inductive hypothesis, not in the conclusion.

Furthermore, there may be types of form c t1 . . . tn, where c is a non
built-in type constructor from the local environment and at least one ti is
being declared in the GENERATED-ITEMS. Also for these types, extended in-
duction predicates are introduced. However, they are not uniquely defined
in terms of other induction predicates, but just stated to be closed under
the operations with result type c t1 . . . tn (which are necessarily newly
arising instances of polymorphic operators), using the (extended) induction
predicates for the ti whenever appropriate. Again, the extended induction
predicates are added to the inductive hypothesis, and not used in the con-
clusion.

Finally, types of form c t1 . . . tn, where c is a type constructor being declared
in the GENERATED-ITEMS, are only considered to be well-formed if the ti are
type variables and c t1 . . . tn is being declared in the GENERATED-ITEMS
as well (and then the induction predicate is defined as above). That is,
datatypes defined by polymorphic recursion are not allowed in HasCasl.

Note that the induction axiom does not imply that elements of a generated
datatype containing functional constructors are reachable by the construc-
tors and λ-abstraction. In particular, induction axioms do not preclude a
standard interpretation of functional types (i.e. using the full function space,
which cannot be term generated for infinite types).

2.9 Variables

Variables for use in terms may be declared globally, locally, or with explicit
quantification. Globally or locally declared variables are implicitly univer-
sally quantified in subsequent axioms of the enclosing basic specification.
Variables are not included in the declared signature.

Note that universal quantification over a variable that does not occur free in
an axiom is semantically irrelevant, due to the assumption that all carriers
are non-empty.

Type variables may also be declared globally, locally, or with explicit
quantification. Globally or locally declared type variables are implicitly
universally quantified in subsequent basic items of the enclosing basic spec-
ification. Type variables are not included in the declared signature.
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2.9.1 Global Variable Declarations

GENERIC-VARS ::= var-items GEN-VAR-DECL+

GEN-VAR-DECL ::= VAR-DECL | TYPE-ARG

A list GENERIC-VARS of variable declarations is written:

vars VD1 ; . . . VDn ;

Note that local variable declarations are written in a similar way, but fol-
lowed directly by a bullet ‘ • ’ instead of the optional semicolon.

A GEN-VAR-DECL either declares a type variable with its kind or an ordinary
variable (to be used within terms) with its type (of kind Type).

TYPEVAR ::= SIMPLE-ID

VAR ::= ID

A TYPE-ARG or VAR-DECL variable declaration is written as within operator
definitions (without parentheses). Variables with the same kind or same
type may be comma separated.

v1 , . . . , vn : k

It declares the type variables v1 , . . . , vn of kind k , if k is a legal kind,
otherwise k is assumed to be a type and v1 , . . . , vn are declared as ordinary
variables. All variables do not contribute to the declared signature.

The scope of a global variable declaration is the subsequent axioms of the
enclosing basic specification; a later declaration for a variable with the same
identifier overrides the earlier declaration (regardless of whether the type of
the variables are the same). A global declaration of a variable is equivalent to
adding a universal quantification on that variable to the subsequent axioms
of the enclosing basic specification.

Type variables and other variables have separate name spaces, thus the same
identifier may be a type variable and an ordinary variable. Locally declared
type variables will shadow type constructors with the same identifier, since
there is no overloading of type names (while globally declared type variables
must have names distinct from those of type constructors).

2.9.2 Local Variable Declarations

LOCAL-VAR-AXIOMS ::= local-var-axioms GEN-VAR-DECL+ FORMULA+

A localization LOCAL-VAR-AXIOMS of variable declarations to a list of axioms
is written:
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∀VD1 ; . . . ; VDn • F1 . . . • Fm ;

It declares variables (possibly also type variables) for local use in the axioms
F1 , . . . , Fm , but it does not contribute to the declared signature. A local
declaration of a variable is equivalent to adding a universal quantification
on that variable to all the indicated axioms.

2.10 Formulas and Axioms

As in Casl, formulas (denoting truth values) are distinguished from terms
(denoting data values). In higher-order logic, usually formulas and terms
are identified, such that formulas are terms of a Boolean type. In HasCasl,
the latter happens in the internal logic, see Chapters 3 and 4.

AXIOM-ITEMS ::= axiom-items FORMULA+

A list AXIOM-ITEMS of axioms is written:

• F1 . . . • Fn

Each well-formed axiom determines a sentence of the underlying basic spec-
ification (closed by universal quantification over all declared variables).

FORMULA ::= QUANTIFICATION | CONJUNCTION | DISJUNCTION

| IMPLICATION | EQUIVALENCE

| NEGATION | ATOM

A formula is constructed from atomic formulas using quantification and the
usual logical connectives.

2.10.1 Quantifications

QUANTIFICATION ::= quantification QUANTIFIER GEN-VAR-DECL+ FORMULA

QUANTIFIER ::= universal | existential | unique-existential

A quantification with the universal quantifier is written:

∀VD1 ; . . . ; VDn • F

A quantification with the existential quantifier is written:

∃VD1 ; . . . ; VDn • F

A quantification with the unique-existential quantifier is written:

∃!VD1 ; . . . ; VDn • F
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The first case is universal quantification, holding when the body F holds for
all values of the quantified variables; only an outermost universal quantifi-
cation may declare type variables (see GEN-VAR-DECL in Section 2.9). The
second case is existential quantification, holding when the body F holds for
some values of the quantified variables; and the last case is unique existen-
tial quantification, abbreviating a formula that holds when the body F holds
for unique values of the quantified variables. Type variable declarations are
illegal within existential quantifications.

Provided type variable declarations precede other variable declarations, the
formula ∀VD1 ; . . . ; VDn • F is equivalent to ∀VD1 • . . .∀VDn • F .
The scope of a variable declaration in a quantification is the component for-
mula F , and an inner declaration for a variable with the same identifier as
in an outer declaration overrides the outer declaration. There are never two
variables in scope with the same idenfifier, however, possibly overloaded op-
erations may have the same identifier as a variable and can be distinguished
within terms by qualication. Note that the body of a quantification extends
as far as possible.

2.10.2 Logical Connectives

These formulas determine the usual logical connectives on the sub-formulas.
Conjunction and disjunction apply to lists of two or more formulas. When
mixed, they have to be explicitly grouped, using parentheses ‘(. . .)’.

Implication (which may be written in two different ways) has higher prece-
dence than equivalence but weaker precedence than conjunction and disjunc-
tion. When the ‘forward’ version of implication is iterated, it is implicitly
grouped to the right; the ‘backward’ version is grouped to the left. When
these constructs are mixed, they have to be explicitly grouped. The equiva-
lence has no associativity. The negation as a prefix operator binds stronger
than the infix connectives.

