Logik für Informatiker Logic for computer scientists

What comes next?

Till Mossakowski

Beyond first-order logic

 many-sorted logic (variables, constants, predicates and functions have types)

E.g.: $\forall n : Nat \ \forall l : List \ head(cons(n, l)) = n$

Beyond first-order logic

 many-sorted logic (variables, constants, predicates and functions have types)

```
E.g.: \forall n : Nat \ \forall l : List \ head(cons(n, l)) = n
```

• partial function logic: D(f(x)) ("f(x) is defined")

w

Beyond first-order logic

 many-sorted logic (variables, constants, predicates and functions have types)

```
E.g.: \forall n : Nat \ \forall l : List \ head(cons(n, l)) = n
```

- partial function logic: D(f(x)) ("f(x) is defined")
- higher-order logic: $\forall f: s \to t \dots, \ \forall p: Pred(t) \dots$ $\forall u \forall v (Path(u, v) \leftrightarrow \forall R \ \{ [\forall x \forall y \forall z (R(x, y) \land R(y, z) \to R(x, z)) \land \forall x \forall y (Direct Way(x, y) \to R(x, y))] \rightarrow R(u, v) \})$

Modal and temporal logics

modal logic:

```
\Box P ("necessarily P") and \Diamond P ("possibly P") Other readings of \Box P: It ought to be that P It is known that P It is provable that P Always P (temporal logic)
```

Modal and temporal logics

modal logic:

```
\Box P ("necessarily P") and \Diamond P ("possibly P") Other readings of \Box P: It ought to be that P It is known that P It is provable that P Always P (temporal logic)
```

• temporal logic: $\Box P$ ("always in the future, P"), $\Diamond P$ ("sometimes in the future, P"), and $\bigcirc P$ ("in the next

step, P'')
e.g. $\Box bank_account > 0$ (very unrealistic)

Further modal and temporal logics

• temporal logic of actions (TLA): $\Box[state' = f(state)]_{state}$ read: always in the future, either the state does not change, or the next state is f applied to the previous state

Further modal and temporal logics

- temporal logic of actions (TLA): $\Box[state' = f(state)]_{state}$ read: always in the future, either the state does not change, or the next state is f applied to the previous state
- dynamic logic:

```
[p]P ("after every run of program p, P holds")  P ("after some run of program p, P holds")
```

Ü

Further modal and temporal logics

- temporal logic of actions (TLA): $\Box[state' = f(state)]_{state}$ read: always in the future, either the state does not change, or the next state is f applied to the previous state
- dynamic logic:

```
[p]P ("after every run of program p, P holds")  P ("after some run of program p, P holds")
```

spatial logics:

More exotic modal logics

ullet agent logics, e.g. ATL: agents A and B have the possibility to make a telephone call, if they cooperate

More exotic modal logics

- ullet agent logics, e.g. ATL: agents A and B have the possibility to make a telephone call, if they cooperate
- logics for security, e.g. ABLP: $A \ controls \ P$ ("agent A has the permission to perform action P")

Logics for knowledge representation/semantic web

• description logics, e.g. \mathcal{ALC} : $Elephant \doteq Mammal \sqcap \exists bodypart.Trunk \sqcap \forall color.Grey$ abbreviates $\forall x[Elephant(x) \leftrightarrow (Mammal(x) \land \exists y(bodypart(x,y) \land Trunk(y))$ $\land \forall z(color(x,z) \rightarrow Grey(z)))]$

Multi-valued logics

 three-valued logics: truth values are true, false, and undefined

Multi-valued logics

- three-valued logics: truth values are true, false, and undefined
- object constraint logic (OCL)
 (for UML the unified modeling language)
 - -- Managers get a higher salary than employees inv Branch2:
 - self.employee->forall(e | e <> self.manager
 implies self.manager.salary > e.salary)

Multi-valued logics (cont'd)

• fuzzy logic: truth values in the interval [0,1] correspond to different degrees of truth (e.g. Peter is quite tall, is very tall)

Even more exotic logics

paraconsistent logics

for databases, local inconsistency is o.k. and should not lead to global inconsistency

Even more exotic logics

- paraconsistent logics
 - for databases, local inconsistency is o.k. and should not lead to global inconsistency
- non-monotonic logics

new facts make previous arguments invalid, e.g.

