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Abstract. The traditional double-pushout approach to graph transfor-
mation does not allow to change node labels in an arbitrary context. We
propose a simple solution to this problem, namely to use rules with par-
tially labelled interface graphs and to match rules injectively. In [8] we
have shown that injective matching makes the double-pushout approach
more expressive, and here we further generalise that approach. Besides
solving the relabelling problem, our framework allows to write rules with
partially labelled left-hand sides which are equivalent to (possibly infi-
nite) sets of rules in the traditional setting. Unlike previous work on rules
with partially labelled graphs, we do not need any labelling condition on
matching morphisms, nor do we exclude node merging rules.

1 Introduction

The double-pushout approach to graph transformation has been studied for al-
most 30 years and has been applied in several areas of computer science, see the
recent handbook volumes [12,4,7]. However, the traditional formulation of the
double-pushout approach has the drawback that it is impossible to write a rule
that changes the label of a node in an arbitrary context, that is, regardless of
the number of edges incident to a node. For example, to change a label a into b
one would like to write a rule like the following:

a b

The node in the interface graph is unlabelled, but the traditional double-pushout
approach is based on totally labelled graphs and label-preserving graph mor-
phisms which exclude such a rule. (See [3,2] for introductions to the double-
pushout approach.) A problem with partially labelled graphs is that the so-called
gluing condition does no longer guarantee the applicability of a rule. This condi-
tion forbids to remove a node that is incident to a context edge or is the image
of two distinct nodes in the rule. For example, consider the rule1

1 Nodes are numbered to indicate the graph morphisms.
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and a graph G consisting of a single node labelled with a. There is a non-injective
graph morphism from the left-hand side of the rule to G, and this morphism
satisfies the gluing condition since the rule preserves both nodes. But the rule
is not applicable to G because, intuitively, it requires the label a of G’s node to
be changed to both b and c. This problem vanishes into thin air if the left-hand
sides of rules are matched injectively.

If unlabelled nodes are used not only in interfaces of rules but also in left- and
right-hand sides, single rules can specify transformations that otherwise require
possibly infinite sets of rules. For example, the rule

f 1

2

1

1

2

g 1

2

1

implements the term rewriting rule f(x)→ g(x) on node-labelled term graphs
(see also Example 1 below). If we allowed only interface graphs to be partially
labelled, this rule had to be replaced by a set of rules in which node 2 is labelled
with all given function symbols and variables — of which there may be infinitely
many.

In this paper we show that in the double-pushout approach on partially
labelled graphs, a rule r = 〈L ← K → R〉 is applicable to a graph G via an
injective morphism g: L → G if and only if g satisfies the dangling condition.
This condition requires that nodes to be removed must not be incident to context
edges. Moreover, we show that the graph resulting from the rule application is
unique up to isomorphism, and is totally labelled if G is totally labelled. For
these results we require a mild condition on undefined labels in rules and that
pushouts are “natural” in the sense that they are simultaneously pullbacks. Both
requirements are always satisfied in the double-pushout approach with injective
matching on totally labelled graphs, so our framework is a conservative extension
of that approach.

The rest of this paper is organised as follows. The next section introduces
partially labelled graphs, transformation rules and direct derivations in form of
two natural pushouts. In Section 3 we show that the category of partially labelled
graphs possesses pullbacks and give sufficient conditions for the existence of
pushouts. The existence and uniqueness of natural pushout complements and
direct derivations is proved in Section 4. We conclude in Section 5 by comparing
our approach with previous work.

2 Graphs, Rules and Derivations

A partially labelled graph is a system G = (VG, EG, sG, tG, lG,V, lG,E) consisting
of two finite sets VG and EG of nodes and edges, two source and target func-
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tions sG, tG: EG → VG, and two partial labelling functions lG,V: VG → CV and
lG,E: EG → CE 2, where CV and CE are fixed sets of node and edge labels. For
simplicity, partially labelled graphs are called graphs in the following. A graph
G is totally labelled if lG,V and lG,E are total functions.

A graph morphism g: G → H between two graphs G and H consists of two
functions gV: VG → VH and gE: EG → EH that preserve sources, targets and
labels, that is, sH ◦ gE = gV ◦ sG, tH ◦ gE = gV ◦ tG, and lH(g(x)) = lG(x)
for all x in Dom(lG) 3. The morphism g preserves undefinedness if lH(g(x)) =
⊥ for all x in G − Dom(lG), and it reflects undefinedness if g−1(x) �= ∅ for
all x in H − Dom(lH). A morphism g is injective (surjective) if gV and gE
are injective (surjective), and an isomorphism if it is injective, surjective and
preserves undefinedness. In the latter case G and H are isomorphic, which is
denoted by G ∼= H. Furthermore, we call g an inclusion if g(x) = x for all x in G.
(Note that inclusions need not preserve undefinedness.) Partially labelled graphs
and graph morphisms constitute a category, where composition of morphisms is
defined componentwise as function composition.