Conjunction

CONJUNCTION ::= conjunction FORMULA+

A conjunction is written:

F1 ∧ . . . ∧ Fn
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Disjunction

DISJUNCTION ::= disjunction FORMULA+

A disjunction is written:

F1 ∨ . . . ∨ Fn

Implication

IMPLICATION ::= implication FORMULA FORMULA

An implication is written:

F1 ⇒ F2

An implication may also be written in reverse order:

F2 if F1

Equivalence

EQUIVALENCE ::= equivalence FORMULA FORMULA

An equivalence is written:

F1 ⇔ F2

Negation

NEGATION ::= negation FORMULA

A negation is written:

¬F1

2.10.3 Atomic formulas

Atomic formula are the truth values, equations, definedness and membership
tests and terms of type Logical, or (by procedural lifting, see Section 1.4)
of type Unit. Note that due to intensionality, Logical generally may contain
more than two truth values. In order to obtain a two-valued logic at the level
of logical connectives and quantifiers, terms of type Logical (or, by procedural
lifting, Unit) are implicitly coerced into a two-valued set of Booleans by
comparing them with true. This means that every truth value of type Logical
that is not true is collapsed to false. If this collapsing is not desired, one
needs to use the internal logic, see Chapters 3 and 4.
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An atomic formula is well-formed (with respect to the local environment and
variable declarations) if it is well-typed and expands to an atomic formula
for constructing sentences that is unique up to embedding-closure. Here, the
latter means replacing an operation symbol together with appropriate injec-
tion(s) by the corresponding operation symbol for the composition (which
exists by embedding-closure), or vice versa.

The notions of when an atomic formula is well-typed , or when a term is
well-typed for a particular type, and of the expansions of atomic formulas
and terms, are indicated below for the various constructs.

Due to overloading of predicate and/or operation symbols, a well-typed
atomic formula or term may have several expansions, preventing it from
being well-formed. Qualifications on operation and predicate symbols may
be used to determine the intended expansion and make it well-formed; ex-
plicit types on arguments and/or results may also help to avoid unintended
expansions.

Moreover, for non-coherent operation and predicate symbols, always the
maximal type is chosen.

ATOM ::= TRUTH | DEFINEDNESS

| EXISTL-EQUATION | STRONG-EQUATION

| MEMBERSHIP | PREDICATION

2.10.3.1 Truth

TRUTH ::= true-atom | false-atom

The atomic formulas true-atom and false-atom are written ‘true’, ‘false’
and expand to primitive sentences, such that the sentence for ‘true’ always
holds, and the sentence for ‘false’ never holds.

2.10.3.2 Definedness

DEFINEDNESS ::= definedness TERM

A definedness formula is written:

def T
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It expands to a definedness assertion on the fully-qualified expansion of the
term. The symbols def and ¬ are prefixes and therefore ‘¬ def T ’ may
be written without parentheses for a primitive T , although application by
juxtaposition associates to the left.

An alternative notation is ‘¬ (def T )’ and these placeholders must be
used if ¬ or def are not applied to an argument, which was not possible in
Casl, but is legal in HasCasl due to higher-orderness. (The same applies
to all infix connectives including ‘ when else ’.)

2.10.3.3 Equations

EXISTL-EQUATION ::= existl-equation TERM TERM

STRONG-EQUATION ::= strong-equation TERM TERM

An existential equation EXISTL-EQUATION is written:

T1
e= T2

A strong equation is written:

T1 = T2

An existential equation holds when the values of the terms are both defined
and equal; a strong equation holds also when the values of both terms are
undefined (thus the two forms of equation are equivalent when the values of
both terms are always defined).

An equation is well-typed if the types of both terms are unifiable. It then
expands to the corresponding existential or strong equation on the fully-
qualified expansions of the terms.

2.10.3.4 Membership

MEMBERSHIP ::= membership TERM TYPE

A membership formula is written:

T ∈ s

It is well-typed if the term T is well-typed for a supertype t of the specified
subtype s. It expands to an application of the pre-declared predicate symbol
for testing t values for membership in the embedding of s.
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2.11 Terms

Terms are built of variables, operation and predicate names (possibly quali-
fied), applications, tuples, conditional terms, λ-abstraction, let and case. A
term may also be annotated with a type or downcast to a subtype.

TERM ::= QUAL-VAR | INST-QUAL-NAME

| TERM-APPL | TUPLE-TERM

| TYPED-TERM

| CONDITIONAL

| TOTAL-LAMBDA | PARTIAL-LAMBDA

| LET-TERM | CASE-TERM

| CAST

2.11.1 Qualified Names

Atomic terms are qualified names, either bound variables or operations de-
clared in the local signature that need to be instantiated if they are poly-
moprhic. The concrete syntax does not require to explicitely qualify and
instantiate names; it is the task of the static analysis to recognize variables
and to infer the instance of polymorphic operations.

Qualified Variables

QUAL-VAR ::= qual-var VAR TYPE

A qualified variable QUAL-VAR is written:

(var v : t)

Instantiated Qualified Names

INST-QUAL-NAME ::= inst-qual-name OP-NAME TYPE* TYPESCHEME

An instantiated qualified operation is written:

(op o[t1 , . . . , tn ] : ∀a1 ; . . . ; an • t)

The types for instantiation must correspond in number and order to the
bound type variables of the type scheme. Note that the operation name
o may be a compound identifier containing identifiers in square brackets.
Proper resolution of compound lists and instance annotation is left to the
static analysis.

Without type variables the square brackets are omitted:

(op o : t)
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Instead of the keyword op also fun or pred may be used. For a qualified
predicate the given type is the type of the argument tuple.

2.11.2 Applications

Because of higher-orderness the application is generalized to a function term
applied to a single argument term. Classical first-order application is a
special case if the function term is a name and the argument is a tuple.

TERM-APPL ::= term-appl TERM TERM

TUPLE-TERM ::= tuple-term TERM*

An application is given by mere juxtaposition and treated like an invisible
and left-associative infix identifier ‘ ’ with highest precedence.

A tuple is written:

(T1 , . . . ,Tn)

The binding strength between the function name and the tuple argument
is weaker in HasCasl than in Casl. In Casl such an application binds
strongest, but in HasCasl it binds weaker than ordinary prefix application.

As in Casl the application of a mixfix identifier to its first tuple argument
may be written as mixfix application.

The empty tuple is an agrument of type Unit and a singleton tuple is simply
a term put in parentheses.

2.11.3 Typed Terms

TYPED-TERM ::= typed-term TERM TYPE

A typed term is written:

T : t

It is well-typed for some type if the component term T is well-typed for the
specified type t . It then expands to those of the fully-qualified expansions
of the component term that have the specified type.

2.11.4 Conditional Terms

CONDITIONAL ::= conditional TERM FORMULA TERM

A conditional term is written:
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T1 when F else T2

The types of T1 and T2 must be unifiable. The enclosing atomic formula
‘A[T1 when F else T2 ]’ expands to ‘(A[T1 ] if F ) ∧ (A[T2 ] if ¬F )’.

2.11.5 Lambda Terms

PARTIAL-LAMBDA ::= partial-lambda PATTERN* TERM

TOTAL-LAMBDA ::= total-lambda PATTERN* TERM

Lambda terms are written:

λ p1 . . . pn • T

or:

λ p1 . . . pn • ! T

The latter denotes a total function. Each constructor or tuple pattern pi

corresponds to a curried argument. A lambda term with the empty tuple
as single argument may also be written ‘λ . T ’.

When-else, logical connectives and quantifiers may not be used within λ-
terms, unless the internal logic (see Chapter 3) is used.

2.11.6 Let Terms

LET-TERM ::= let-term PATTERN-EQ+ TERM

PATTERN-EQ ::= pattern-eq PATTERN TERM

Let-terms are written:

let e1 ; . . . ; en in T

or equivalently:

T where e1 ; . . . ; en

The equations ei bind new variables and local polymorphic operations that
may be used in the term T . An equation is written pi = Ti . The pattern pi

is either a constructor or tuple pattern merely binding variables or the left
hand side of a local polymorphic operation.

