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Abstract—Assistive robots have the potential to support 

people with disabilities in their Activities of Daily Life. The 

drinking task has a high priority and requires constant 

assistance by caregivers to be executed regularly. Due to 

incapacitating disabilities such as tetraplegia, which is the 

paralysis of all limbs, affected people cannot use classic control 

interfaces such as joysticks. This paper presents a robotic 

solution to enable independent, straw-less drinking using a 

smart cup and no physically attached elements on the user. The 

system's hardware and software components are presented and 

the overarching control scheme described. The cup approaches 

the mouth utilising a user-friendly and vision-based robot 

control based on head pose estimation. Once contact has been 

established, the user can drink by tilting the cup with a force 

sensor-based control setup. Two experimental studies have been 

conducted, where the participants (mostly able-bodied and one 

tetraplegic), could separately experience the cup’s contactless 
approach and the contact-based sequence. First results show a 

high user acceptance rate and consistent positive feedback. The 

evaluation of internal data showed a high reliability of the 

safety-critical components with the test groups perceiving the 

system as intuitive and easy to use. 

Keywords—assistive robots, human-robot interaction, force 

control, head pose estimation 

I. INTRODUCTION 

People suffering from a severe disability, like tetraplegia, 
have difficulties performing Activities of Daily Living 
(ADLs). Tetraplegia is the paralysis of four limbs, thus 
limiting voluntary motor function of everything below the 
neck and, even though the treatment of paralysis has 
undergone great progress, people require the assistance of a 
caregiver to perform ADLs [1]. 

Assistive robotic manipulators have the potential to 
support individuals with tetraplegia to regain some of their 
independency in performing ADLs. One example is the 
wheelchair-mounted robotic manipulator FRIEND, which 
was used as a personal assistant for a tetraplegic end-user in 
performing ADLs and tasks in a working environment [2, 3]. 
A survey with potential end-users of robotic manipulators 
shows that drinking and eating are highly prioritized tasks [4]. 

This paper presents a robotic solution as an attempt to 
enable a person with tetraplegia to independently perform a 
drinking task using a cup, without external human aide and 
without any physically user-attached elements. The drinking 
task is executed without a straw or similar device and must 
therefore be accomplished with contact between the user and 
the robot-handled cup. The goal to be achieved, is to give the 
user a feeling of sovereignty over their own drinking and the 
perception of performing the drinking themselves, as opposed 
to being served a drink. First results and user feedback based 
on two small studies are presented. 

The main contribution of the presented work is a 
consistent, user-friendly, and fully flexible concept of control 
with the human in the loop as opposed to a system using 
predefined positions. This allows a safe and intuitive human-
robot interaction. The drinking is fully personalised with the 
user gaining control and comfort using natural head 
movements for the delivery of the cup to the mouth, and 
achieving adaptive control of the drinking process using cup-
mounted force sensors. 

The paper is organized as follows: In section II, related 
work is reviewed. Section III describes the proposed 
framework and Section IV presents the experimental results 
and the evaluation. Finally, Section V discusses the 
conclusion with directions for future work. 

II. RELATED WORK 

An important topic in assistive robotics is Human-
Machine Interfaces (HMIs), as users are often restricted in 
their movements and standard computer interfaces might not 
be usable. Based on a study using a vision-guided robot arm, 
[5] shows that many systems are too complicated for their 
respective end-users who have to follow tedious HMI-
sequences. It also shows that systems should adopt higher 
velocities when not close to the user to minimise waiting times 
and user frustration. 

Various systems have been developed within the field of 
assistive robotics, most of them based on a Wheelchair 
Mounted Robot Arm (WMRA). For example, the FRIEND 
systems I-IV [2] where FRIEND IV was capable of enabling 
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a tetraplegic person to work as a librarian. The used HMI 
consists of a set of buttons operated by the user with head 
motions, a chin joystick, and a monitor for system feedback. 
This setup can be seen as a head operated computer mouse 
which allows the user to move and click with a cursor on the 
monitor to control the wheelchair and WMRA.  Previous 
versions also addressed the drinking task, but were for safety 
reasons restricted to drinking with a straw [3]. 

