Logik für Informatiker Logic for computer scientists

Till Mossakowski, Lutz Schröder

Overview

- Why is logic needed in computer science?
- Overview of the course
- The LPL book and software
- "Scheinkriterien"

Motivation

- formal specification and verification
- databases, WWW, artificial intelligence

- formal specification and verification
- databases, WWW, artificial intelligence
- algorithms & complexity

- formal specification and verification
- databases, WWW, artificial intelligence
- algorithms & complexity
- metatheory

- formal specification and verification
- databases, WWW, artificial intelligence
- algorithms & complexity
- metatheory
- (semi-)automated theorem proving

- formal specification and verification
- databases, WWW, artificial intelligence
- algorithms & complexity
- metatheory
- (semi-)automated theorem proving
- programming languages

• formal software and hardware development

- formal software and hardware development
- verification of existing software and hardware

- formal software and hardware development
- verification of existing software and hardware
- generation of test cases

- formal software and hardware development
- verification of existing software and hardware
- generation of test cases
- protocol verification, security (modal and temporal logics)

- formal software and hardware development
- verification of existing software and hardware
- generation of test cases
- protocol verification, security (modal and temporal logics)
- properties of telephone systems

- formal software and hardware development
- verification of existing software and hardware
- generation of test cases
- protocol verification, security (modal and temporal logics)
- properties of telephone systems
- Example: Pentium 4 arithmetic completely specified and verified with higher-order logic!

Motivation

- formal software and hardware development
- verification of existing software and hardware
- generation of test cases
- protocol verification, security (modal and temporal logics)
- properties of telephone systems
- Example: Pentium 4 arithmetic completely specified and verified with higher-order logic!
- Example: NASA uses logic for testing software

queries for web search; database queries (SQL)

- queries for web search; database queries (SQL)
- semantic web (XML-based)

- queries for web search; database queries (SQL)
- semantic web (XML-based)
- expert systems

- queries for web search; database queries (SQL)
- semantic web (XML-based)
- expert systems
- linguistics

Motivation

- queries for web search; database queries (SQL)
- semantic web (XML-based)
- expert systems
- linguistics
- Example: CYC is a very large knowledge base containing over 1.5 Million "facts, rules-of-thumb and heuristics for reasoning about the objects and events of everyday life"

 —the CYC inference engine uses first-order logic!

 if a graph property can be stated in monadic second-order logic, there is an efficient algorithm for it

- if a graph property can be stated in monadic second-order logic, there is an efficient algorithm for it
- complexity classes can be characterized by classes of logical formulas

- if a graph property can be stated in monadic second-order logic, there is an efficient algorithm for it
- complexity classes can be characterized by classes of logical formulas
- Example: the proof of NL=Co-NL was based on this
 - the hope is to push this further towards P=?NP

- set theory has been formalized in first-order logic
 - this serves as a foundations for all of mathematics and theoretical computer science

- set theory has been formalized in first-order logic
 - this serves as a foundations for all of mathematics and theoretical computer science
- Gödel's completeness theorem for first-order logic: semantics can be captured by formal proofs
 - even by machine-driven proofs!

- set theory has been formalized in first-order logic
 - this serves as a foundations for all of mathematics and theoretical computer science
- Gödel's completeness theorem for first-order logic: semantics can be captured by formal proofs
 — even by machine-driven proofs!
- Gödel's incompleteness theorem
 for first-order logic + induction:
 some essential pieces of mathematics and theoretical
 computer science cannot be captured by formal systems!

 logical properties of finite state machines can be automatically checked (model checkers)

- logical properties of finite state machines can be automatically checked (model checkers)
- more complex systems require semi-automated theorem proving

- logical properties of finite state machines can be automatically checked (model checkers)
- more complex systems require semi-automated theorem proving
- verification of proofs is easy and fully automatic

(Semi-)automated theorem proving

- logical properties of finite state machines can be automatically checked (model checkers)
- more complex systems require semi-automated theorem proving
- verification of proofs is easy and fully automatic
- Example: some theorem about Boolean algebras has been found by a computer

(Semi-)automated theorem proving

- logical properties of finite state machines can be automatically checked (model checkers)
- more complex systems require semi-automated theorem proving
- verification of proofs is easy and fully automatic
- Example: some theorem about Boolean algebras has been found by a computer
- Example: several math text books have been verified with a semi-automatic prover (and small but inessential errors have been found)

Many programming languages use logical and, or, not

- Many programming languages use logical and, or, not
- Prolog = programming in logic

- Many programming languages use logical and, or, not
- Prolog = programming in logic
- concentrates on what instead of how

- Many programming languages use logical and, or, not
- Prolog = programming in logic
- concentrates on what instead of how
- involves non-deterministic search

- Many programming languages use logical and, or, not
- Prolog = programming in logic
- concentrates on what instead of how
- involves non-deterministic search
- used for applications in linguistics and artificial intelligence

Motivation 11

Landscape of logics

Temporal logic

Prop ModalProp

Logic of programs

Spatial logic

FOL ModalFOL

HOL

Overview of the course

Overview of the course

- history of logic
- overview of logics for computer science
- propositional consequence
- Hintikka games
- propositional proofs
- resolution
- (semi-)automatic
 proving: SPASS, Isabelle

- first-order quantifiers
- first-order consequence
- multiple quantifiers
- first-order proofs, reslution
- induction, datatypes
- model theory
- soundness
- completeness
- applications, outlook

LPL book detailed introduction into first-order logic with many exercises

LPL book detailed introduction into first-order logic with many exercises

Tarski's world evaluate logical formulas within a blocks world

LPL book detailed introduction into first-order logic with many exercises

Tarski's world evaluate logical formulas within a blocks world

Fitch construct proofs

LPL book detailed introduction into first-order logic with many exercises

Tarski's world evaluate logical formulas within a blocks world

Fitch construct proofs

Boole construct truth tables

LPL book detailed introduction into first-order logic with many exercises

Tarski's world evaluate logical formulas within a blocks world

Fitch construct proofs

Boole construct truth tables

Grinder gives automatic feedback to your solutions (requires purchase of the book)

Rooms

- Monday 13:00 15:00 GW2 B1410
- Thursday 13:00 15:00 MZH Senatssaal (1400)
- Exercises inserted flexibly (bring your Laptops with you)
- Web:

http://www.tzi.de/~lschrode/teaching/Logic_e.htm

Scheinkriterien

- successful solution of 10 exercises from 7 different chapters, with deadlines as given in the course
 - o to be found in the LPL book
 - but: only those listed on the website, marked with grades
 - grade is average of 10 best solutions, but only as good as the best fitch solution
 - o groups of two students possible (20 exercises, same grade for both)
 - submitted to the Grinder or to us (depending on the exercise)
- and: in case of doubts, oral exam ("Fachgespräch")

Language, proof and logic

- for working with the Grinder, each student/group of two needs an own new book
- try easy exercises first, to reach the minimum of 10 (later on, you can improve: only the 10 best solutions count)
- only exercises with a successful report (by the Grinder or us) count
- the Grinder is always right (but some old versions of Fitch are buggy)

Language, proof and logic

- bulk ordering: 57,- Euros per book
- down payment: 10,- Euros