2.11.7 Case Terms

CASE-TERM ::= case-term TERM CASE+
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CASE ::= case PATTERN TERM

Case terms are written:

case T of e1 | . . . | en

Each case is written pi → Ti . The type of all Ti must be unifiable and
will be the overall type of the case term. The type of T must be unifiable
with the types of the patterns pi . All the patterns are constructor or tuple
patterns or (typed) variables. The concrete syntax allows a placeholder ‘ ’
as wild card pattern that corresponds to an unused variable. Variables in
pi may occur in Ti (but not in another Tj ).

The concrete term ‘if C then T1 else T2 ’ is an alternative notation of a
CASE-TERM testing the patterns of a boolean free type for programs.

2.11.8 Casts

CAST ::= cast TERM TYPE

A cast term is written:

T as s

It is well-typed if the term T is well-typed for a supertype t of s. It expands
to an application of the pre-declared operation symbol for projecting t to s.

Term formation is also extended by letting a well-typed term of a subtype
s be regarded as a well-typed term of a supertype t as well, which provides
implicit embedding. It expands to the explicit application of the pre-declared
operation symbol for embedding s into t . (There are no implicit projections.)
Also a typed term T : t expands to an explicit application of an embedding,
provided that the apparent type s of the component term T is a subtype of
the specified type t .

2.11.9 Patterns

Patterns are special terms for left hand sides that introduce variable bind-
ings. Usually all variables of one pattern must be distinct. Like terms,
patterns are subject to mixfix resolution. Only as-patterns have no coun-
terpart as terms.
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As-Patterns

AS-PATTERN ::= as-pattern VAR PATTERN

An as-pattern is written v@p. It merely introduces a further variable v
that abbreviates the pattern term p. The type of the variable is that of the
pattern.

2.12 Identifiers

Identifiers in HasCasl are those of Casl without the additional keywords.
In contrast to Casl, variables and types may be mixfix identifiers. Only
type variables are restricted to be simple words. Classes also only have
simple names but may be compound identifiers (like sorts in Casl).

‘Invisible’ identifiers, consisting entirely of two or more place-holders (sepa-
rated by spaces), are no longer allowed.

An identifier ID may be used simultaneously to identify different kinds of
entities (classes, types, and functions) in the same local environment.



Chapter 3

The Internal Logic —
Concepts

The basic logic of HasCasl as laid out in Chapter 1 does not admit the use
of equality or logical operators within λ-terms (although one can emulate
conjunction, the constant true proposition, and universal quantification, the
latter via the elementhood predicate for total function types as subtypes of
partial function types). However, equality can be sneaked back in by means
of an internal equality . Let Pred a abbreviate the type a →?Unit, and
call the inhabitants of (Pred a) predicates. A predicate

eq : ∀a • Pred (a× a)

in a partial λ-theory (with products) is called an internal equality (see
also [Mog86]) if eq(x, y) is equivalent to x

e= y in the deduction system
of Figure 1.2 (due to intensionality, this is a stronger property than equiva-
lence of the two formulas for each pair (x, y) of elements of a in a model).

In fact, internal equality can be specified in HasCasl. The introduction of
internal equality is highly non-conservative, since it makes the logic avail-
able within λ-abstracted predicates substantially richer: one can define all
quantifiers and logical operators of intuitionistic higher order logic similarly
as in [LS86]. The specification of internal equality and the new connec-
tives is given in Figure 3.1. The specification uses the type of truth values
Logical = Pred Unit. Moreover, it liberally applies the support for non-strict
functions to pass back and forth between predicate applications, i.e. partial
terms of type Unit, and terms of type Logical.

In order to improve readability, the equality symbol e= can, after all, be used
within λ-terms, but is, then, implicitly replaced by eq. It may come as a
surprise that the last formula shown in Figure 3.1 as a consequence of the
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spec InternalLogic =
forall a : Type
funs tt : Logical = λ x : Unit • ()

all : Pred(Pred a) = λ p : Pred a • p ∈ (a → Unit)
& : Pred(Logical × Logical) = λ x , y : Logical • def (x (), y())

then
fun eq : Pred(a × a)
• all(λ x : a • eq(x , x ))
• λ x , y : a • fst(x , eq(x , y)) = λ x , y : a • fst(y , eq(x , y))
then %def

funs impl , or : Pred(Logical × Logical)
ff : Logical
neg : Pred Logical
ex : Pred(Pred a)

• impl = λ x , y : Logical • eq [Logical ](x , x & y)
• or = λ x , y : Logical • all(λ r : Logical •

((x impl r) & (y impl r)) impl r)
• ff = λ y : Unit • all(λ x : Logical • x )
• neg = λ x : Logical • x impl ff
• ex [a] = λ p : Pred a • all(λ r : Logical •

all(λ x : a • p(x ) impl r)) impl r
then %implies

forall a, b : Type
• all(λ f , g : a →? b • all(λ x : a • eq [?b](f (x ), g(x ))) impl eq(f , g))

Figure 3.1: Specification of the internal logic

definitions expresses a form of extensionality; however, it is well-known that
all categorical models are ‘internally extensional’ [MS89].

The internal logic is intuitionistic: there may be more than two truth values,
and neg(neg A) is in general different from A. The obvious deduction rules
can be proved as lemmas; e.g., it is not hard to show that the rule

φ impl ψ; φ

ψ

is derivable from the rules in Figure 1.2 and the definitions in Figure 3.1.
The external logic, i.e. the logic introduced in Sections 1.4 and 1.5, remains
classical: as soon as a predicate appears as an atomic formula, all internal
truth values except tt are collapsed into the external false.

The internal logic is used in specifications by implicitly importing its speci-
fication; this import is invoked by suitable built-in syntactic mechanisms.



Chapter 4

The Internal Logic —
Constructs

This chapter treats a single construct used to invoke the internal logic de-
scribed in the previous chapter.

BASIC-ITEMS ::= ... | INTERNAL-ITEMS

INTERNAL-ITEMS ::= internal BASIC-ITEMS+

An internal logic block is written

internal {BI1 . . . BIn };

The enclosed specification has the same semantics as before, except that
all formulas it contains, including implicit ones (such as the implicit axioms
arising from subtype definitions or datatype declarations) are converted into
formulas of the internal logic, the specification of which is automatically
imported. In particular, enclosing universal quantifications ∀x • φ implicit
in the use of global or local variables are converted to internal universal
quantifications all(λx • φ). Existential equality is converted to internal
equality, while strong equality is coded via existential equality, definedness
assertions, and implication.

Within the scope of an internal logic block, formulas can be used arbitrar-
ily in terms; in particular, formulas can be λ-abstracted. Of course, such
formulas within terms are also implicitly converted into internal formulas,
which are really terms anyway.
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Chapter 5

Recursive Functions —
Concepts

In order to give a unique meaning to general recursive definitions and to
ensure at the same time that the latter are actually definitions in the sense
that they constitute definitional extensions, HasCasl offers the option of
imposing a cpo structure on the relevant types. Just as in the case of the
internal logic, the cpo structure is introduced by means of suitable specifi-
cations, building on the specification of internal logic (cf. Chapter 3) and
making heavy use of the class mechanism. The overall concept is closely
related to that of HOLCF [Reg95].