Another approach to assistive drinking shown by [6] uses 
a Brain-Machine Interface (BMI) to control a robotic 
manipulator holding a cup for drinking without a straw. An 
externally mounted RGB-D camera is used to estimate the 
user9s mouth by applying a golden-ratio approach on the 
detected face, thus bypassing issues of face occlusion by the 
cup and the robot. The user controls the scenario by giving 
GO-signals via the BMI and can thereby accelerate or stop the 
procedure in seven discrete predefined steps. 

Moreover, hands-free human-robot interfaces could be 
used to assist individuals suffering from tetraplegia. Two 
interfaces using eye gestures [7] and Brain-Computer 
Interface (BCI) [8] have been developed to allow users with 
tetraplegia to control a 7 Degrees-of-Freedom (DoF) robotic 
arm and its gripper. A manipulation task was selected to 
evaluate both interfaces for the robot control. For research 
purposes the robotic degree of automation was set to zero, thus 
the user had to control the entire process step by step. It was 
shown that this kind of robot control burdens the user with 
high cognitive load due to the fast response needed during the 
drinking process. 

III. PROPOSED METHOD 

This section proposes a solution to the drinking task with 
contact between the user and the cup, maintaining user safety 
as an active element inside the loop and without using 
predefined steps. The drinking procedure is divided in two 
consecutive sequences which are individually described 
below: 

- The 8Vision-based Robot Control to Serve a Drink9 
handles the delivery of a grasped cup to the user9s 
mouth based on camera input, whereas 

- the 8Robot Force Control for the Drinking Process9 
deals with the process of tilting the cup based on the 
force applied onto the cup by the user, thus enabling 
drinking. 

A. Hardware Setup 

The Kinova Jaco 2 [9] 7-DoF spherical ultra-lightweight 
robotic arm with a three-finger gripper attached as the end-
effector (Fig. 1a) is used as the main assistive robotic 
manipulator. The Jaco 2 has been specifically designed for use 
as an assistive robot and has been thoroughly tested in a 
scientific context [10]. 

The robot arm grasps a smart cup (Fig. 1b), developed in 
previous work [11], consisting of a feeding cup with a beak, 
two force sensors, and a Bluetooth module which wirelessly 
transmits the force values to the operating computer. The 
force sensors are attached to the beak of the cup, just above 
and below the mouth piece. In the context of this work, the 
beak of the mouth piece is considered as the cup9s origin. 

An Intel Realsense Depth Camera D435 [12] is selected as 
the vision sensor and is mounted on the robot9s end-effector 
between the gripper and the last joint using a smooth 3D-
printed attachment clamp. The vision sensor is USB powered 
and provides RGB-D (Red Green Blue - Depth) information 
of the scene ahead, with an RGB resolution of up to 
1920x1080 pixels and a depth sensor range between 0.105 m 
and 10 m. The short distance between the camera and the 
robot9s end-effector minimises the occlusion of the scene by 
the manipulator, as only the smart cup and the gripper9s 
fingertips can be seen obstructing the scene. For this 
application, the camera is configured to allow minimal depth 
measurements, thus being able to detect the distances of 
objects right up to the tip of the cup. 

A UNIX computer is used to combine all systems, 
interpret the sensor data and control the robot manipulator 
accordingly. The proposed system is developed on Robot 
Operatic System (ROS) [13]. 

B. Vision-based Robot Control to Serve a Drink 

The concept of vision-based robot control, which is used 
to serve a drink, is shown in Fig. 2. The main idea is that the 
robot delivers the smart cup to the user9s mouth using data 
gathered by the vision sensor. The information from the vision 
sensor is processed by the following modules: Vision-based 
User Face Detection and Tracking, Head Pose Estimation, and 
Mouth Pose Estimation. The task control module calculates 
the necessary robot action based on the mouth pose estimation 
and the robot pose, and controls the robot accordingly. 
Furthermore, the task control module uses the force data from 
the smart cup to ensure safe human-robot interaction. The 
modules in Fig. 2 are explained in detail as follows. 

