Logik für Informatiker Logic for computer scientists

Quantifiers

Till Mossakowski

Motivating examples

```
\forall x \; Cube(x) \; (\text{``All objects are cubes.''})
\forall x \; (Cube(x) \rightarrow Large(x)) \; (\text{``All cubes are large.''})
\forall x \; Large(x) \; (\text{``All objects are large.''})
```

$$\exists x \ Cube(x)$$

"There exists a cube."

$$\exists x \ (Cube(x) \land Large(x))$$

"There exists a large cube."

The four Aristotelian forms

All P's are Q's. $\forall x(P(x) \rightarrow Q(x))$ Some P's are Q's. $\exists x(P(x) \land Q(x))$ No P's are Q's. $\forall x(P(x) \rightarrow \neg Q(x))$ Some P's are not Q's. $\exists x(P(x) \land \neg Q(x))$

Note:

 $\forall x(P(x) \to Q(x))$ does not imply that there are some P's. $\exists x(P(x) \land Q(x))$ does not imply that not all P's are Q's.

First-order signatures

A first-order signature consists of

- a set of predicate symbols with arities, like $Smaller^{(2)}, Dodec^{(1)}, Between^{(3)}, \leq^{(2)}$, including propositional symbols (nullary predicate symbols), like $A^{(0)}, B^{(0)}, C^{(0)}$, (written uppercase)
- its names or constants for individuals, like a,b,c, (written lowercase)
- its function symbols with arities, like $f^{(1)}, +^{(2)}, \times^{(2)}$.

Usually, arities are omitted.

In the book, the terminology "language" is used. "Signature" is more precise, since it exactly describes the ingredients that are needed to generate a (first-order) language.

Terms

$$t:=a$$
 constant $t:=x$ variable $|f^{(n)}(t_1,\ldots,t_n)|$ application of function symbols to terms

Usually, arities are omitted.

$$F ::= p^{(n)}(t_1, \dots, t_n) \quad \text{application of predicate symbols} \\ | \bot \qquad \qquad \text{contradiction} \\ | \neg F \qquad \qquad \text{negation} \\ | (F_1 \land \dots \land F_n) \qquad \text{conjunction} \\ | (F_1 \land \dots \lor F_n) \qquad \text{disjunction} \\ | (F_1 \rightarrow F_2) \qquad \text{implication} \\ | (F_1 \leftrightarrow F_2) \qquad \text{equivalence} \\ | \forall \nu F \qquad \qquad \text{universal quantification} \\ | \exists \nu F \qquad \qquad \text{existential quantification}$$

The variable ν is said to be bound in $\forall \nu F$ and $\exists \nu F$.

Parentheses

The outermost parenthese of a well-formed formula can be omitted:

$$Cube(x) \wedge Small(x)$$

In general, parentheses are important to determine the scope of a quantifier (see next slide).

Free and bound variables

An occurrence of a variable in a formula that is not bound is said to be free.

$\exists y \; LeftOf(x,y)$	x is free, y is bound	
$(Cube(x) \land Small(x))$ $\rightarrow \exists y \ LeftOf(x,y)$	x is free, y is bound	
$\exists x \ (Cube(x) \land Small(x))$	Both occurrences of x are	
	bound	
$\exists x \ Cube(x) \land Small(x)$	The first occurrence of x is	
	bound, the second one is free	

Sentences

A sentence is a well-formed formula without free variables.

 \bot $A \wedge B$

 $Cube(a) \vee Tet(b)$

 $\forall x \ (Cube(x) \rightarrow Large(x))$

 $\forall x \ ((Cube(x) \land Small(x)) \rightarrow \exists y \ LeftOf(x,y))$

Semantics of quantification

We need to fix some domain of discourse.

 $\forall x \ S(x)$ is true iff for every object in the domain of discourse with name $n, \ S(n)$ is true.

 $\exists x \ S(x)$ is true iff for some object in the domain of discourse with name n, S(n) is true.

Not all objects need to have names — hence we assume that for objects, names n_1, n_2, \ldots can be invented "on the fly".

The game rules

W

FORM	Your commitment	Player to move	Goal
P V Q	TRUE	you	Choose one of P, Q that
	FALSE	Tarski's World	is true.
$P \wedge Q$	TRUE	Tarski's World	Choose one of P, Q that
	FALSE	you	is false.
∃x P(x)	TRUE	you	Choose some \boldsymbol{b} that satisfies
\	FALSE	Tarski's World	the wff $P(x)$.
	TRUE	Tarski's World	Choose some \boldsymbol{b}
∀x P(x)	FALSE	you	that does not satisfy P(x).

Till Mossakowski: Ldgic WiSe 2005

¬P	either	 Replace ¬P by P and switch commitment.
P o Q	either	 Replace $P \rightarrow Q$ by $\neg P \lor Q$ and keep commitment.
$P \leftrightarrow Q$	either	 Replace $P \leftrightarrow Q$ by $(P \rightarrow Q) \land (Q \rightarrow P)$ and keep commitment.