The specification of the cpo structure and the fixed point operator is given
in Figure 5.1. Nat is a specification of the natural numbers with a sort Nat
and operations 0 : Nat and suc : Nat→ Nat, including the usual induction
axiom and a primitive recursion operator (which does not, of course, make
use of the cpo structure). We introduce type classes Cpo and Cppo of cpos
and cpos with bottom, respectively, with generic instantiations that extend
the ordering to products and partial and total continuous function types; the
subclass FlatCpo restricts the order to be equality. The continuous func-
tion types are subtypes of the built-in function types; partial continuous
functions are required to have Scott open domains. Elements of function
types are compared pointwise, and elements of product types are compared
componentwise. For continuous functions, we can introduce a least fixed
point operator Y as a definitional extension (since Y is expressible as the
supremum of a chain which can be defined by primitive recursion); a recur-
sive definition such as f x = α is then interpretable as f = Y (λ f • !λx • α)
(more precisely, with λx • α and λ f • !λx • α downcast to the appropriate
continuous function types).

A further instance of the class Cpo are free datatypes with constructor
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spec Recursion = internal {Nat then
class Cpo { var a : Cpo
fun ≤ : pred(a × a)
forall x , y , z : a
• x ≤ x
• (x ≤ y ∧ y ≤ z ) ⇒ x ≤ z
• (x ≤ y ∧ y ≤ x ) ⇒ x = y
type Chain a = {s : Nat → a • ∀n : Nat • s(n) ≤ s(suc(n))}
fun sup : Chain a → a
forall x : a; c : Chain a • sup(c) ≤ x ⇔ ∀n : Nat • c(n) ≤ x
}
class Cppo < Cpo { var a : Cppo
fun bottom : a
forall x : a • bottom ≤ x
}
class instance FlatCpo < Cpo

{forall a : FlatCpo • ≤ [a] = eq [a]}
vars a, b : Cpo; c : Cppo; x , y : a; z ,w : b
type instance × : Cpo → Cpo → Cpo
• (x , y) ≤ (z ,w) ⇔ x ≤ z ∧ y ≤ w
type instance × : Cppo → Cppo → Cppo
type instance Unit : Cppo,FlatCpo
• () ≤ ()
type a c−→? b = {f : a →? b •

∀x , y : a • (def f (x ) ∧ x ≤ y ⇒ def f (y)) ∧
∀c : Chain a • def f (sup(c)) ⇒ ∃m : Nat •

def f (c(m)) ∧
sup((λn : Nat •! f (c(n + m))) as Chain a) e= f (sup(c))}

type a c−→ b = {f : a c−→? b • f ∈ a → b}
type instance c−→? : Cpo → Cpo → Cppo
forall f , g : a c−→? b • f ≤ g ⇔ ∀x : a • def f (x ) ⇒ f (x ) ≤ g(x )
type instance c−→ : Cpo → Cpo → Cpo
type instance c−→ : Cpo → Cppo → Cppo
then %def

fun Y : (c c−→ c) c−→ c
forall f : c c−→ c; x : c
• f (Y (f )) = Y (f )
• f (x ) = x ⇒ Y (f ) ≤ x

}

Figure 5.1: Specification of the cpo structure and the fixed point operator
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arguments of class Cpo; such instances can be automatically generated: ap-
plications of different constructors are incomparable, while applications of
the same constructor are compared argument-wise. There is no circularity
here: the definition of the ordering is recursive, but does not use the fixed
point operator. Rather, it imposes a particular equation on the ordering,
and this equation determines the ordering uniquely thanks to the induction
axioms for generated datatypes (Section 2.7). It is easy to see that the
case operation, restricted to continuous arguments, is continuous w.r.t. this
ordering, and hence can be used in definitions of recursive functions.

Actual recursive definitions will be expressions which involve Y and a partial
downcast to the total continuous function type. As long as operators are
given the right types, such expressions actually denote functions: call a term
α in context (x̄ : s̄) that has a type of class Cpo continuous if λ x̄ : s̄ • α is
continuous. Moreover, call a type a cpo-type if it is built from loose types
and type variables of class Cpo by means of the instance declarations for
type constructors given in Figure 5.1 (in particular, cpo-types are of class
Cpo). Then we have

Proposition 7 If, for Γ � α : t, all operator constants (besides application)
that occur in α, as well as the variables in Γ, have cpo-types, and t is a cpo-
type, then α is continuous.

As a consequence, functions of the form, say, λ f • !λx • α with α as in the
proposition are continuous total functions and hence possess a least fixed
point, so that the recursive definition f x = α is a definitional extension.
Note that the fixed point operator itself is of a cpo-type, provided that its
parameter a is instantiated with a cpo-type.



Chapter 6

Recursive Functions —
Constructs

This chapter treats the syntax of general recursive function definitions, i.e.
in a sense functional programs.

BASIC-ITEMS ::= ... | PROG-ITEMS

PROG-ITEMS ::= prog-items PATTERN-EQ+

A program block is written as a sequence of pattern equations in the form

program {PE1 . . . PEn };

The enclosed pattern equations are implicitly replaced by recursive function
definitions using the least fixed point operator as indicated in Chapter 5. It
is statically checked that all involved types are cpo-types; the specification
is ill-formed if this check fails. All occurring λ-abstractions, implicit or ex-
plicit, are equipped with a downcast to the appropriate continuous function
type (so that the user does not have to write these casts explicitly). By
consequence, recursively defined functions are undefined if one of the func-
tions involved in their definition fails to be continuous (a sufficient criterion
for continuity can be statically checked; cf. Chapter 5). Recursive functions
on free datatypes can be defined by giving a recursive equation for each
constructor. This is coded by means of the case operator; an attempt to
use this mechanism for non-free datatypes (which do not have case opera-
tors) makes the specification ill-formed. On missing constructor patterns,
functions are implicitly undefined; in this case, a warning (‘non-exhaustive
match’) is produced. Of course, the case operator may also be used explicity
if desired.
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Derived type classes The syntax for derived type classes for free
datatypes introduced in Section 2.7:

t a1 . . . am ::= A1 | . . . | An deriving c1 , . . . , cl

may be used for the type classes Ord, Cpo and Cppo. An axiomatization of
appropriate type instances is generated, corresponding to the usual cpos
on datatypes.
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Appendix A

Abstract Syntax

The abstract syntax is central to the definition of a formal language. It
stands between the concrete representations of documents, such as marks
on paper or images on screens, and the abstract entities, semantic relations,
and semantic functions used for defining their meaning.

The abstract syntax has the following objectives:

• to identify and separately name the abstract syntactic entities;

• to simplify and unify underlying concepts, putting like things with
like, and reducing unnecessary duplication.

There are many possible ways of constructing an abstract syntax, and the
choice of form is a matter of judgement, taking into account the somewhat
conflicting aims of simplicity and economy of semantic definition.

The abstract syntax is presented as a set of production rules in which each
sort of entity is defined in terms of its subsorts:

SOME-SORT ::= SUBSORT-1 | ... | SUBSORT-n

or in terms of its constructor and components:

SOME-CONSTRUCT ::= some-construct COMPONENT-1 ... COMPONENT-n

The productions form a context-free grammar; algebraically, the nontermi-
nal symbols of the grammar correspond to sorts (of trees), and the terminal
symbols correspond to constructor operations. The notation COMPONENT* in-
dicates repetition of COMPONENT any number of times; COMPONENT+ indicates
repetition at least once. (These repetitions could be replaced by auxiliary
sorts and constructs, after which it would be straightforward to transform
the grammar into a Casl FREE-DATATYPE specification.)

A–1



A.1. BASIC SPECIFICATIONS A–2

The context conditions for well-formedness of specifications are not deter-
mined by the grammar (these are considered as part of semantics).