 

Fig. 2. Vision-based Robot Control to Serve a Drink   

1. Face Detection and Tracking 

The frontal-face detector of the dlib open source library 
[14] is used to search the 2D RGB-data of the vision sensor 
(camera) for a human face in order to detect the user. This 

  

a b 

Fig. 1. The hardware components a) assistive robotic manipulator with 

vision sensor, b) smart cup with force sensors [11] 
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detector is based on linear Support Vector Machine (SVM) 
using features of Histograms of Oriented Gradients (HOG) 
and has been trained on images of frontal faces from the 
Labeled Faces in the Wild database [15]. The output of this 
module is the 2D bounding box of the user9s face. 

In case the face is not detected, but information about a 
recent valid face detection from a previous iteration is 
available, a Discriminative Correlation Filter with Channel 
and Spatial Reliability (CSR-DCF) tracker [16] is used to 
estimate the bounding box of the face. This tracker compares 
the frequency domain of the relevant area and compares it to 
its surroundings to determine an object9s movement in a 
sequence of frames. 

2. Head Pose Estimation 

Based on the detected user's face, a predefined 3D model 
of a human face is aligned with the data by applying an active 
shape model [17] based approach. The model is fitted by 
applying a cascade of regression trees, which have been 
previously trained on the 300-W dataset with 68 landmarks 
per face [18]. 

Using the landmark knowledge of the predefined 3D 
model, a PnP solution is calculated based on the RANSAC 
paradigm [19]. The result is a 3D position and orientation for 

the camera reference system ( �þ� ) in relation to the landmark 
coordinate system with the mouth at its origin. The head pose 

in relation to the world reference frame ���  can be calculated 

by applying (1), with ���  as the transformation of the robot9s 
end-effector reference to the world reference system as result 

of the direct kinematics, and �þ�  as the transformation of the 
camera reference system to the robot9s end-effector system as 
defined by the rigid connection of the attachment clamp.   ��� =  ��� ∙ �þ� ∙ ( �þ� )−1  (1) 

The final head pose is validated twice to ensure user 
safety. This is done by partially reversing the previous 
procedure, thus reprojecting the face landmarks of the final 
pose onto the image plane of the camera. This projection 
outputs new 2D landmarks which are compared to the 
equivalent landmark projection of the fitted active model. If 
the error is too large, a misdetection is assumed and the pose 
is omitted. The second validation is performed in case 
information about the user9s pose is available from previous 
iterations, by comparing this prior information to the most 
recently calculated user pose. If either the orientation or the 
position shows major changes, the chances of an error are 
raised and the head pose is again omitted for a higher user 
safety. 

Even though not intended by the user, it is possible that 
they move their head too much during two iterations, thus 
causing the second validation step to fail. This behaviour is 
intended for an increased user safety, as the situation is 
considered dangerous if too much user movement occurs and 
the possibility of false detections rises. 

3. Mouth Pose Estimation 

After the head pose has been estimated successfully, the 

pose ���  of the mouth with respect to the world reference 
frame can be directly derived from the result as shown in (2), 
because both poses share the same reference system and the 
user9s mouth as their origin. 

  ��� =  ���   (2) 

When the robot is advanced close to the user (distance 
between the beak and the mouth is approx. 5cm), the head 
pose cannot be estimated anymore. Therefore, another method 
to estimate the mouth pose is developed in this work. The 
proposed mouth pose estimation calculates a result based on 
information gathered in previous iterations and predefined 
knowledge of the underlying path control logic, by comparing 
the previously tracked position of the mouth with an updated 
prediction. Two assumptions are considered: 

1. If they want to drink, the user does not move, and 

2. the robot moves the smart cup in a direct path towards 
the mouth. 

