Universität Bremen  
  FB 3  
  AG BKB > Publikationen > Suche > Deutsch
English
 

Suche nach Veröffentlichungen - Detailansicht

 
Art der Veröffentlichung: Artikel
Autor: Lutz Schröder, Dirk Pattinson
Titel: PSPACE Bounds for Rank-1 Modal Logics
Band: 10
Seite(n): 1 – 33
Zeitschrift: ACM Transactions on Computational Logic
Ausgabe: 2:13
Erscheinungsjahr: 2009
Abstract / Kurzbeschreibung: For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank-1 logics enjoy a shallow model property and thus are, under mild assumptions on the format of their axiomatisation, in PSPACE. This leads to a unified derivation of tight PSPACE-bounds for a number of logics including K, KD, coalition logic, graded modal logic, majority logic, and probabilistic modal logic. Our generic algorithm moreover finds tableau proofs that witness pleasant proof-theoretic properties including a weak subformula property. This generality is made possible by a coalgebraic semantics, which conveniently abstracts from the details of a given model class and thus allows covering a broad range of logics in a uniform way.
Internet: http://arxiv.org/abs/0706.4044
PDF Version: http://tocl.acm.org/accepted/352schroeder.pdf
Schlagworte: Modal logic coalgebra non-iterative majority probabilistic graded coalition PSPACE
Status: Reviewed
Letzte Aktualisierung: 18. 03. 2009

 Zurück zum Suchergebnis
 
   
Autor: Automatisch generierte Seite
 
  AG BKB 
Zuletzt geändert am: 9. Mai 2023   impressum