The grammar here has the property that there is a sort for each construct
(although an exception is made for constant constructs with no components).
Appendix B provides an abbreviated grammar defining the same abstract
syntax. It was obtained by eliminating each sort that corresponds to a single
construct, when this sort occurs only once as a subsort of another sort.

The following nonterminal symbols correspond to the Casl syntax, and are
left unspecified here: ID, SIMPLE-ID, PLACE and LITERAL.

A.1 Basic Specifications

BASIC-SPEC ::= basic-spec BASIC-ITEMS*

BASIC-ITEMS ::= CLASS-ITEMS | SIG-ITEMS

| GENERATED-ITEMS | FREE-DATATYPES

| GENERIC-VARS | LOCAL-VAR-AXIOMS | AXIOM-ITEMS

CLASS-ITEMS ::= SIMPLE-CLASS-ITEMS | INSTANCE-CLASS-ITEMS

SIMPLE-CLASS-ITEMS ::= class-items CLASS-ITEM+

INSTANCE-CLASS-ITEMS ::= instance-class-items CLASS-ITEM+

CLASS-ITEM ::= class-item CLASS-DECL BASIC-ITEMS*

CLASS-DECL ::= SIMPLE-CLASS-DECL | SUBCLASS-DECL

SIMPLE-CLASS-DECL::= class-decl CLASS-NAME+

SUBCLASS-DECL ::= subclass-decl CLASS-NAME+ KIND

KIND ::= TYPE-UNIVERSE | CLASS-KIND | INTERSECTION-KIND

| DOWNSET-KIND | FUN-KIND

TYPE-UNIVERSE ::= type-universe

CLASS-KIND ::= class-name CLASS-NAME

INTERSECTION-KIND::= intersection KIND+

DOWNSET-KIND ::= downset TYPE

FUN-KIND ::= fun-kind EXT-KIND KIND

EXT-KIND ::= ext-kind KIND VARIANCE

VARIANCE ::= covariant | contravariant | invariant

SIG-ITEMS ::= TYPE-ITEMS | OP-ITEMS | FUN-ITEMS | PRED-ITEMS

TYPE-ITEMS ::= SIMPLE-TYPE-ITEMS | INSTANCE-TYPE-ITEMS

SIMPLE-TYPE-ITEMS ::= type-items TYPE-ITEM+

INSTANCE-TYPE-ITEMS ::= instance-type-items TYPE-ITEM+

TYPE-ITEM ::= TYPE-DECL | SYNONYM-TYPE | DATATYPE-DECL

| SUBTYPE-DECL | ISO-DECL | SUBTYPE-DEFN

TYPE-DECL ::= type-decl TYPE-NAME+ KIND

SYNONYM-TYPE ::= synonym-type TYPE-NAME TYPE-ARG* TYPE

SUBTYPE-DECL ::= subtype-decl TYPE-NAME+ TYPE
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ISO-DECL ::= iso-decl TYPENAME+

SUBTYPE-DEFN ::= subtype-defn TYPE-NAME TYPE-ARG* VAR TYPE FORMULA

TYPE-ARG ::= type-arg TYPEVAR EXT-KIND

OP-ITEMS ::= op-items OP-ITEM+

FUN-ITEMS ::= fun-items OP-ITEM+

OP-ITEM ::= OP-DECL | OP-DEFN

OP-DECL ::= op-decl OP-NAME+ TYPESCHEME OP-ATTR*

TYPESCHEME ::= typescheme TYPE-ARG* TYPE

OP-ATTR ::= BINARY-OP-ATTR | UNIT-OP-ATTR

BINARY-OP-ATTR ::= assoc-op-attr | comm-op-attr | idem-op-attr

UNIT-OP-ATTR ::= unit-op-attr TERM

OP-DEFN ::= op-defn OP-NAME TYPE-ARG* OP-HEAD TERM

OP-HEAD ::= TOTAL-OP-HEAD | PARTIAL-OP-HEAD

TOTAL-OP-HEAD ::= total-op-head TUPLE-ARG* TYPE

PARTIAL-OP-HEAD ::= partial-op-head TUPLE-ARG* TYPE

TUPLE-ARG ::= tuple-arg VAR-DECL*

VAR-DECL ::= var-decl VAR TYPE

PRED-ITEMS ::= pred-items PRED-ITEM+

PRED-ITEM ::= PRED-DECL | PRED-DEFN

PRED-DECL ::= pred-decl OP-NAME+ TYPESCHEME

PRED-DEFN ::= pred-defn OP-NAME TYPE-ARG* TUPLE-ARG FORMULA

GENERATED-ITEMS ::= generated SIG-ITEMS+

FREE-DATATYPE ::= free-datatype DATATYPE-DECL+

GENERIC-VARS ::= var-items GEN-VAR-DECL+

LOCAL-VAR-AXIOMS ::= local-var-axioms GEN-VAR-DECL+ FORMULA+

AXIOM-ITEMS ::= axiom-items FORMULA+

GEN-VAR-DECL ::= VAR-DECL | TYPE-ARG

DATATYPE-DECL ::= datatype-decl TYPE-NAME TYPE-ARG* ALTERNATIVE+

CLASS-NAME*

ALTERNATIVE ::= TOTAL-CONSTRUCT | PARTIAL-CONSTRUCT | SUBTYPES

TOTAL-CONSTRUCT ::= total-construct OP-NAME TUPLE-COMPONENT*

PARTIAL-CONSTRUCT::= partial-construct OP-NAME TUPLE-COMPONENT+

TUPLE-COMPONENT ::= tuple-component COMPONENTS+

COMPONENTS ::= TOTAL-SELECT | PARTIAL-SELECT | TYPE

TOTAL-SELECT ::= total-select OP-NAME+ TYPE

PARTIAL-SELECT ::= partial-select OP-NAME+ TYPE

SUBTYPES ::= subtypes TYPE+

TYPE ::= TYPE-NAME | TYPE-APPL

| PRODUCT-TYPE | LAZY-TYPE | KINDED-TYPE | FUN-TYPE

TYPE-APPL ::= type-appl TYPE TYPE

PRODUCT-TYPE ::= product-type TYPE+

LAZY-TYPE ::= lazy-type TYPE

KINDED-TYPE ::= kinded-type TYPE KIND
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FUN-TYPE ::= fun-type TYPE ARROW TYPE