The first assumption is only a minor constraint on the 
user9s behalf as they would also refrain from moving if 
another person served them instead of a robot; and the second 
assumption is system-defined. If the user were allowed to 
move and this assumption were not made, the user9s mouth 
position would be undefined until the transformation is 
available again. This would result in a safety-critical situation. 

Using those two assumptions, an estimation of the 
mouth9s position with respect to the camera can be calculated. 
Initially, the position obtained by previous head pose 
estimations is used and adjusted afterwards, while the position 
change of the camera is known by applying the robot9s direct 
kinematics. The vector between this new camera pose and the 
previous head pose is then scaled, such that its length 
corresponds to a selection of distance values measured by the 
vision sensor. 

The calculated position of the mouth is reprojected into the 
image plane. From the projected landmark points, a bounding 
box of the mouth-and-nose-region is calculated. In the 
meantime, a CSR-DCF tracker [16] trained during previous 
head pose estimations tracks the same region based entirely 
on RGB information and also introduces a bounding box. The 
resulting rectangles of both bounding boxes are compared 
with respect to their relative overlapping area. If the area 
exceeds a predefined threshold, it is assumed that the correct 
position of the mouth is known, and thus the position of the 
mouth is accepted. 

The result of the head and mouth pose estimation is shown 
in Fig. 3 with the 3D-landmarks as red dots and the resulting 
pose as a color-coded coordinate system (red = x-axis, 
green = y-axis, blue = z-axis) at the user9s mouth. A white 
rectangle represents the area used to calculate the safety-
critical user distance. 

 

Fig. 3. Result of the Head and Mouth Pose Estimation with 3D-landmarks 

(red dots) and coordinate system (red = x-axis, green = y-axis, blue = z-axis) 
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In the event that the threshold is not met, it is implied that 
either the user has moved or another error has occurred. In 
either case, reliable information cannot be assumed and the 
calculated mouth pose is discarded. This also cancels future 
mouth pose estimations until a new head pose has been 
identified and the tracker is redefined. 

4. Task Control 

As defined by the control concept, the robot control is 
based on head pose information. The task control module is 
designed based on an analogy of a human assistant who serves 
a cup to the user and reacts to the user9s head orientation. This 
results in the cup being brought to the user9s mouth only if the 
head is oriented towards the cup. If this orientation is not 
given, the robot motion is stopped and, after a small delay, 
reversed towards a predefined home position of the robot. 

When the head of the user is oriented towards the cup and 
the cup is within a predefined field of view with angle θ (in 
this work θ = 15°) in either direction of the user9s central z-
axis, the robot moves the cup on a smooth and parabolic 
trajectory towards the mouth. The goal of this process can be 

described by (3) with �ý�  as the pose of the cup9s beak in 
relation to the world reference frame.   ��� =  �ý�   (3) 

The pose of the beak �ý�  can be calculated using the direct 
kinematics of the manipulator and structural information 
about the grasped cup as shown in (4).   �ý� =  ��� ⋅ �ý�  (4) 

Fig. 4 shows an example path (purple) for the end-effector 
during the cup9s approach towards a user with the respective 
coordinate systems of the user and the end-effector (red = x-
axis, green = y-axis, blue = z-axis), and the θ-based field of 
view. Following a parabolic path, the cup initially converges 
towards the z-axis of the mouth before closing the distance. 
Once the cup has reached a distance of less than 5 cm to the 
mouth, the path is no longer defined by parabolic curves but 
moves the cup on a straight path directly to the user9s mouth. 
The task control module sends velocity commands to the 
robot, in order to control it along the path. 

 

Fig. 4. Example path of the cup9s approach 

Moreover, in case the force sensors detect a contact at any 
point before the mouth is reached, the approach is stopped. If 
the contact has been initiated intentionally, the second 
sequence of the drinking process commences. (section III.C). 

