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Abstract— Robotic solutions, in particular robotic arms, are
becoming more frequently deployed for close collaboration with
humans, for example in manufacturing or domestic care envi-
ronments. These robotic arms require the user to control several
Degrees-of-Freedom (DoFs) to perform tasks, primarily involv-
ing grasping and manipulating objects. Standard input devices
predominantly have two DoFs, requiring time-consuming and
cognitively demanding mode switches to select individual DoFs.
Contemporary Adaptive DoF Mapping Controls (ADMCs) have
shown to decrease the necessary number of mode switches
but were up to now not able to significantly reduce the
perceived workload. Users still bear the mental workload of
incorporating abstract mode switching into their workflow. We
address this by providing feed-forward multimodal feedback
using updated recommendations of ADMC, allowing users to
visually compare the current and the suggested mapping in
real-time. We contrast the effectiveness of two new approaches
that a) continuously recommend updated DoF combinations or
b) use discrete thresholds between current robot movements
and new recommendations. Both are compared in a Virtual
Reality (VR) in-person study against a classic control method.
Significant results for lowered task completion time, fewer mode
switches, and reduced perceived workload conclusively establish
that in combination with feedforward, ADMC methods can
indeed outperform classic mode switching. A lack of apparent
quantitative differences between Continuous and Threshold
reveals the importance of user-centered customization options.
Including these implications in the development process will im-
prove usability, which is essential for successfully implementing
robotic technologies with high user acceptance.

I. INTRODUCTION

While robotic devices have long been put behind fences for

safety reasons, advances in the development of such (semi-)

autonomous technologies have started to permeate almost all

aspects of our personal and professional lives. These include

increased close-quarter collaborations with robotic devices

– from industry assembly lines [1] to mobility aides [2].

Assistive robotic arms are a particularly useful and versatile

subset of collaborative technologies with varied applications

in different fields, e.g., [3], [4].

Yet, new challenges arise when robots are tasked with

(semi-) autonomous actions, resulting in additional stress

for end-users if not correctly addressed during the design

1Max Pascher, Kirill Kronhardt, and Jens Gerken are with the
Westphalian University of Applied Sciences, Human-Computer Inter-
action, 45897 Gelsenkirchen, Germany max.pascher@w-hs.de,
kirill.kronhardt@w-hs.de, jens.gerken@w-hs.de

2Max Pascher is also with the University of Duisburg-
Essen, Human-Computer Interaction, 45127 Essen, Germany
max.pascher@uni-due.de

3Felix Ferdinand Goldau and Udo Frese are with the University of
Bremen, Mathematics & Computer Science, 28359 Bremen, Germany
fgoldau@uni-bremen.de, ufrese@uni-bremen.de

process [5]. Pollak et al. highlight the decreased feeling of

control users experienced when using a robot’s autonomous

mode. Switching to manual mode allowed their study par-

ticipants to regain control and decrease stress significantly.

These findings are corroborated by Kim et al. whose compar-

ative study of control methods resulted in markedly higher

user satisfaction for the manual mode cohort [6].

A proposed solution from previous work [7] to these

challenge are adaptive controls – referred as Adaptive DoF

Mapping Controls (ADMCs) – which merge the advantages

of (semi-) autonomous actions with the flexibility of manual

controls. They combine multiple DoFs dynamically for a

specific scenario to assist in controlling the robot. In our

concept, a Convolutional Neural Network (CNN) interprets

a camera’s video feed of the environment and dynamically

combines the most likely DoFs for a suggested movement.

Building on this, we already showed that such ADMC com-

binations of the robot’s DoFs can lead to a significantly lower

number of mode switches compared to standard control

methods [8]. However, our study could not show that this

may also improve task completion time or reduce cognitive

load. Also, challenges concerning the understanding of DoF

mappings were raised during the study.

Based on these previous findings, the present study eval-

uates two novel ADMCs methods for an assistive robotic

arm. We compare the variants Continuous and Threshold,

differing in the time at which suggestions are communicated

to the user, against a classic control method. In detail, we

examine possible effects on task completion time, number of

necessary mode switches, perceived workload, and subjective

user experience. Our contribution is two-fold:

1) We demonstrate that both ADMC methods signifi-

cantly reduce the task completion time, the average

number of mode switches, and the perceived workload

of the user.