ARROW ::= partial-fun | total-fun

| cont-partial-fun | cont-total-fun

FORMULA ::= QUANTIFICATION | CONJUNCTION | DISJUNCTION

| IMPLICATION | EQUIVALENCE

| NEGATION | ATOM

QUANTIFICATION ::= quantification QUANTIFIER GEN-VAR-DECL+ FORMULA

QUANTIFIER ::= universal | existential | unique-existential

CONJUNCTION ::= conjunction FORMULA+

DISJUNCTION ::= disjunction FORMULA+

IMPLICATION ::= implication FORMULA FORMULA

EQUIVALENCE ::= equivalence FORMULA FORMULA

NEGATION ::= negation FORMULA

ATOM ::= TRUTH | DEFINEDNESS

| EXISTL-EQUATION | STRONG-EQUATION

| MEMBERSHIP | PREDICATION

TRUTH ::= true-atom | false-atom

DEFINEDNESS ::= definedness TERM

EXISTL-EQUATION ::= existl-equation TERM TERM

STRONG-EQUATION ::= strong-equation TERM TERM

MEMBERSHIP ::= membership TERM TYPE

PREDICATION ::= predication TERM

TERM ::= QUAL-VAR | INST-QUAL-NAME

| TERM-APPL | TUPLE-TERM

| TYPED-TERM

| CONDITIONAL

| TOTAL-LAMBDA | PARTIAL-LAMBDA

| LET-TERM | CASE-TERM

| CAST

QUAL-VAR ::= qual-var VAR TYPE

INST-QUAL-NAME ::= inst-qual-name OP-NAME TYPE* TYPESCHEME

TERM-APPL ::= term-appl TERM TERM

TUPLE-TERM ::= tuple-term TERM*

TYPED-TERM ::= typed-term TERM TYPE

CONDITIONAL ::= conditional TERM TERM TERM

PARTIAL-LAMBDA ::= partial-lambda PATTERN* TERM

TOTAL-LAMBDA ::= total-lambda PATTERN* TERM

LET-TERM ::= let-term PATTERN-EQ+ TERM

CASE-TERM ::= case-term TERM CASE+

CAST ::= cast TERM TYPE

PATTERN ::= QUAL-VAR | INST-QUAL-NAME | PATTERN-APPL

| TUPLE-PATTERN | TYPED-PATTERN | AS-PATTERN

PATTERN-APPL ::= pattern-appl PATTERN PATTERN

TUPLE-PATTERN ::= tuple-pattern PATTERN*

TYPED-PATTERN ::= typed-pattern PATTERN TYPE

AS-PATTERN ::= as-pattern VAR PATTERN

PATTERN-EQ ::= pattern-eq PATTERN TERM

CASE ::= case PATTERN TERM
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CLASS-NAME ::= ID

TYPE-NAME ::= ID

OP-NAME ::= ID

VAR ::= ID

TYPEVAR ::= SIMPLE-ID

A.2 Basic Specifications with Internal Logic

BASIC-ITEMS ::= ... | INTERNAL-ITEMS

INTERNAL-ITEMS ::= internal BASIC-ITEMS+

A.3 Basic Specifications with Recursive Programs

BASIC-ITEMS ::= ... | PROG-ITEMS

PROG-ITEMS ::= prog-items PATTERN-EQ+
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Abbreviated Abstract Syntax

BASIC-SPEC ::= basic-spec BASIC-ITEMS*

BASIC-ITEMS ::= class-items CLASS-ITEM+

| instance-class-items CLASS-ITEM+

| SIG-ITEMS

| generated SIG-ITEMS+

| internal BASIC-ITEMS+

| free-datatype DATATYPE-DECL+

| var-items GEN-VAR-DECL+

| local-var-axioms GEN-VAR-DECL+ FORMULA+

| axiom-items FORMULA+

| internal-items BASIC-ITEMS+

| prog-items PATTERN-EQ+

CLASS-ITEM ::= class-item CLASS-DECL BASIC-ITEMS*

CLASS-DECL ::= class-decl CLASS-NAME+

| subclass-decl CLASS-NAME+ KIND

KIND ::= type-universe

| class-name CLASS-NAME

| intersection KIND+

| downset TYPE

| fun-kind EXT-KIND KIND

EXT-KIND ::= ext-kind KIND VARIANCE

VARIANCE ::= covariant | contravariant | invariant

SIG-ITEMS ::= type-items TYPE-ITEM+

| instance-type-items TYPE-ITEM+

| op-items OP-ITEM+

| fun-items OP-ITEM+

| pred-items PRED-ITEM+

TYPE-ITEM ::= type-decl TYPE-NAME+ KIND

B–1
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| synonym-type TYPE-NAME TYPE-ARG* TYPE

| DATATYPE-DECL

| subtype-decl TYPE-NAME+ TYPE

| iso-decl TYPENAME+

| subtype-defn TYPE-NAME TYPE-ARG* VAR TYPE FORMULA

TYPE-ARG ::= type-arg TYPEVAR EXT-KIND

OP-ITEM ::= op-decl OP-NAME+ TYPESCHEME OP-ATTR*

| op-defn OP-NAME TYPE-ARG* OP-HEAD TERM

TYPESCHEME ::= typescheme TYPE-ARG* TYPE

OP-ATTR ::= assoc-op-attr | comm-op-attr | idem-op-attr

| unit-op-attr TERM

OP-HEAD ::= total-op-head TUPLE-ARG* TYPE

| partial-op-head TUPLE-ARG* TYPE

TUPLE-ARG ::= tuple-arg VAR-DECL*

VAR-DECL ::= var-decl VAR TYPE

PRED-ITEM ::= pred-decl OP-NAME+ TYPESCHEME

| pred-defn OP-NAME TYPE-ARG* TUPLE-ARG FORMULA

GEN-VAR-DECL ::= VAR-DECL | TYPE-ARG

DATATYPE-DECL ::= datatype-decl TYPE-NAME TYPE-ARG* ALTERNATIVE+

CLASS-NAME*

ALTERNATIVE ::= total-construct OP-NAME TUPLE-COMPONENT*

| partial-construct OP-NAME TUPLE-COMPONENT+

| subtypes TYPE+

TUPLE-COMPONENT ::= tuple-component COMPONENTS+

COMPONENTS ::= total-select OP-NAME+ TYPE

| partial-select OP-NAME+ TYPE

| TYPE

TYPE ::= TYPE-NAME

| type-appl TYPE TYPE

| product-type TYPE+

| lazy-type TYPE

| kinded-type TYPE KIND

| fun-type TYPE ARROW TYPE

ARROW ::= partial-fun | total-fun

| cont-partial-fun | cont-total-fun

QUANTIFIER ::= universal | existential | unique-existential

FORMULA ::= quantification QUANTIFIER GEN-VAR-DECL+ FORMULA

| conjunction FORMULA+

| disjunction FORMULA+

| implication FORMULA FORMULA

| equivalence FORMULA FORMULA
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| negation FORMULA

| true-atom | false-atom

| definedness TERM

| existl-equation TERM TERM

| strong-equation TERM TERM

| membership TERM TYPE

| predication TERM

TERM ::= QUAL-VAR

| INST-QUAL-NAME

| term-appl TERM TERM

| tuple-term TERM*

| typed-term TERM TYPE

| conditional TERM FORMULA TERM

| partial-lambda PATTERN* TERM

| total-lambda PATTERN* TERM

| let-term TERM PATTERN-EQ+

| case-term TERM CASE+

| cast TERM TYPE

INST-QUAL-NAME ::= inst-qual-name OP-NAME TYPE* TYPESCHEME

QUAL-VAR ::= qual-var VAR TYPE

PATTERN ::= QUAL-VAR | INST-QUAL-NAME

| pattern-appl PATTERN PATTERN

| tuple-pattern PATTERN*

| typed-pattern PATTERN TYPE

| as-pattern VAR PATTERN

PATTERN-EQ ::= pattern-eq PATTERN TERM

CASE ::= case PATTERN TERM

CLASS-NAME ::= ID

TYPE-NAME ::= ID

OP-NAME ::= ID

VAR ::= ID

TYPEVAR ::= SIMPLE-ID
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Concrete Syntax

The relationship between the concrete syntax and the corresponding ab-
stract syntax is rather straightforward—except that mapping the use of mix-
fix notation in a concrete TERM or PATTERN to an abstract TERM or PATTERN
depends on the static analysis. The Mixfix resolution does not depend on
the types of operations, but the type of names determines their qualifica-
tion. Here, the relationship is merely suggested by the use of the same
nonterminal symbols in the concrete and abstract grammars plus the non-
terminal MIXFIX in the concrete grammar. The non-terminal MIXFIX also
covers list notations, compound list of identifiers and type instance lists for
polymorphic operations.