If, at any point, no head pose information is available, or 
if the user9s orientation does not meet the requirements, the 
advance of the cup towards the user is stopped. If not updated 
within a short time period, the cup is retracted towards the 
home position, while the camera remains oriented towards the 
last known head position, thus enabling the user to regain 
control at any given point. The home pose is defined in a way 
that the user9s head is seen by the camera in a standard 
scenario. 

C. Robot Force Control for the Drinking Process 

Once the smart cup, controlled by the vision-based robot 
control (Section III.B), gets close to the user9s mouth, the 
force controller is initialised to enable the drinking process. 
The objective of this controller is to support the active 
drinking task wherein the user interacts with the smart cup by 
applying force to the force sensors (shown in Fig. 1b). Fig. 5 
presents an overview of the force control for the drinking 
process. The inputs of this controller are the values read by the 
two force sensors on the cup and the current pose of the robot. 
The output is the Cartesian velocity command supplied to the 
robot. The controller drives the cup along a vertical plane 
which runs along the nose of the user, perpendicular to the 
face, to emulate a natural drinking motion. 

 

Fig. 5. Overview of force control for the drinking process 

When the user applies force on the back sensor (Force_B), 
the cup9s beak rotates down by a discrete angle (i.e.: feed 
motion). When the user applies force on the front sensor 
(Force_F), the cup9s beak rotates up by a discrete angle (i.e.: 
non-feed motion). When forces are applied on both sensors 
simultaneously, the cup initiates a fall-back motion, moving 
laterally away from the user and stopping at the home 
position. The drinking task is completed. 

To achieve this behaviour, three threshold values are 
defined for each of the force sensors: 

• Trigger threshold - 0.5 N - Minimum amount of 
force to be applied to either sensors to trigger the 
respective action. Allows for slight pressure exerted 
when user swallows water. 
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• Fall-back threshold – 1.0 N – Simultaneous force 
required on both sensors to initiate fall-back. 

• Safety threshold - 2.5 N - Maximum amount of force 
allowed to be exerted before an emergency halt is 
issued to the robot, stopping all motion. 

This control schema is initially build based on intuition and 
available hardware. The next section explains how it was 
tested and proven to be effective. 

IV. EXPERIMENTAL RESULTS AND EVALUATION 

Two small studies were conducted: the first to evaluate the 
safety and usability of vision-based robot control and the 
second to evaluate the general usability of the force-controlled 
feeding system. 

At the end, each user was presented with a general 
feedback questionnaire based on a 5-point Likert scale. The 
questions are agreement based and the Likert scale ranges 
from 1 (<strongly disagree=) to 5 (<strongly agree=). All 
participants gave their informed signed consent to participate 
in this study.   

A. Serving a Drink 

The first study is designed to evaluate the safety and 
usability of the cup serving scenario with the proposed 
solution. 25 users, one of whom is tetraplegic, participated in 
the experiments. The average age was 31.08 ± 14.55 years 
with a gender distribution of 13 males and 12 females (11 
able-bodied and one tetraplegic). The experiments were 
conducted individually and independently for each subject. 

Seven tasks were performed by each user. In each task, the 
smart cup is already grasped by the robot. The user is seated 
on a chair (or a wheelchair for the tetraplegic user) at a pre-
defined pose relative to the robot. The concept of control 
described in section III.B.1 is applied in each task. The tasks 
were as follows: 

0. The user freely tested the system for one minute to get 
familiar with it. 

1. The user constantly oriented their head towards the 
robot9s gripper, thus effectively commanding the robot to 
bring the cup to their mouth on a direct path. 

2. The user performed so-called abort actions: The robot 
advanced the cup towards the user, but the user aborted the 
task by turning their head away. When the robot detected such 
an abort action, it stopped and withdrew towards its home 
position. The user was encouraged to compare the abort 
actions as reactions to motions to the top, bottom, left, and 
right. 

