Resolution in Isabelle

Lutz Schröder

Resolution (mittels apply (rule ...)) eines Beweiszustandes

$$\llbracket P_1; \dots; P_n \rrbracket \Rightarrow P$$

mit einer Regel, in Isabelle-Notation

$$[\![R_1;\ldots;R_m]\!] \Rightarrow R,$$

vermöge eines Unifikators σ von R und P_i (d.h. $R\sigma = P_i\sigma$) führt zum neuen Beweiszustand

$$\llbracket P_1\sigma;\ldots;P_{i-1}\sigma;R_1\sigma;\ldots;R_m\sigma;P_{i+1}\sigma;\ldots;P_n\sigma\rrbracket \Rightarrow P\sigma.$$

Es werden also das Ziel und alle Unterziele gemäß σ spezialisiert, und das Unterziele $P_i\sigma$ wird durch neue Unterziele $R_1\sigma,\ldots,R_m\sigma$ ersetzt.

Falls P_i selbst von der Form $[Q_1; \ldots; Q_r] \Rightarrow Q$ ist (solche Unterziele treten etwa durch Anwendung der Implikationseinführungsregel impI

$$[A \Rightarrow B] \Rightarrow A \rightarrow B$$

auf), so wird stattdessen mit Q unifiziert (also $R\sigma = Q\sigma$, nicht $R_{\sigma} = P_{i}\sigma$) und die Annahmen Q_{1}, \ldots, Q_{r} des Unterziels P_{i} an die neu entstehenden Unterziele weitergegeben. Statt eines neuen Unterziels R_{j} erhält man also ein neues Unterziel

$$[\![Q_1\sigma;\ldots;Q_r\sigma]\!]\Rightarrow R_j\sigma.$$