Further examples of specifications illustrating the concrete syntax are
given in [MMS03, HM03]. A parser for HasCasl is available via the
http://www.tzi.de/cofi web page.

Section C.1 below provides a context-free grammar for the HasCasl input
syntax. It has been derived from the ‘abbreviated’ abstract syntax grammar
in Appendix B, except for the productions for mixfix terms and patterns
as well as for the abbreviated declaration of equally typed variables (or
equally kinded type variables) using commas. The context-free grammar is
ambiguous; Section C.2 explains various precedence rules for disambiguation
and minor differences to Casl.

The lexical syntax, comments and annotations, the literal syntax, and the
display format is identical that of Casl.

C–1
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C.1 Context-Free Syntax

The grammar in this section uses uppercase words for nonterminal symbols,
allowing also hyphens. All other characters stand for themselves, with the
following exceptions:

• ‘::=’ and ‘|’ are generally used as meta-notation, as in BNF;

• A string of characters enclosed in double quotation marks ‘"..."’ al-
ways stands for the enclosed characters themselves;

• ‘N t...t N ’ indicates one or more repetitions of the nonterminal
symbol N separated by the terminal symbol t (which is usually a
comma or semicolon);

• ‘N ...N ’ is simply one or more repetitions of N

• ‘var/vars’ indicates that the singular and plural forms may be used
interchangeably, and similarly for other keywords; ‘;/’ indicates that
the use of ‘;’ is optional.

Context-free parsing of HasCasl specifications according to the grammar
in this section yields a parse tree where terms and patterns occurring in
axioms and definitions have been grouped with respect to explicit paren-
theses and brackets, but where the intended applicative structure has not
yet been recognized. A further phase of mixfix grouping analysis is needed,
dependent on the identifiers declared in the specification and on parsing
annotations. Type inference is required to uniquely qualify variables and
operations, before the parse tree can be mapped to a complete abstract
syntax tree.
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C.1.1 Basic Specifications

BASIC-SPEC ::= BASIC-ITEMS...BASIC-ITEMS | { }

BASIC-ITEMS ::= class/classes CLASS-ITEM ;...; CLASS-ITEM ;/

| class instance/instances

CLASS-ITEM ;...; CLASS-ITEM ;/

| SIG-ITEMS

| free type/types

DATATYPE-DECL ;...; DATATYPE-DECL ;/

| generated type/types

DATATYPE-DECL ;...; DATATYPE-DECL ;/

| generated { SIG-ITEMS...SIG-ITEMS } ;/

| internal { BASIC-ITEMS...BASIC-ITEMS } ;/

| var/vars GEN-VAR-DECL ;...; GEN-VAR-DECL ;/

| forall GEN-VAR-DECL ;...; GEN-VAR-DECL

"." FORMULA "."..."." FORMULA ;/

| "." FORMULA "."..."." FORMULA ;/

| program/programs PATTERN-EQ ;...; PATTERN-EQ ;/

CLASS-ITEM ::= CLASS-DECL

| CLASS-DECL { BASIC-ITEMS...BASIC-ITEMS }

CLASS-DECL ::= CLASS-NAME ,..., CLASS-NAME

| CLASS-NAME ,..., CLASS-NAME : KIND

| CLASS-NAME ,..., CLASS-NAME < KIND

KIND ::= Type

| CLASS-NAME

| ( KIND ,..., KIND )

| { VAR "." VAR < TYPE }
| EXT-KIND -> KIND

EXT-KIND ::= KIND | KIND + | KIND -

SIG-ITEMS ::= sort/sorts SORT-ITEM ;...; SORT-ITEM

| type/types DATATYPE-DECL ;...; DATATYPE-DECL ;/

| type/types TYPE-ITEM ;...; TYPE-ITEM ;/

| type/types instance/instances

TYPE-ITEM ;...; TYPE-ITEM ;/

| op/ops OP-ITEM ;...; OP-ITEM ;/

| fun/funs OP-ITEM ;...; OP-ITEM ;/

| pred/preds PRED-ITEM ;...; PRED-ITEM ;/

SORT-ITEM ::= TYPE-PATTERN ,..., TYPE-PATTERN

| TYPE-PATTERN ,..., TYPE-PATTERN : KIND

| TYPE-PATTERN ,..., TYPE-PATTERN < TYPE

| TYPE-PATTERN =...= TYPE-PATTERN

| TYPE-PATTERN = { VAR : TYPE "." FORMULA }

TYPE-ITEM ::= SORT-ITEM

| TYPE-PATTERN := SYNONYM-TYPE

SYNONYM-TYPE ::= TYPE
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| \ TYPE-ARGS "." TYPE

TYPE-PATTERN ::= TYPE-NAME

| TYPE-NAME TYPE-ARGS

TYPE-ARGS ::= TYPE-ARG...TYPE-ARG

TYPE-ARG ::= EXT-TYPE-VAR

| EXT-TYPE-VAR : EXT-KIND

| EXT-TYPE-VAR < TYPE

| ( TYPE-ARG )

EXT-TYPE-VAR ::= TYPE-VAR | TYPE-VAR + | TYPE-VAR -

DATATYPE-DECL ::= TYPE-PATTERN "::=" ALTERNATIVES

| TYPE-PATTERN "::=" ALTERNATIVES deriving CLASSES

CLASSES ::= CLASS-NAME ,..., CLASS-NAME

ALTERNATIVES ::= ALTERNATIVE "|"..."|" ALTERNATIVE

ALTERNATIVE ::= OP-NAME TUPLE-COMPONENT...TUPLE-COMPONENT

| OP-NAME TUPLE-COMPONENT...TUPLE-COMPONENT ?

| OP-NAME

| sort/sorts TYPE-NAME ,..., TYPE-NAME

| type/types TYPE ,..., TYPE

TUPLE-COMPONENT ::= ( COMPONENT ;...; COMPONENT )

COMPONENT ::= OP-NAME ,..., OP-NAME : TYPE

| OP-NAME ,..., OP-NAME :? TYPE

| TYPE

OP-ITEM ::= OP-NAME ,..., OP-NAME : TYPESCHEME

| OP-NAME ,..., OP-NAME : TYPESCHEME, OP-ATTRS

| OP-NAME : TYPESCHEME = TERM

| OP-NAME [ TYPE-VAR-DECLS ] OP-HEAD = TERM

| OP-NAME OP-HEAD = TERM

OP-HEAD ::= TUPLE-ARGS : TYPE

| TUPLE-ARGS :? TYPE

| :? TYPE

TUPLE-ARGS ::= TUPLE-ARG...TUPLE-ARG

TUPLE-ARG ::= ( VAR-DECL ;...; VAR-DECL )