3-6. The last four scenarios were performed with different 
starting positions for the robot and with the user imagining a 
standard drinking application, but also allowing themselves to 
become distracted once in a while to include an abort action. 

Fig. 6 shows the robot9s end-effector paths of five 
different users during scenario 1 with the home position in the 
top right and the users9 mouths on the left. Though every user 
sat on the same chair with a defined position relative to the 
robot, the pose of the mouth, and with it, the final position of 
the end-effector, differs vastly. This is due to a variety of 
reasons including different heights and head orientations and 

it shows the necessity of an adaptive system as proposed in 
this paper. 

 

Fig. 6. 3D paths of the robot9s end-effector for 5 selected users in task 1 

As the safety-critical elements during the cup serving 
sequence are mostly defined by the abort actions as well as the 
distance information obtained from the vision sensor and head 
pose estimation, these components are discussed in detail. 

The outcome of abort actions during scenario 2 was 
manually sorted into the three categories: successful, delayed, 
and failed. Actions were considered delayed if the system did 
not react immediately and failed if an emergency stop was 
pressed or the user was forced to change the current abort 
motion in order to cause a reaction of the system. The users 
performed between 3 and 24 abort actions each, with 214 
actions in total. Approximately 7 % of all actions were 
resolved with a delay and 4% of all actions failed, most of 
which occurred during upwards abort motions. The failing of 
upwards abort motions is caused by the fact that the cup 
already approached the user from above, which already 
requires an upwards tilting of the head. For the abort motion 
the users had to rotate their head very far upwards to use this 
specific abort action. 

For redundancy purposes, the distance between the cup 
and the user is obtained using two separate methods. While 
one method uses the result of the previously mentioned head 
pose estimation, the other one is based on averaged values of 
the depth image in the region of the face. The robot control 
logic uses both methods and compares their values to lie 
within a defined offset for a single redundancy check. To 
evaluate the two methods during the experiments, the values 
of sequence 1 are compared to a reference value, which is 
calculated as the remaining distance of the robot9s end-
effector to its final position. The results show an average error 
of 0.194 ± 0.038 m for the first method, and an average error 
of 0.142 ± 0.011 m for the second method respectively. The 
values show comparably high and constant systematic errors, 
which are mostly due to the offset of the final robot9s end-
effector position to the mouth. This offset is a known factor 
and taken into account by the control setup. The remaining 
random errors are very small and considered as such in terms 
of safety critical actions. 
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The participants were able to test the system thoroughly in 
a realistic scenario during the final four sequences and 
reported their feedback on a questionnaire afterwards. The 
results of the Likert scale are shown in Fig. 7 as the mean 
values across subjects. The feedback is positive throughout 
with a rapid user familiarisation and high acceptability. The 
previously mentioned issues with the abort actions to the top 
are only slightly reflected by users9 feedback. This is probably 
due to different home positions for the different tasks, thus not 
always approaching the user from above, but also from lower 
directions. The user feedback also shows a requirement to 
increase the velocity of the system. 

 

Fig. 7. Subjective user feedback for the first study 

The feedback of the tetraplegic user aligns with the 
feedback of the other participants and is very positive in total, 
even verbally referring to the system as her <favourite one=. 
As a very experienced user of assistive robotic systems, she 
did not express any concerns regarding safety or comfort, but 
instead listed the system as being rather too slow. Due to the 
user9s restricted motion capabilities, abort motions to one side 
were not possible, but all others worked without any 
problems. 

B. Drinking Process 

The experiments for the drinking process were conducted 
with 16 participants (15 able-bodied and one tetraplegic). The 
average age was 26 ± 10 years. Out of 16 participants, seven 
(six able-bodied and one tetraplegic) were females. The users 
were allowed a brief acclimatization period followed by an 
attempt at one full successful run for the drinking process, 
terminating in a fall-back. 