2) Further, we establish that for Continuous and Thresh-

old, each has specific advantages which some users

may prefer over the other, raising the need for cus-

tomizable configurations.

II. RELATED WORK

Collaborative robotic solutions have received much attention

in recent years. Previous work has generally focused on (a)

different designs of robot motion intent and most recently (b)

ADMCs for robots. The latter requires a critical yet seldom

addressed topic in how collaborative robots can effectively

communicate recommended movement directions to their

user.
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A. Robot Motion Intent

Advance knowledge of the intended robot behavior and

subsequent movements within the physical world are critical

for effective collaboration when humans and robots occupy

the same space and need to coordinate their actions [9]. In

previous work, we analyzed existing techniques of commu-

nicating robot motion intent and identified different intent

types as well as several intent properties, such as location and

information or the placement of the technology [10]. Users

generally prefer to have the robot’s future movements repre-

sented visually [11]. To convey detailed robot motion intent,

researchers often rely on Augmented Reality (AR) [12], [13],

[14], as “with the help of AR, interaction can become more

intuitive and natural to humans” [15].

Effective communication of robot motion intent is par-

ticularly relevant when using ADMCs for assistive robotic

arms, as in such a shared or traded control environment each

interaction needs to be precisely coordinated.

B. Adaptive DoF Mapping Controls

Traditionally, robot control methods include individual com-

mands for each DoF, requiring frequent mode switches for

controlling translations, rotations, and gripper functionality.

Herlant et al. called into question the suitability of these

standard control methods as task completion time markedly

increases by using user-initiated compared to time-optimal

mode switches [16].

To tackle this issue, we proposed in previous work the

concept of ADMC – a dynamic combination of multiple

DoFs, thus adjusted to specific scenarios or tasks [7]. This

streamlining decreases the need for constant mode switching,

resulting in faster and more efficient task fulfillment. In [7]

we implemented a CNN as control unit to provide these

dynamic DoF mappings and gave the user a triggering

mechanism to request an update. In a 2D simulation study

which had a 4-DoF robot control mapped to a 2-DoF input

device, we found promising results.

We then extended this approach into a 3D VR simulation,

thereby mapping a 7-DoF robot control to a 2-DoF input

device [8]. We evaluated two ADMC methods – differing in

their respective movement suggestion concept – against the

baseline control method Classic. Simulating the effect of a

CNN, our work relied on a task-specific script to provide

DoF mappings based on the relative position and orientation

between gripper and target. This removed the potentially

confounding effect of a suboptimal CNN implementation.

Results showed that the number of mode switches was sig-

nificantly reduced compared to Classic, but task completion

time was unaffected. Users reported high cognitive demand

and difficulties understanding the mapping to 2 different

input DoFs. In addition, the system felt difficult to predict

and required trial and error [8].

III. ADAPTIVE DOF MAPPING CONTROLS

Building on our previous work [8], we created a VR sim-

ulation of a Human-Robot Interaction (HRI) experimental

setup to compare different ADMC methods to a non-adaptive

baseline condition Classic. Like in previous work [8] we

applied a task-specific script to explore our ADMC methods.

We tackle previous issues by 1) visualizing not only the

current but also the forthcoming DoF mapping suggestion

(improving predictability) and 2) reducing the input to a

single DoF (reducing cognitive demand). We propose two

approaches as different trade-offs between control fidelity

and cognitive demand.

The VR simulation includes a virtual model of the Kinova

Jaco 21 – a commercially available assistive robotic arm

frequently used in HRI studies, e.g., [4], [16]. Our proposed

visual feedback mimics AR, with directional cues registered

in 3D space. This allows the user to understand different

movement directions for the actual control and the suggested

DoF combinations. To simplify understanding, we use ar-

rows, a straightforward and common visualization technique

to communicate motion intent [9], [17], [18].

