Kurs "Theorie der Sensorfusion" (Winter 2008/9)
Veranstalter
Prof. Dr. Udo Frese, PD Dr. Lutz Schröder
Wintersemester 2008/9
Veranstaltungskennziffer: 03-05-H-699.55 Kategorie V (ECTS: 6)
K4 SWS: Informatik und alle Studiengänge, die Informatikscheine akzeptieren Systems Engineering: Bereiche: Mechatronik, Robotik, Systems Engineering
Beschreibung
Die Bestimmung der Position, entweder der eigenen oder der fremder Objekte, ist eine Aufgabe, die über Jahrhunderte hinweg eine Herausforderung für Mathematiker, Ingenieure und Geodäten war und vielfältige Anwendungen in Schiff-, Luft- und Raumfahrt, Astronomie, Verkehrswesen, Logistik, Robotik oder sogar im Sport hat. Über die Zeit wurde zu diesem Zwecke eine Vielzahl von Sensoren entwickelt, die von Sextanten, Theodoliten bis hin zu satellitengestütztem GPS und Kameras mit nachgeschalteter Bildverarbeitung reicht.
Abstrahiert man von der technischen Realisierung ist allen Sensoren gemein, dass ihre Messwerte mit Fehlern behaftet sind und dass dieser Fehler je nach Sensor bei unterschiedlichen Aspekten der Position sehr verschieden gross sein kann. Beispielsweise kann die Position in verschiedenen Richtungen unterschiedlich genau sein oder die Positionsänderung während einer Bewegung kann genauer sein als die absolute Position. Die Vorlesung "Theorie der Sensorfusion" widmet sich der Frage, wie man die fehlerbehafteten Messwerte unterschiedlicher Sensoren so kombinieren kann, dass ein möglichst genaues Ergebnis entsteht. Sie entwickelt eine probabilistische Theorie, die erlaubt zu verstehen und im Rechner zu modellieren, welche Aspekte einer Größe wie genau sind. Daraus leitet sie als erstes zentrales Ergebnis den (Extended) Kalman Filter Algorithmus her, der die gewünschte optimale Verknüpfung leistet. Der zweite Teil der Vorlesung beschäftigt sich mit dem besonderen Problem der Schätzung der Lage (also Position und Orientierung ) eines Objektes. Er diskutiert die Darstellung durch homogene Matrizen und deren Einbindung in den Kalman Filter zur Schätzung der Lage.
Lernziele sind:
- Verständnis der Modellierung fehlerbehafteter Größen (Kovarianzmatrix, Gaussverteilung)
- Der (Extended/Unscented) Kalman Filter
- Die Fähigkeit, Ergebnisse aus der Theorie mit unmittelbarer Intuition zu verknüpfen, um für ein Szenario mit Sensoren abzuschätzen, welche Aspekte des Ergebnisses wie genau sein werden.
Teilnahme
Studierende der Informatik (Bereich Theorie), Digitale Medien und Systems Engineering (Bereiche Robotik, Mechatronik, Systems Engineering) im Hauptstudium.
Skript
Vom letzten Durchlauf der Veranstaltung gibt es ein Skript, das wir in diesem Durchlauf aktualisieren und weiter pflegen. Der Dank dafür geht an Christoph Hertzberg, Janosch Machowinski, Rene Wagner, und Pierre Willenbrock.
Theorie der Sensorfusion Skript 2010
Inhalt
Vorläufige Terminplanung (V=Vorlesung, Ü=Übung).
01.
22.10.
V
Einführung. Warum Sensorfusion? Die drei Leitbeispiele in 1D, 2D und 3D.
02.
27.10.
V
Wahrscheinlichkeitsrechnung im R, Wahrscheinlichkeitsräume, Unabhängigkeit, Erwartungswert
03.
29.10.
V
Fusion zweier Messwerte: Optimaler Schätzer
04.
03.11.
Ü
Übung zu Wahrscheinlichkeitsrechnung im R, Beispiel: Erwartungswert einer Exponentialverteilung
05.
05.11.