Fig. 8 shows the orientation of the end-effector in Euler 
angles (Fig. 8a) and the concurrent force sensor readings (Fig. 
8b) during one of the trials of the drinking process. These 
values were collected as output values of the manipulator for 
the experiments of each user. Force_B (red curve) crossing the 
trigger line (yellow line) causes an increment in the roll angle 
(feed motion) and Force_F (blue curve) crossing the trigger 
line causes decrement in the roll angle (non-feed motion). 
Both sensors crossing the trigger line causes the smooth 
decrement in the roll angle, which is the fall-back. The initial 
increment in the roll angle seen before any force input is a pre-
defined rotation for user convenience. 

 

Fig. 8. Plots of feeding experiment of one of the trials 

Since this is the second trial for the same user, the user is 
already familiar with the system, as evidenced by the fact that 
there are no overshoots above the pain threshold and that the 
user is able to manipulate the cup with only the minimum 
amount of force required. 

Some of the feedback provided by the subjects is 
summarized in Fig. 9 as the mean feedback across the 
subjects. It can be safely concluded from the analyses of Fig. 
8 and Fig. 9 that the force controller designed for the drinking 
process performs satisfactorily well. With regards to the 
drinking process, in alignment with the rest of the subjects, the 
tetraplegic user felt that the system was indeed comfortable 
and intuitive to use. She did have some critical feedback to 
provide, which forms the basis for some opportunities of 
further development: 

• She preferred to use a normal cup without a beak 

• She felt the need for a user-controlled emergency 

stop signal, such as a voice or eyes activated trigger. 

 

Fig. 9. User feedback 

V. CONCLUSION AND FUTURE WORK 

The proposed solution functions as a user-friendly and 

safe concept of control for an assistive drinking task with the 

user in the loop. The mechanical setup requires no physical 
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attachment on the user or in close proximity to them, thus 

allowing a flexible out-of-the-box usage with no preparations 

on the user9s side. 

The integration of all subsystems has been successful and 

first results could be obtained with potential users. The 

experiments show a high reliability of the safety-critical 

systems and quick responses on fall-back commands. The 

system has a high user acceptance and consistent positive 

feedback with an easy and intuitively perceived control 

scheme. 

Future work will focus on replacing the current smart cup 

with a standard cup without the beak, as requested by the 

tetraplegic user, and increasing the overall velocity of the 

system in situations that are not safety-critical. To implement 

a system capable of executing the whole drinking operation, 

the autonomous filling and grasping of the cup will be 

necessary, as well as defining a comfortable and safe home 

position for the robot. The complete system will be tested 

within a larger user study with a higher ratio of potential end-

users. 

ACKNOWLEDGMENT  

The research was supported by the German Federal 
Ministry of Education and Research (BMBF) as part of the 
project MobiLe (Physical Human-Robot-Interaction for 
Independent Living). The authors would like to thank all the 
persons involved, in particular the tetraplegic user, Mrs. Lena 
Kredel, who took part in both studies. 

REFERENCES 

[1]  W. Strubreither, M. Neikes, D. Stirnimann, J. Eisenhuth, B. Schulz 

und P. Lude, Klinische Psychologie bei Querschnittlähmung, 

Vienna: Springer, 2015. 

[2]  A. Graser, T. Heyer, L. Fotoohi, U. Lange, H. Kampe, B. Enjarini, S. 

Heyer, C. Fragkopoulos und D. Ristic-Durrant, „A supportive friend 
at work: Robotic workplace assistance for the disabled,< IEEE 

Robotics & Automation Magazine 20.4, pp. 148-159, 2013. 

[3]  I. Volosyak, O. Ivlev and A. Graser, <Rehabilitation robot FRIEND 
II-the general concept and current implementation,= 9th 

International Conference on Rehabilitation Robotics (ICORR), pp. 

540-544, 2005. 

[4]  C.-S. Chung, H. Wang und R. A. Cooper, „Functional assessment 

and performance evaluation for assistive robotic manipulators: 

Literature review,< The journal of spinal cord medicine. Vol 36. No. 