As a control method for the ADMCs, we implemented a

task-specific script. This removed any potential bias that a

more generic but currently still technically limited approach

such as a CNN-based control method may introduce. Of

course, our approach only works in a controlled experimen-

tal setting. The task-specific script evaluates the gripper’s

current position, rotation, and finger position relative to a

target. The DoF mapping system then suggests five different

movement options (referred in the following to as modes) –

in order of assumed usefulness – to the user.

1) Optimal Suggestion: Combining translation, rotation,

and finger movement [opening and closing] into one

suggestion, causing the gripper to move towards the

target, pick it up, or release it on the intended surface.

2) An orthogonal suggestion based on (1) but excluding

the finger movement. Allows the users to adjust the

gripper’s position while still being correctly orientated.

3) A pure translation towards the next target, disregarding

any rotation.

4) A pure rotation towards the next target without moving

the gripper.

5) Opening or closing of the gripper’s fingers.

During movement, the ADMC system re-calculates the best

DoF combinations to fulfill the specific task, which are then

presented as new suggestions. Users cycle through these

modes – by pressing a button on the input device – to

select a suitable one or continue moving with the previous

active suggestion (see Figure 1). A suggestion indicator is

visible above the gripper when users are not moving the

robot to distinguish between the modes. Five slanted cubes

represent the possible suggestions. The cubes appear gray

if no suggestion is active and turn blue to indicate that a

new suggestion is selected. The cube corresponding to the

selected mode increases in size. In contrast to our previous

work [8] and to the dual axis system of the baseline control

method (see Figure 2), only one input axis is required to

control the robotic arm. Consequently, the cognitive demand

1Kinova Robotic arm. https://assistive.kinovarobotics.
com/product/jaco-robotic-arm, last retrieved October 16, 2024.
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on the users is reduced as they can focus on evaluating one

movement rather than two simultaneous suggestions.

(a) (b) (c)

(d) (e) (f)

Fig. 1: Suggestions as visualized in the ADMC methods,

(a) Continue previous movement, (b) Optimal Suggestion,

(c) Adjustment Suggestion, (d) Pure Translation, (e) Pure

Rotation, (f) Open / Close Fingers.

Continuous: This control method uses continuous feedback

of robot motion intent to increase oversight of updated

movement suggestions. Continuous feedback enables users

to move in a direction and constantly evaluate the updated

optimal suggestion by the ADMC system. If found fitting,

users can switch to a new suggestion and move the robot

in the updated path to fulfill the task. Here, two directional

indicators are virtually attached to the robotic arm’s gripper:

a light blue and a dark blue arrow. The former represents the

currently selected movement option (mode) mapped to the

input axis. The forward movement of the input axis moves

the gripper in the direction the arrow is pointing; engaging

it backward moves the gripper in the arrow’s reverse direc-

tion. The dark blue arrow represents the currently optimal

suggestion at a given time. Users can only move the robot

along the dark blue arrow if they switch to that suggestion

first – which causes both arrows to overlap. While this

approach increases transparency, users might be distracted

by the constantly updating suggestions, potentially leading

to more mode switches and perceived workload.

Threshold: In contrast to Continuous, Threshold uses time-

discrete and multimodal feedback to indicate optimized

movement suggestions. Again, a light blue arrow maps the

selected movement option (mode) to the input axis. New

suggestions are only shown to the users if the optimal mode

differs – by a set degree – from the current movement. We

followed Singhal et al. and used a cosine between-vector sim-

ilarity measure to calculate this threshold [19], ranging from

exact alignment [0%] to total opposite direction [100%]. In

pretests, we determined a 20% difference between the current

and optimal vector as the suggestion threshold. If exceeded,

a short vibration pulse to the input device and a 1kHz sound

inform the users of an updated suggestion. In addition, a

dark blue arrow appears which visualizes the new suggested

movement. Users can continue the active movement, switch

to the new suggestion, or cycle through the other four modes

before deciding on one. Unlike with Continuous, users can

therefore entirely focus on the movement they are currently

performing until explicitly notified and directed to a new

suggestion. We expect Threshold to reduce perceived work-

load compared to Continuous as it does not require constant

evaluation of the visual feedback. However, we expect task

completion time to increase, as Threshold systematically

interrupts the users’ workflow. Additionally, Threshold might

result in a perceived loss of control, potentially negatively

influencing usability.