V
Bayes'sche Sichtweise auf die Fusion zweier Messwerte
06.
10.11.
Ü
Dreitürenparadox, Generalisierung auf Fusion von n Messwerten; später: Übung zum intuitiven Umgang mit Formeln
07.
12.11.
V
Wahrscheinlichkeitsrechnung im R, Varianz, Kovarianz
08.
17.11.
Ü
Rückgabe und Besprechung Übungszettel 1
09.
19.11.
V
Korrelation, Cauchy-Schwarz, Konfidenz, Faltung, Zentraler Grenzwertsatz
10.
24.11.
V
Der Bayes Filter als Zustandsschätzer
11.
26.11.
V
Kalman Filter in einer Dimension
12.
01.12.
V
Extended Kalman Filter in einer Dimension, Vertiefungen
13.
03.12.
Ü
Übung zu Prozessen mit zufälligem Einfluss
14.
08.12.
V
Grundlagen Lineare Algebra
15.
10.12.
Ü
Rückgabe und Besprechung Übungszettel 2
16.
15.12.
V
Wahrscheinlichkeitsrechnung im R^n
17.
17.12.
Ü
Übung lineare Algebra
18.
05.01.
V
Optimale Fusion von Messungen in n-D, Konditionierungslemma
19.
07.01.
Ü
Übung Wahrscheinlichkeitrechnung im R^n, Jacobi Matrizen
20.
12.01.
V
Kalman Filter, Beweis KF, Extended KF
21.
14.01.
Ü
Übung Rechnen mit Kovarianzen und Erwartungswerten
22.
19.01.
V
Unscented KF, Projektive Geometrie, Darstellung von Starrkörperbewegungen
23.
21.01.
V
Unscented Kalman Filter zur Schätzung von Rotationen
24.
26.01.
Ü
Rückgabe und Besprechung Zettel 3
25.
28.01.
V
Klassifizierung der Starrkörperbewegungen
26.
02.02.
V
Topologische Struktur der Starrkörperbewegungen
27.
04.02.
Ü
Rückgabe und Besprechung Übungszettel 4
Erweiterte Aufgabe (nicht prüfungsrelevant): Fliegender Kohlenkarren mit visuellen Marken
Literatur
[1] |
U. Frese, L. Schröder |
Merkzettel mathematische Grundlagen (im Skript) |
Grundlagen in Statistik und Linearer Algebra |
[2] |
S. Thrun, W. Burgard, D. Fox |
Probabilistic Robotics |
Generelle Referenz, Sensorfusion, aber nicht 3D |
[3] |
Hafner |
Wahrscheinlichkeitsrechnung und Statistik |
Statistische Grundlagen, nicht die eigentliche Sensorfusion |
[4] |
D. Kehlmann |
Die Vermessung der Welt |
Unterhaltung um Gauss & Humboldt |
[5] |
S. Thrun, W. Burgard, D. Fox |
Probabilistic Robotics - Web Site |
Abbildungen, Videos, etc. aus dem gleichnamigen Buch. |
[6] |
S. Thrun, W. Burgard, D. Fox |
Probabilistic Robotics - Kalman Filter Slides |
Erklärung von KF, EKF, UKF. Grosse Teile des Vorlesungsstoff in Kurzform. Sehr gute Ergänzung. |
[7] |
U. Krengel |
Einführung in die Wahrscheinlichkeitsrechnung und Statistik |
Statistische Grundlagen, nicht die eigentliche Sensorfusion |
[8] |
C. Hertzberg, J. Machowinski, R. Wagner, P. Willenbrock, U. Frese, L. Schröder |
Skript Theorie der Sensorfusion 2006 |
Die Vorlesung mitgetext. |
[9] |
W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery |
Numerical Recipes in C, Second Edition |
Mehrdimensionale quadratische Ausgleichsrechnung, keine * Kalman Filter |
[10] |
Richard Hartley and Andrew Zisserman |
Multiple View Geometry |
Projektive Geometry, 3D Koordinatentransformationen, Generell: Geometrische Auswertung von Bildverarbeitungsergebnissen |