Kurs "Theorie der Sensorfusion" (Winter 2010/11)
Veranstalter
Prof. Dr. Udo Frese, PD Dr. Lutz Schröder
Wintersemester 2010/11
Veranstaltungskennziffer: 03-05-H-699.55 Kategorie V (ECTS: 6) K4 SWS:
Mo: 16:15-17:45 MZH 1380 Mi: 10:15-11:45 MZH 1460
Neuigkeiten
- Zettel 4 ist korrigiert, bitte in Cartesium 0.53 abholen.
Bitte ein ausgefülltes Scheinformular mitbringen.
- Termin für mündliche Prüfungen und ggf. Fachgespräche: 21.3.2011, Cartesium 0.53
- Bitte an der Evaluationsumfrage auf Stud.IP teilnehmen
Teilnehmer
- Informatik Diplom und Master
- Digital Media Master / (M-104 Advanced Topics).
- Systems Engineering: Bereiche: Mechatronik, Robotik, Systems Engineering
- alle Studiengänge, die Informatikscheine akzeptieren
Beschreibung
Die Bestimmung der Position, entweder der eigenen oder der fremder Objekte, ist eine Aufgabe, die über Jahrhunderte hinweg eine Herausforderung für Mathematiker, Ingenieure und Geodäten war und vielfältige Anwendungen in Schiff-, Luft- und Raumfahrt, Astronomie, Verkehrswesen, Logistik, Robotik oder sogar im Sport hat. Über die Zeit wurde zu diesem Zwecke eine Vielzahl von Sensoren entwickelt, die von Sextanten, Theodoliten bis hin zu satellitengestütztem GPS und Kameras mit nachgeschalteter Bildverarbeitung reicht.
Abstrahiert man von der technischen Realisierung ist allen Sensoren gemein, dass ihre Messwerte mit Fehlern behaftet sind und dass dieser Fehler je nach Sensor bei unterschiedlichen Aspekten der Position sehr verschieden gross sein kann. Beispielsweise kann die Position in verschiedenen Richtungen unterschiedlich genau sein oder die Positionsänderung während einer Bewegung kann genauer sein als die absolute Position. Die Vorlesung "Theorie der Sensorfusion" widmet sich der Frage, wie man die fehlerbehafteten Messwerte unterschiedlicher Sensoren so kombinieren kann, dass ein möglichst genaues Ergebnis entsteht. Sie entwickelt eine probabilistische Theorie, die erlaubt zu verstehen und im Rechner zu modellieren, welche Aspekte einer Größe wie genau sind. Daraus leitet sie als erstes zentrales Ergebnis den (Extended) Kalman Filter Algorithmus her, der die gewünschte optimale Verknüpfung leistet. Der zweite Teil der Vorlesung beschäftigt sich mit dem besonderen Problem der Schätzung der Lage (also Position und Orientierung ) eines Objektes. Er diskutiert die Darstellung durch homogene Matrizen und deren Einbindung in den Kalman Filter zur Schätzung der Lage.
Kompetenzziele sind:
- Verständnis der Modellierung fehlerbehafteter Größen (Kovarianzmatrix, Gaußverteilung)
- Verständnis des (Extended/Unscented) Kalman Filters
- Die Fähigkeit, Schätzprobleme zu modellieren und mit einem Kalman Filter zu lösen
- Die Fähigkeit, Ergebnisse aus der Theorie mit unmittelbarer Intuition zu verknüpfen, um für ein Szenario mit Sensoren abzuschätzen, welche Aspekte des Ergebnisses wie genau sein werden.
Teilnahme
Studierende der Informatik (Bereich Theorie), Digitale Medien und Systems Engineering (Bereiche Robotik, Mechatronik, Systems Engineering) im Hauptstudium.
Skript
Vom ersten Durchlauf der Veranstaltung gibt es ein Skript, das wir in diesem Durchlauf aktualisieren und weiter pflegen. Der Dank dafür geht an Christoph Hertzberg, Janosch Machowinski, René Wagner, und Pierre Willenbrock.
Theorie der Sensorfusion Skript 2010
Inhalt
Vorläufige Terminplanung (V=Vorlesung, Ü=Übung).
01.
25.10.
V
Einführung. Warum Sensorfusion? Die drei Leitbeispiele in 1D, 2D und 3D.
02.
27.10.
V
Wahrscheinlichkeitsrechnung im R, Wahrscheinlichkeitsräume, Unabhängigkeit, Erwartungswert
03.