IV. STUDY METHOD AND MATERIALS

To explore the effectiveness of our ADMC methods, we

conducted a supervised, controlled experiment as a VR sim-

ulation study with 24 participants. We compared our ADMC

methods to Classic, which relies on mode switching to

access and control all DoFs one after another. Approaches as

Classic are well established (e.g., when driving a car) and are

predictable and transparent for the user. Comparing ADMC

methods to Classic allows HRI researchers to disentangle

their respective advantages and disadvantages.

A. Study Design

We applied a within-participant design with control method

as an independent variable with three conditions: (1) Clas-

sic, (2) Continuous, and (3) Threshold. Every participant

performed eight training trials and 24 measured trials per

condition, resulting in 72 measured and 24 training trials

per participant and 1,728 measured trials in total. To counter

learning and fatigue effects, the order of conditions was fully

counter-balanced. We measured the following dependent

variables:

1) Average Task Completion Time For each trial, we

measured the time in seconds needed to pick an object

and place it on the target surface.

2) Average Number of Mode Switches For each trial,

we recorded every mode switch conducted by pressing

a button on the input device.

3) Perceived Workload After completing each condi-

tion, we measured cognitive workload with the NASA

Raw-Task Load Index (NASA Raw-TLX) question-

naire [20].

4) Subjective Assessment After completing each condi-

tion, we measured the five dimensions of the Question-

naire for the Evaluation of Physical Assistive Devices

(QUEAD) [21]. After completing all trials, participants

were further asked to rank the three conditions.

After each condition, participants were prompted with sev-

eral open questions regarding their experience, their under-

standing of the control methods and the directional cues, plus

any issue of interest they considered noteworthy. Addition-

ally, participants were asked how they proceeded in situations

when they could not solve the task at first.
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Video and audio recordings of the interviews with the entire

study cohort were assessed independently by two researchers.

Open coding was applied to gather participants’ opinions of

the different control methods. We used Miro2 – an online

whiteboard [22] – to complete an affinity diagram of the

open codes. Codes were then organized into themes (see

Section V-F).

B. Hypotheses

Overall, we expected ADMC methods to reduce not just

mode switches (as in prior work [8]) but – due to the

advances in our designs – also improve on task completion

time and workload.

H1: Continuous and Threshold lead to a lower task com-

pletion time compared to Classic. However, we expect

Continuous to perform faster compared to Threshold,

as the latter systematically interrupts the user during

interaction.

H2: Continuous and Threshold result in fewer mode

switches compared to Classic. We expect Continuous

to require more mode switches than Threshold, as

users have no clear guidance about when to switch

modes. This may cause them to oversteer or accept

new suggestions inefficiently.

H3: Continuous and Threshold cause lower perceived

workload compared to Classic. However, we expect

Continuous to cause a higher workload compared to

Threshold, as it requires constant evaluation of the

visual feedback while Threshold allows the user to

relax until further notification.

C. Apparatus

Developing and testing new concepts for a robotic arm

involves inherent challenges associated with a real robot’s

physical bulk and complexity. Quickly changing the exper-

imental setup, adding feedback components, or providing

information to the user further complicate testing regimes.

We created a 3D testbed environment for HRI studies in VR

to address these challenges. This testbed contains a simulated

robotic arm (a virtual model of the Kinova Jaco 2) with

multiple control mechanisms and a standardized pick-and-

place task. Visual feedback mimics AR, with directional cues

registered in 3D space. A Meta Quest motion controller is

used as an input device to control the robotic arm.

Photogrammetry scans of an actual room were used to

design the VR environment, which was created using the

Unreal Engine 4.27 and optimized for usage with a Meta

Quest VR Head-Mounted Display (HMD) (see Figure 2).

