
ESC/Java2
Use and Features

David Cok, Joe Kiniry, Erik Poll

Eastman Kodak Company, University College Dublin,

and Radboud University Nijmegen

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.1/??

The ESC/Java2 tool

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.2/??

Structure of ESC/Java2

ESC/Java2 consists of a
• parsing phase (syntax checks),
• typechecking phase (type and usage checks),
• static checking phase (reasoning to find potential

bugs) - runs a behind-the-scenes prover called
Simplify

Parsing and typechecking produce cautions or errors .

Static checking produces warnings .

The focus of ESC/Java2 is on static checking, but
reports of bugs, unreported errors, confusing
messages, documentation or behavior, and even just
email about your application and degree of success are
Very Welcome. [and Caution: this is still an alpha
release]

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.3/??

Running ESC/Java2

• Download the binary distribution from
http://www.cs.kun.nl/sos/research/escjava

• Untar the distribution and follow the instructions in
README.release about setting environment variables.

• Run the tool by doing one of the following:
• Run a script in the release: escjava2 or escj.bat
• Run the tool directly with java -cp esctools2.jar

escjava.Main , but then you need to be sure to
provide values for the -simplify and -specs options.

• Run a GUI version of the tool by double-clicking the
release version of esctools2.jar

• Run a GUI version of the tool by executing it with
java -jar esctools2.jar (in which case you can add
options).

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.4/??

Supported platforms

ESC/Java2 is supported on

• Linux

• MacOSX

• Cygwin on Windows

• Windows (but there are some environment issues still
to be resolved)

• Solaris (in principle - we are not testing there)

Note that the tool itself is relatively portable Java, but the
underlying prover is a Modula-3 application that must be
compiled and supplied for each platform.

Help with platform-dependence issues is welcome.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.5/??

Environment

The application relies on the environment having

• a Simplify executable (such as Simplify-1.5.4.macosx)
for your platform, typically in the same directory as the
application’s jar file;

• the SIMPLIFY environment variable set to the name of
the executable for this platform;

• a set of specifications for Java system files - by default
these are bundled into the application jar file, but they
are also in jmlspecs.jar .

• The scripts prefer that the variable
ESCTOOLS_RELEASE be set to the directory
containing the release.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.6/??

Command-line options
The items on the command-line are either options and their
arguments or input entries. Some commonly used options
(see the documentation for more):

• -help - prints a usage message

• -quiet - turns off informational messages (e.g. progress messages)

• -nowarn - turns off a warning

• -classpath - sets the path to find referenced classes [best if it contains ‘.’]

• -specs - sets the path to library specification files

• -simplify - provides the path to the simplify executable

• -f - the argument is a file containing command-line arguments

• -nocheck - parse and typecheck but no verification

• -routine - restricts checking to a single routine

• -eajava, -eajml - enables checking of Java assertions

• -counterexample - gives detailed information about a warning

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.7/??

Input entries

The input entries on the command-line are those classes
that are actually checked. Many other classes may be
referenced for class definitions or specifications - these are
found on the classpath (or sourcepath or specspath).

• file names - of java or specification files (relative to the
current directory)

• directories - processes all java or specification files
(relative to the current directory)

• package - (fully qualified name) - found on the classpath

• class - (fully qualified name) - found on the classpath

• list - (prefaced by -list) - a file containing input entries

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.8/??

Specification files

• Specifications may be added directly to .java files

• Specifications may alternatively be added to
specification files.
• No method bodies
• No field initializers
• Recommended suffix: .refines-java
• Recommend a refines annotation (see

documentation)
• Must also be on the classpath

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.9/??

Specification file example

package java.lang;

import java.lang.reflect.*;

import java.io.InputStream;

public final class Class implements java.io.Serializable {

private Class();

/*@ also public normal_behavior

@ ensures \result != null && !\result.equals("")

@ && (* \result is the name of this class object *);

@*/

public /*@ pure @*/ String toString();

....

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.10/??

	
	Structure of ESC/Java2
	Running ESC/Java2
	Supported platforms
	Environment
	Command-line options
	Input entries
	Specification files
	Specification file example