VAR_DECL ::= VAR ,..., VAR : TYPE

OP-ATTRS ::= OP-ATTR ,..., OP-ATTR

OP-ATTR ::= BIN-ATTR | unit TERM

BIN-ATTR ::= assoc | comm | idem

PRED-ITEM ::= OP-NAME, ..., OP-NAME: TYPESCHEME

| OP-NAME [ TYPE-VAR-DECLS ] TUPLE-ARG <=> FORMULA

| OP-NAME TUPLE-ARG <=> FORMULA

| OP-NAME <=> FORMULA
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TYPESCHEME ::= TYPE

| forall TYPE-VAR-DECLS . TYPE

TYPE-VAR-DECLS ::= TYPE-VARS ;...; TYPE-VARS

TYPE-VARS ::= EXT-TYPE-VAR ,..., EXT-TYPE-VAR

| EXT-TYPE-VAR ,..., EXT-TYPE-VAR : EXT-KIND

| EXT-TYPE-VAR ,..., EXT-TYPE-VAR < TYPE

GEN-VAR-DECL ::= TYPE-VARS

| VAR-DECL

TYPE ::= TYPE ARROW TYPE

| TYPE *...* TYPE

| ( TYPE )

| Pred Type

| ? TYPE

| Unit

| Logical

| TYPE : KIND

| TYPE TYPE

ARROW ::= ->? | -> | -->? | -->

FORMULA ::= QUANTIFIER GEN-VAR-DECL ;...; GEN-VAR-DECL

"." FORMULA

| FORMULA /\.../\ FORMULA

| FORMULA \/...\/ FORMULA

| FORMULA => FORMULA

| FORMULA if FORMULA

| FORMULA <=> FORMULA

| not FORMULA

| true | false

| def TERM

| TERM in TYPE

| TERM = TERM

| TERM =e= TERM

| TERM

TERM ::= QUAL-VAR

| INST-QUAL-NAME

| TERM TERM

| (TERM ,..., TERM) | ( )

| TERM : TYPE

| TERM when FORMULA else TERM

| \ LAMBDA-DOT TERM

| \ PATTERN...PATTERN LAMBDA-DOT TERM

| let PATTERN-EQ ;...; PATTERN-EQ in TERM

| TERM where PATTERN-EQ ;...; PATTERN-EQ ;/

| case TERM of CASE "|"..."|" CASE

| if TERM then TERM else TERM

| TERM as TYPE

| LITERAL

| MIXFIX
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LAMBDA-DOT ::= "." | .!

QUANTIFIER ::= forall | exists | exists!

PATTERN-EQ ::= PATTERN = TERM

CASE ::= PATTERN -> TERM

PATTERN ::= QUAL-VAR

| INST-QUAL-NAME

| PATTERN PATTERN

| (PATTERN ,..., PATTERN) | ()

| PATTERN : TYPE

| VAR @ PATTERN

| MIXFIX

MIXFIX ::= PLACE

| NO-BRACKET-TOKEN

| [ MIXFIX ,..., MIXFIX ] | [ ]

| { MIXFIX ,..., MIXFIX } | { }
| ( MIXFIX ,..., MIXFIX ) | ( )

| MIXFIX...MIXFIX

QUAL-VAR ::= (var VAR : TYPE)

INST-QUAL-NAME ::= (op INST-OP-NAME : TYPESCHEME)

| (fun INST-OP-NAME : TYPESCHEME)

| (pred INST-OP-NAME : TYPESCHEME)

INST-OP-NAME ::= OP-NAME

| OP-NAME [TYPE ,..., TYPE]

OP-NAME ::= ID

TYPE-NAME ::= ID

CLASS-NAME ::= ID

VAR ::= ID

TYPEVAR ::= SIMPLE-ID
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C.2 Disambiguation

The context-free grammar given in Section C.1 for input syntax is quite
ambiguous. This section explains various precedence rules for disambigua-
tion, and the intended grouping of mixfix terms and patterns (which is to
be recognized in a separate phase, dependent on the declared symbols and
parsing annotations).

C.2.1 Precedence

In BASIC-ITEMS, a list of ‘. FORMULA ... . FORMULA’ extends as far to
the right as possible. Within a FORMULA, the use of prefix and infix notation
for connectives gives rise to some potential ambiguities. These are resolved
as if the following precedence annotations had been given:

%prec { ⇔ } < { ⇒ , if }
%prec { ⇒ , if } < { ∧ , ∨ }
%prec { ∧ , ∨ } < { = ,

e= }
%prec { = ,

e= } < { when else }
%left assoc if , ∧ , ∨
%right assoc ⇒ , when else

‘QUANTIFIER VAR-DECL;... . FORMULA’ has the lowest precedence of
the term constructs, with the last FORMULA extending as far to the
right as possible, e.g., ‘forall x:S . F => G’ is disambiguated as
‘forall x:S . (F => G)’, not as ‘(forall x:S . F) => G’.

Moreover, a quantification may be used on the right of a logical connective
without grouping parentheses. For instance,

‘F <=> exists x:s . G <=> H’ is parsed as
‘F <=> (exists x:s . G <=> H)’.

The declaration of infix, prefix, postfix, and general mixfix operation sym-
bols may introduce further potential ambiguities, which are partially re-
solved as follows (remaining ambiguities have to be eliminated by explicit
use of grouping parentheses in terms, or by use of parsing annotations):

• Applications of all postfix symbols have the highest precedence. This
extends to all mixfix operation symbols of the form ‘ ... TOKEN’.

• Applications of all prefix symbols have the next-highest precedence
within terms after postfixes. This extends to all mixfix operation sym-
bols of the form ‘TOKEN ... ’.
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• Applications of infix symbols have lower precedence within terms
after prefixes. This extends to all mixfix symbols of the form
‘ ... ... ’. Mixtures of different infix symbols may be dis-
ambiguated using precedence annotations and iterations of the same
infix symbol with an associativity allows iterated applications of that
symbol to be written without grouping.

• The term constructs involving types like MEMBERSHIP, TYPED-TERM,
and CAST have the lowest precedence.

Userdefined infix symbols without explicit precedence annotations are given
higher precedence than equality.

The precedence of the constructs MEMBERSHIP, TYPED-TERM, and CAST has
changed in comparison with Casl, but corresponds the precedence of
Haskell, because a type is no longer a simple sort name but exceeds to
the right as far as possible. As in Casl, the type annotation ‘f(x) : nat’
annotes the whole application. but ‘f x : nat’ – unlike Casl– also annotes
the whole application! So parentheses should be used to delimit the left
hand side term and the right hand side type, i.e. ‘f(x : nat)’.

C.3 Lexical Syntax

The lexical syntax of HasCasl is almost identical to that of Casl. There
are only additional keywords:

case class classes deriving fun funs instance
instances internal let of program programs where

additional reserved symbols:

:= .! ·! \ ->

Within a type context also the following symbols have a special meaning and
must not occur in a TYPE-NAME. They are, however, legal as an OP-NAME.

< ? * × ->? --> -->?

Furthermore there are the predefined classes and types:

Type Unit Pred Logical
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C.4 Display of Mathematical Symbols

The input symbols in the following table are to be displayed as the mathe-
matical symbols shown below them.

* -> --> forall exists /\ \/ => <=> not =e= in . \

× → c−→ ∀ ∃ ∧ ∨ ⇒ ⇔ ¬ e
= ∈ • λ

When a mathematical symbol is not available (e.g., when browsing HTML
on WWW) the input syntax for it may be displayed instead. Moreover,
characters whose display format is in ISO Latin-1 may be used for input.
This allows the direct input of the symbols displayed as ‘¬’ and ‘×’ (also ‘ • ’
may be input as a raised dot), and ensures that the text of a specification
as shown by a WWW browser is valid input syntax (at least in the absence
of display annotations).

Note the following differences:

• ‘∈’ and ‘in’ in ‘let . . . in . . .’

• the structured then and ‘then’ in ‘if . . . then . . . else . . .’

• the structured lambda and ‘\’ that are both displayed as λ

All other printing conventions and display format annotations are those of
Casl, despite that identifiers within annotations are less restricted and may
also be the connectives given in Section C.2.1.