4, pp. 273-289, 2013. 

[5]  D.-J. Kim, R. Lovelett und A. Behal, „An empirical study with 
simulated adl tasks using a vision-guided assistive robot arm,< in 

IEEE International Conference on Rehabilitation Robotics (ICORR), 

2009. 

[6]  S. Schröer, I. Killmann, B. Frank, M. Völker, L. Fiederer, T. Ball 

und W. Burgard, „An autonomous robotic assistant for drinking,< 
IEEE International Conference on Robotics and Automation (ICRA), 

pp. 6482-6487, 2015. 

[7]  S. Alsharif, O. Kuzmicheva und A. Gräser, „Gaze Gesture-Based 

Human Robot Interface,< Technische Untersützungssysteme, die die 

Menschen wirklich wollen, p. 339, 2016. 

[8]  B. Mindermann, Untersuchung eines hybriden Brain-Computer 

Interfaces (BCIs) zur optimalen Auslegung als Mensch-Maschine-

Schnittstelle, University of Bremen, 2018. 

[9]  <KINOVA Gen2 Ultra lightweight robot,= [Online]. Available: 
https://www.kinovarobotics.com/en/products/robotic-arms/kinova-

gen2-ultra-lightweight-robot. [Accessed 1 Feb 2019]. 

[10] V. Maheu, P. S. Archambault, J. Frappier und F. Routhier, 

„Evaluation of the JACO robotic arm: Clinico-economic study for 

powered wheelchair users with upper-extremity disabilities,< IEEE 

International Conference on Rehabilitation Robotics (ICORR), pp. 

1-5, 2011. 

[11] T. L. Koller, M. Kyrarini und A. Gräser, „Towards robotic drinking 
assistance: Low cost multi-sensor system to limit forces in Human-

Robot-Interaction [accepted],< in 12th ACM International 

Conference on PErvasive Technologies Related to Assistive 

Environments (PETRA), Rhodos, Greece, 2019. 

[12] Intel Corporation, <Intel RealSense Depth Camera D435,= Intel, 
[Online]. Available: https://click.intel.com/intelr-realsensetm-depth-

camera-d435.html. [Accessed 1 February 2019]. 

[13] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. 

Wheeler und A. Y. Ng, „ROS: an open-source Robot Operating 

System,< in ICRA workshop on open source software. Vol. 3, No. 

3.2, Kobe, Japan, 2009, p. 5. 

[14] D. E. King, „Dlib-ml: A Machine Learning Toolkit,< Journal of 

Machine Learning Research, Bd. 10, pp. 1755-1758, 2009. 

[15] G. B. Huang, M. Ramesh, T. Berg und E. Learned-Miller, Labeled 

Faces in the Wild: A Database for Studying Face Recognition in 

Unconstrained Environments, Amherst: University of 

Massachusetts, 2007. 

[16] A. Lukezic, T. Vojir, L. C. Zajc, J. Matas und M. Kristan, 

„Discriminative Correlation Filter With Channel and Spatial 
Reliability,< The IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR), pp. 6309-6318 , 2017. 

[17] T. F. Cootes, C. J. Taylor, D. H. Cooper und J. Graham, „Active 
shape models-their training and application,< Computer vision and 

image understanding, Bd. 61, Nr. 1, pp. 38-59, 1995. 

[18] C. Sagonas, E. Antonakos, G. Tzimiropoulos, S. Zafeiriou und M. 

Pantic, „300 faces in-the-wild challenge: Database and results,< 
Image and vision computing. Volume 47, pp. 3-18, 2016. 

[19] M. A. Fischler und R. C. Bolles, „Random Sample Consensus: A 
Paradigm for Model Fitting with Applications to Image Analysis and 

Automated Cartography,< Commun. ACM Vol. 24 No. 6, pp. 381-

395, Juni 1981. 

 

 

Authors´ accepted version. © IEEE https://doi.org/10.1109/ICORR.2019.8779521