$$Bird(x) \vdash CanFly(x)$$

 $\{Bird(x), Penguin(x)\} \vdash \neg CanFly(x)$

Even more exotic logics

- paraconsistent logics
 - for databases, local inconsistency is o.k. and should not lead to global inconsistency
- non-monotonic logics

new facts make previous arguments invalid, e.g.

$$Bird(x) \vdash CanFly(x)$$

 $\{Bird(x), Penguin(x)\} \vdash \neg CanFly(x)$

linear logic (resource-bounded logic)

$$A \otimes A \vdash B$$

(we can prove B when we are allowed to use A twice)

Why do we need so many logics?

- different aspects of the complex world / of software systems
- one "big" logic covering everything would be too clumsy
- good news: most of the logics are based on propositional or first-order logics
- most of the logics have central notions in common

 A notion of language (or vocabulary of symbols, or signature)

- A notion of language (or vocabulary of symbols, or signature)
- A syntax for sentences

- A notion of language (or vocabulary of symbols, or signature)
- A syntax for sentences
- A notion of model

- A notion of language (or vocabulary of symbols, or signature)
- A syntax for sentences
- A notion of model
- A notion of satisfaction, i.e. $M \models P$ (read: "M satisfies P", or "P holds in M")

w

- A notion of language (or vocabulary of symbols, or signature)
- A syntax for sentences
- A notion of model
- A notion of satisfaction, i.e. $M \models P$ (read: "M satisfies P", or "P holds in M")
- A calculus $\mathcal{T} \vdash P$ (read "P is provable from \mathcal{T})

• logical consequence: $\mathcal{T} \models P$ iff for all models M with $M \models \mathcal{T}$, also $M \models P$

- logical consequence: $\mathcal{T} \models P$ iff for all models M with $M \models \mathcal{T}$, also $M \models P$
- logical validity: $\models P$ iff for all models M, also $M \models P$

Ü

- logical consequence: $\mathcal{T} \models P$ iff for all models M with $M \models \mathcal{T}$, also $M \models P$
- logical validity: $\models P$ iff for all models M, also $M \models P$
- satisfiability: \mathcal{T} is satisfiable iff there is some M with $M \models \mathcal{T}$

- logical consequence: $\mathcal{T} \models P$ iff for all models M with $M \models \mathcal{T}$, also $M \models P$
- logical validity: $\models P$ iff for all models M, also $M \models P$
- satisfiability: \mathcal{T} is satisfiable iff there is some M with $M \models \mathcal{T}$
- ullet formal consistency: ${\mathcal T}$ is formally consistent iff ${\mathcal T} \not\vdash P$ for some P

- logical consequence: $\mathcal{T} \models P$ iff for all models M with $M \models \mathcal{T}$, also $M \models P$
- logical validity: $\models P$ iff for all models M, also $M \models P$
- satisfiability: \mathcal{T} is satisfiable iff there is some M with $M \models \mathcal{T}$
- formal consistency: \mathcal{T} is formally consistent iff $\mathcal{T} \not\vdash P$ for some P
- soundness of the calculus: $\mathcal{T} \vdash P$ implies $\mathcal{T} \models P$

- logical consequence: $\mathcal{T} \models P$ iff for all models M with $M \models \mathcal{T}$, also $M \models P$
- logical validity: $\models P$ iff for all models M, also $M \models P$
- satisfiability: \mathcal{T} is satisfiable iff there is some M with $M \models \mathcal{T}$
- formal consistency: \mathcal{T} is formally consistent iff $\mathcal{T} \not\vdash P$ for some P
- soundness of the calculus: $\mathcal{T} \vdash P$ implies $\mathcal{T} \models P$
- (sometimes) completeness: $\mathcal{T} \models P$ implies $\mathcal{T} \vdash P$

Multi logic systems

- The central notions common to all logics can be axiomatized
- Based on this meta-notion, multi-logic systems can be defined
- In Bremen, we also develop multi-logic tools

Next semester

Modal logic for computer scientists

MMISS evaluation of this course

Please (anonymously) fill out the questionaire and return it to us! (MZH 8070)

Abgabe der Übungsaufgaben

bis 28. Februar 2006