During the study, user behavior was recorded with appropri-

ate software on a Schenker XMG Key 17 laptop with Windows

10 64-bit and Oculus Link connected to the VR headset.

For our implementation of the baseline control method

Classic, users cycled through four distinct modes to access

all seven robot DoFs, as they are mapped on a two-DoF

2Miro. https://miro.com, last retrieved October 16, 2024.

joystick, such as the control-stick on a Meta Quest motion

controller:

1) X-Translation + Y-Translation

2) Z-Translation + Roll

3) Yaw + Pitch

4) Open/Close fingers

We illustrate the current mapping between the robot’s DoFs

and the input device through two arrows attached to the grip-

per. Light blue arrows indicate the robot’s DoF assigned to

the first, dark blue arrows to the second input axis. Looking

at the joystick in VR, the same color-coded visualization is

applied.

Users press a button on the input device – the A-Button of

the Meta Quest motion controller – to switch between modes,

cycling back to the first one at the end. Four blue spheres –

in contrast to the slanted cubes used in our ADMC methods

– above the robotic arm’s gripper indicate the total number

of available and the currently active mode when users are not

moving the robot. The sphere representing the active mode

is bigger and brighter than the spheres of inactive modes.

Fig. 2: Virtual environment consisting of (left to right): a

virtual canvas, the motion controllers, a table with the blue

object and red target, and a Kinova JACO with an arrow-

based visualization

D. Participants

A total of 24 participants took part in our study (7 female,

17 male). The participants were aged 19 to 37, with a mean

age of 26 years (SD = 4.85 years). No one declared any

motor impairments that might influence reaction times. Five

participants had prior experience with controlling a robotic

arm. Participants were recruited from a university campus

and an online appointment form.

E. Procedure

Utilizing the benefits of a standardized and portable VR

simulation environment, the study was conducted in multiple

comparable physical localities. Before commencing, partici-

pants were fully informed about the project objective and the

various tasks they had to complete. Every participant gave

their full and informed consent to partake in the study, have

video and audio recordings taken, and have all the relevant

data documented.
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A study administrator observed the experiment on a laptop

and briefed participants on using the hardware as well as the

general functionalities of the study environment. Once set up,

users followed command prompts embedded in the virtual

simulation environment. For each of the three conditions,

the following steps were performed:

1) Participants were given a written and standardized

explanation of the control method used in the current

condition.

2) Participants conducted eight training trials for famil-

iarization with the respective control method.

3) Participants then conducted 24 measured trials.

4) Interview and questionnaires.

After completing all conditions, participants ranked the three

control methods from most to least preferred and explained

the reasoning behind their decision. The study concluded

with a de-briefing. The average session lasted for 90 minutes

and participants were compensated with 30 EUR.

F. Experimental Task

The experimental task is based on our previous work and

resembles a common pick-and-place scenario [8]. A blue

object appears on a table in front of the participant, which

signals the start of a trial. The user has to control the robot

from its starting position to pick the object and place it on

a red target surface, also located on the table. To change

the DoF mapping – for trial fulfillment – users could switch

modes. Upon completion, the blue object disappears, and the

robot automatically returns to the original starting position.

A new blue object appears when this position is reached,

and a new trial commences. For each trial, the position of

the blue object is placed in one of eight possible locations

spaced evenly around the red target surface. Each position

occurred once during training and thrice during measured

trials. However, the order of appearance was randomized.

We used a neutral block shape rather than specific objects to

avoid bias and ensure trial comparability.

V. RESULTS

The study comprises 1,728 (24 participants × 3 control

methods × 24 trials) measured trials. Training trials were

excluded from the analysis.

We explored the distribution of the data through QQ-plots

and either applied parametric Repeated Measures Analysis

of Variance (RM-ANOVA) or non-parametric Friedman tests.

For the latter, post-hoc pairwise comparisons using Wilcoxon

signed-rank test with Bonferroni correction followed the

omnibus test. Relevant effect sizes were calculated with r:

>0.1 small, >0.3 medium, and >0.5 large effect.

