Universität Bremen  
  FB 3  
  AG BKB > Publikationen > Suche > Deutsch
English
 

Suche nach Veröffentlichungen - Detailansicht

 
Art der Veröffentlichung: Artikel in Konferenzband
Autor: Jesse Richter-Klug, Udo Frese
Titel: Towards Meaningful Uncertainty Information for CNN Based 6D Pose Estimates
Buch / Sammlungs-Titel: International Conference on Computer Vision Systems
Seite(n): 408 – 422
Erscheinungsjahr: 2019
Verleger: Springer
Abstract / Kurzbeschreibung: Image based object recognition and pose estimation is nowadays a heavily focused research field important for robotic object manipulation. Despite the impressive recent success of CNNs to our knowledge none includes a self-estimation of its predicted pose’s uncertainty.

In this paper we introduce a novel fusion-based CNN output architecture for 6d object pose estimation obtaining competitive performance on the YCB-Video dataset while also providing a meaningful uncertainty information per 6d pose estimate. It is motivated by the recent success in semantic segmentation, which means that CNNs can learn to know what they see in a pixel. Therefore our CNN produces a per-pixel output of a point in object coordinates with image space uncertainty, which is then fused by (generalized) PnP resulting in a 6d pose with 6×6 covariance matrix. We show that a CNN can compute image space uncertainty while the way from there to pose uncertainty is well solved analytically. In addition, the architecture allows to fuse additional sensor and context information (e.g. binocular or depth data) and makes the CNN independent of the camera parameters by which a training sample was taken.
Internet: https://link.springer.com/chapter/10.1007/978-3-030-34995-0_37
PDF Version: http://www.informatik.uni-bremen.de/agebv2/downloads/published/richterklugicvs19_final.pdf
Status: Reviewed
Letzte Aktualisierung: 07. 02. 2022

 Zurück zum Suchergebnis
 
   
Autor: Automatisch generierte Seite
 
  AG BKB 
Zuletzt geändert am: 9. Mai 2023   impressum