01.11.
V
Fusion zweier Messwerte: Optimaler Schätzer
04.
03.11.
Ü
Übung zu Wahrscheinlichkeitsrechnung im R, Beispiel: Erwartungswert einer Exponentialverteilung
05.
08.11.
Ü
Dreitürenparadox, Generalisierung auf Fusion von n Messwerten
06.
10.11.
V
Bayes'sche Sichtweise auf die Fusion zweier Messwerte
07.
15.11.
V
Wahrscheinlichkeitsrechnung im R, Varianz, Kovarianz
08.
17.11.
V
Korrelation, Cauchy-Schwarz, Konfidenz, Faltung, Zentraler Grenzwertsatz
09.
22.11.
Ü
Rückgabe und Besprechung Übungszettel 1
10.
24.11.
V
Der Bayes Filter als Zustandsschätzer
11.
29.11.
V
Kalman Filter in einer Dimension
12.
01.12.
V
Extended Kalman Filter in einer Dimension, Vertiefungen
13.
06.12.
Ü
Übung mit EKF Modellierungsbeispielen
14.
08.12.
Ü
Übung Prozesse mit zufälligem Einfluss
15.
13.12.
V
Grundlagen Lineare Algebra
16.
15.12.
Ü
Rückgabe und Besprechung Übungszettel 2
17.
20.12.
V
Wahrscheinlichkeitsrechnung im R^n
18.
05.01.
Ü
Übung lineare Algebra
19.
10.01.
V
Optimale Fusion von Messungen in n-D, Konditionierungslemma
20.
12.01.
Ü
Übung Wahrscheinlichkeitrechnung im R^n, Jacobi Matrizen
21.
17.01.
V
Kalman Filter, Beweis KF, Extended KF
22.
19.01.
Ü
Übung Rechnen mit Kovarianzen und Erwartungswerten
23.
24.01.
V
Unscented KF, Projektive Geometrie, Darstellung von Starrkörperbewegungen
24.
26.01.
Ü
Rückgabe und Besprechung Zettel 3
25.
31.01.
V
Klassifizierung der Starrkörperbewegungen
26.
02.02.
V
Unscented Kalman Filter zur Schätzung von Rotationen
27.
07.02.
Ü
Rückgabe und Besprechung Übungszettel 3
28.
09.02.
V
Topologische Struktur der Starrkörperbewegungen
Erweiterte Aufgabe (nicht prüfungsrelevant): Fliegender Kohlenkarren mit visuellen Marken
Literatur
C. Hertzberg, J. Machowinski, R. Wagner, P. Willenbrock, U. Frese, L. Schröder |
Skript Theorie der Sensorfusion 2006 |
Die Vorlesung mitgetext. |
U. Frese, L. Schröder |
Merkzettel mathematische Grundlagen (im Skript) |
Grundlagen in Statistik und Linearer Algebra |
Y. Bar-Shalom, X.R. Li, T. Kirubarajan |
Estimation with Applications to Tracking and Navigation, J. Wiley, 2001 |
Herleitung des Kalman Filters |
S. Thrun, W. Burgard, D. Fox |
Probabilistic Robotics - Kalman Filter Slides |
Erklärung von KF, EKF, UKF. Grosse Teile des Vorlesungsstoff in Kurzform. Sehr gute Ergänzung. |
S. Thrun, W. Burgard, D. Fox |
Probabilistic Robotics, MIT Press, 2006 |
Generelle Referenz, Sensorfusion, aber nicht 3D |
R. Hafner |
Wahrscheinlichkeitsrechnung und Statistik, Springer 1989 |
Statistische Grundlagen, nicht die eigentliche Sensorfusion |
D. Kehlmann |
Die Vermessung der Welt, rororo |
Unterhaltung um Gauss & Humboldt |
S. Thrun, W. Burgard, D. Fox |
Probabilistic Robotics - Web Site |
Abbildungen, Videos, etc. aus dem gleichnamigen Buch. |
W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, University Press |
Numerical Recipes in C, Second Edition |
Mehrdimensionale quadratische Ausgleichsrechnung, keine * Kalman Filter |
Richard Hartley and Andrew Zisserman |
Multiple View Geometry, Cambridge University Press |
Projektive Geometry, 3D Koordinatentransformationen, Generell: Geometrische Auswertung von Bildverarbeitungsergebnissen |