A. Task Completion Time

Mean task completion time calculated per participant and

control method (see Fig. 3) resulted in Threshold = 16.54s

(SD = 4.09s); Continuous = 16.61s (SD = 4.77s); and

Classic = 30.96s (SD = 4.89s). Outliers [N = 3] with

average times ≥ 2.2 ∗ IQR of the mean task completion

time in at least one control method were excluded [23]. The

QQ-plot of the remaining 21 participants followed a normal

distribution.

Fig. 3: Raincloud Plots for Average Task Completion Time

and Mode Switches

A RM-ANOVA found a significant main effect (F(2, 36)

= 130.92, p ≤0.001). A post-hoc pairwise comparison (Bon-

ferroni corrected) showed a significant difference between

Continuous and Classic (p ≤0.001) as well as between

Threshold and Classic (p ≤0.001). No significant difference

was found between Continuous and Threshold (p ≥0.999).

B. Mode Switches

We used a non-parametric Friedman test, as our data was not

normally distributed, to determine differences between the

average number of necessary mode switches between control

methods. Two outliers – based on ≥ 2.2 ∗ IQR of the mean

value – were excluded prior to further analysis. This resulted

in mean numbers of mode switches for Threshold = 9.28

(SD = 1.26); Continuous = 9.93 (SD = 1.47); and Clas-

sic = 19.55 (SD = 2.93) for N = 22. We found a significant

main effect (χ2(2) = 33.82, p ≤0.001, N = 22). Post-

hoc pairwise comparisons showed a significant difference

between Continuous and Classic (Z = −4.11, p ≤0.001,

r = 0.62) as well as Threshold and Classic (Z = −4.11,

p ≤0.001, r = 0.62). Again, we found no significant dif-

ference between the two ADMC methods (Z = −1.51,

p = 0.131, r = 0.28) (see Fig. 3).
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C. Perceived Workload

NASA Raw-TLX [20] scores [scale from 1 to 100] for

all participants resulted in mean task load values of

Threshold = 22.67 (SD = 13.86); Continuous = 23.23

(SD = 13.26); and Classic = 34.24 (SD = 14.65). We

applied a Friedman test which revealed a significant main

effect for perceived task load: (χ2(2) = 9.87, p = 0.007,

N = 24). Post-hoc pairwise comparisons show significant

differences between Continuous and Classic (Z = −3.03,

p = 0.002, r = 0.44), Threshold and Classic (Z = −2.76,

p = 0.006, r = 0.40), but not between Continuous and

Threshold (Z = −0.21, p = 0.830, r = 0.03).

D. Evaluation of Physical Assistive Devices

The QUEAD encompasses five individual scales (3 to 9

items each, 7-point Likert). Friedman tests for individual

dimensions revealed significant main effects for Perceived

Usefulness (PU), Perceived Ease of Use (PEU), Emotions

(E), and Comfort (C), but not for Attitude (A). Post-hoc pair-

wise comparisons indicate significant differences between

Continuous and Classic for PU, PEU, and C as well as

between Threshold and Classic for PU and PEU (refer to

Table I for detailed scores).

TABLE I: Statistics for individual QUEAD dimensions:

Perceived Usefulness (PU), Perceived Ease of Use (PEU),

Emotions (E), Attitude (A), and Comfort (C).

PU PEU E A C

Descriptive Statistics

MClassic 4.98 4.87 5.00 4.81 5.65
SDClassic 1.39 1.20 1.71 1.75 1.71

MContinuous 5.68 5.80 5.90 5.42 6.44
SDContinuous 1.05 1.04 1.25 1.48 0.78

MThreshold 5.77 5.90 5.68 5.44 6.13
SDThreshold 1.02 0.97 1.43 1.58 1.14

Friedman Tests

χ2(2) 7.49 15.22 7.20 1.76 6.39
p 0.022 ≤0.001 0.026 0.422 0.040
N 24 24 24 24 24

Pairwise Comparisons

Classic vs. Continuous

|Z| 2.32 2.47 1.85 — 2.29
p 0.021 0.014 0.064 — 0.022
r 0.33 0.36 0.27 — 0.33

Classic vs. Threshold

|Z| 2.68 2.90 1.28 — 1.23
p 0.007 0.003 0.202 — 0.220
r 0.39 0.43 0.18 — 0.18

Continuous vs. Threshold

|Z| 0.62 0.38 1.03 — 1.70
p 0.538 0.706 0.302 — 0.089
r 0.09 0.05 0.15 — 0.25

E. Individual Ranking

Participants ranked the control methods in order of prefer-

ence from 1 = favorite to 3 = least favorite. Mean values in

ascending order are Continuous = 1.67; Threshold = 2.04;

and Classic = 2.29. A Friedman test revealed no significant

main effect (χ2(2) = 4.75, p = 0.100, N = 24).

F. Qualitative Insights

Overall, the open coding process led to the identification of

five main themes, as discussed below.

1) Familiarization: While all three control methods in-

cluded a training phase, comments suggest that in particular

the ADMC methods required familiarization. Here, partici-

pants felt the controls were sometimes “inverted” (P3) and

wanted to “move the stick in the direction the arrow was

pointing at” (P6). They also reported that “it takes a while

to get used to” (P24), but “routine set in fast” (P18).

2) Handling Adaptive DoF Mapping Suggestions: The

study cohort showed a relatively uniform response to the two

ADMC methods with clear distinctions between Threshold

and Continuous. In Threshold, many participants “trusted the

system” (P23) and switched to the new suggestion as soon

as they perceived the multimodal indicator. They “did not

have to think a lot” (P4) and “relied on what the suggestion

says” (P7). This dependence on the system caused some to

“draw a blank when something went wrong because [they]

forgot they had other options” (P8). One participant even

tried using the Threshold control method with eyes closed,

which “worked surprisingly well” (P7).

In contrast, participants evaluated the suggestions in Con-

tinuous more thoroughly, as they had to decide when to

switch without the help of threshold-based indicators. Some

participants waited for suggestions with relatively simple

direction cues, such as “straight arrows” (P6, P16) as an

indication to switch modes, while others trusted their “gut

feeling” (P23). Uncertainties of “How do I approach this?”

(P23) were more frequent in this control method than

Threshold. Participants dealt with problems in both ADMC

conditions in one of two ways to find alternative suggestions

that better align with their needs. They cycled through

the further offered suggestions for an alternative option or

reversed their current movement direction until a different

suggestion was offered.

3) Visualization: Overall, participants understood the dif-

ferent visualizations. Yet, difficulties arose in all three con-

ditions relating to depth perception and understanding if the

gripper is positioned correctly to pick or place the object.

Some participants suggested a “laser pointer” (P16) to indi-

cate the gripper’s position above the table for improved depth

perception. This is a known problem for robot teleoperation.

In the past, researchers have suggested and explored AR

Visual Cues to counter that, which include similar approaches

as the ones mentioned by our participants [24], [25].

Interestingly, some participants “manipulated” the second

mode of Classic (X- and Y-Translation) to mimic this effect,

as that mode shows straight up- and downward pointing

arrows as directional cues along the y-axis.

4) Multimodal Feedback: As described above, most par-

ticipants used Threshold as intended, switching to the next

suggestion when they received the multimodal feedback.
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However, some participants experienced the haptic and audio

indicators as “irritating” (P20) or “weird and horrible” (P17).

The poignant statement “If I had to do this for five more

minutes, it would be too annoying.” (P7) reveals some

participants’ strong reactions to this control method. As a

possible mitigation, one participant suggested implementing

multiple thresholds of varying intensity instead of a singular

one that “instantly beeps loudly at me and says ’Do this

now!’” (P24).

5) Control vs. Comfort: Participants reported substantial

differences in the level of control and comfort between

Classic, Continuous, and Threshold. By nature, Classic of-

fers the highest control level but requires participants to

decide individually on every task step. In contrast, Threshold

allowed participants to perform tasks “entirely brainlessly”

(P16) and only press “forward, then A, then forward, then

A” (P17). Many participants expressed that they “felt too

directed by [Threshold]” (P8), attesting Continuous a higher

level of comfort or “freedom to experiment” (P24). Overall,

participants described Continuous as a reasonable compro-

mise or “the golden middle” (P14) between the comfortable

execution in Threshold and the high level of control in

Classic.

VI. DISCUSSION

Adaptive DoF mapping controls have already been indicated

to have benefits over classic methods [7], [8]. Yet, research

is still limited, and analysis of time-based dimensions of

directional cues is lacking. In this paper, we examined

to what extent the two ADMC methods, Continuous and

Threshold, differ from the Classic baseline – and each other

– in terms of task completion time, necessary mode switches,

perceived workload, and subjective assessment.

Significant results for all four metrics partially support our

initial hypotheses. Most strikingly, ADMC methods reduced

task completion time (H1) and mode switches (H2) by 50%

respectively compared to Classic. As previously suggested

by Kim et al., this establishes that ADMC methods lead to

faster and less involved execution of pick-and-place tasks [6].

These findings are in line with previous work [7], underlining

the benefits of ADMCs compared to Classic controls.

In contrast to previous results [8], our novel ADMC meth-

ods were able to significantly lower task completion time and

perceived workload compared to the Classic method. The

latter finding also partially supports H3. This highlights that

ADMCs which communicate the suggested recommendation

to the user – irrespective of timing – were able to increase

usability. Notably, the decreased workload of ADMCs is

particularly meaningful as the end goal should be the smooth

integration of robotic devices into people’s lives and work-

flows, not to add stress.

Turning to the second part of our analysis – contrasting

different time-based communication of feed-forward recom-

mendations – we found no significant differences in the

four metrics between Continuous and Threshold. The lack of

measurable differences between Continuous and Threshold

implies that both discrete and continuous communication of

movement suggestions allows users to use ADMC methods

efficiently. Insights gained by the results of the QUEAD

and our qualitative interviews corroborate these findings,

while the latter also helped to provide a more distinguished

analysis.

Overall, participants expressed a positive stance regarding

the ADMC methods. However, individual preferences vary

greatly between Continuous and Threshold. While some

participants preferred the higher level of control Continuous

allowed, others favored the comfortable execution possible

with Threshold. Consequently, future development of ADMC

methods should – in accordance with Burkolter et al. – in-

clude individualization options to increase comfort and end-

user acceptance [26]. Customizations would be particularly

beneficial for Threshold-based controls as participants re-

peatedly criticized the multimodal feedback. Allowing users

to adjust the modalities, the signal intensity, and even the

threshold itself may improve usability while still offering

the advantages of ADMC.

In contrast to expectations derived from our initial hy-

potheses, qualitative insights revealed that the Classic con-

trol method could still be a valuable addition in specific

situations. Participants felt an apparent lack of control when

the ADMC suggestions did not match their expectations. To

improve usability, ADMC methods could incorporate static

suggestions for certain situations. A potential way to address

this could be combining ADMC and static suggestions using

only the most common input-DoFs.

However, further experimental studies are needed to dis-

entangle exactly which factors shape personal preferences

and how customizations or crossover methods can deliver

the best results.

A. Limitations

We explored the proposed ADMC methods in a VR simu-

lation environment. While the usage of virtual simulations

in industrial settings has been successfully established [27],

[28], [29], future work should confirm if our promising

findings can be replicated in the real world with a physical

robot.

VII. CONCLUSIONS

Our ADMC methods Continuous and Threshold are promis-

ing approaches to communicate proposed directional cues

effectively. We extend our previous work [8] by demon-

strating that ADMCs significantly reduce task completion

time (1), the average number of necessary mode switches

(2), and the perceived workload of the user (3). Further,

we establish that Continuous and Threshold perform equally

well in quantitative measures while qualitative insights reveal

individual preferences.

The observations of this study provide valuable implica-

tions for any HRI researcher involved in designing novel

ADMC methods for human-robot collaborative settings. Fu-

ture work should focus on disentangling quantitative and

qualitative feedback of focus groups to develop optimal robot

motion control methods, thus increasing usability, safety and

– ultimately – end-user acceptance.
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