Definition 1 (Rule). A rule r = 〈L ← K → R〉 consists of two graph mor-
phisms K → L and b: K → R such that K → L is an inclusion and

(1) for all x ∈ L, lL(x) = ⊥ implies x ∈ K and lR(b(x)) = ⊥,
(2) for all x ∈ R, lR(x) = ⊥ implies lL(x′) = ⊥ for exactly one x′ ∈ b−1(x).

We call L the left-hand side, R the right-hand side and K the interface of r. The
rule r is injective if b: K → R is injective. Note that conditions (1) and (2) are
trivially satisfied if L and R are totally labelled4.

Example 1. In term graph rewriting one implements term rewriting systems by
graph transformation to improve the efficiency of computations (see [10] for
a survey). Our framework allows to translate term rewriting rules into graph
transformation rules operating on node-labelled term graphs. A node with a
function symbol f of arity n has n outgoing edges, labelled with 1 to n, whose
destinations represent the arguments of f. As an example for the translation of
term rewriting rules into graph transformation rules, Figure 1 shows the rule
corresponding to the term rewriting rule f(x)→ x. Node 2, representing the
variable x, has to be unlabelled to make the rule applicable independently of f’s
argument. Upon application of the rule, nodes 1 and 2 are merged into a single
node labelled with the function symbol of f’s argument.

2 Given sets A and B, a partial function f : A → B is a function from some subset A′

of A to B. The set A′ is the domain of f and is denoted by Dom(f). We say that
f(x) is undefined, and write f(x) = ⊥, if x is in A − Dom(f).

3 We often do not distinguish between nodes and edges in statements that hold anal-
ogously for both sets.

4 We also remark that in (2) the more liberal “for at most one x′ ∈ b−1(x)” could be
used, but then Theorem 2 had to require the present condition.
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Fig. 1. A rule implementing the term rewriting rule f(x) → x

A diagram of graph morphisms

K R

D H

is a pushout if (i) K → R → H = K → D → H and (ii) for every pair of
graph morphisms 〈R → H ′, D → H ′〉 with K → R → H ′ = K → D → H ′,
there is a unique morphism H → H ′ such that R → H ′ = R → H → H ′

and D → H ′ = D → H → H ′. The above diagram is a pullback if property
(i) holds and if for every pair of graph morphisms 〈K ′ → R, K ′ → D〉 with
K ′ → R → H = K ′ → D → H, there is a unique morphism K ′ → K such that
K ′ → R = K ′ → K → R and K ′ → D = K ′ → K → D. A pushout is natural if
it is simultaneously a pullback.

Definition 2 (Direct derivation). A direct derivation from a graph G to a
graph H via a rule r = 〈L ← K → R〉 consists of two natural pushouts as in
Figure 2, where g: L→ G is injective. We write G⇒r,g H if there exists such a
direct derivation.

L K R

G D H

(1) (2)

Fig. 2. A direct derivation

Remark 1. Given a rule r = 〈L← K → R〉 and an injective morphism L→ G,
the pushouts in Figure 2 are natural if L, K and R are totally labelled. But in
general a rule may admit both a natural and a non-natural double-pushout. For
example, in Figure 3 only the left double-pushout is natural. We characterise
the naturalness of pushouts in Lemma 3.

Remark 2. Employing injective matching in the double-pushout approach is not
a restriction since every derivation with a set of rules R in the traditional ap-
proach can be simulated, using injective matching, by a derivation with the set
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Fig. 3. A natural and a non-natural double-pushout

Q(R) of quotient rules of R. The quotient rules of a rule are obtained, roughly
speaking, by considering all possible identifications among the nodes and edges
of the rule. Actually, injective matching makes the double-pushout approach
more expressive because, by omitting some quotients, one gets a finer control
on transformations than in the traditional framework. We refer to [8] for precise
results on the expressiveness gained in this way.

3 Existence of Pullbacks and Pushouts

In this section we prove two lemmata about the existence of pullbacks and
pushouts in the category of partially labelled graphs. We also characterise the
naturalness of pushouts.

Lemma 1 (Existence of pullbacks). Given graph morphisms g: L → G and
c: D → G, there exist a graph K and graph morphisms b: K → L and d: K → D
such that diagram (1) in Figure 4 is a pullback.

L K

G D

g

c

b

d

K′
b′

d′

u

(1)

Fig. 4. A pullback

Proof. The node and edge sets of K are constructed as {〈x, y〉 ∈ L×D | g(x) =
c(y)}, the source mapping is defined by sK(〈x, y〉) = 〈sL(x), sD(y)〉, the target
mapping is defined analogously, and the labelling is given by

lK(〈x, y〉) = if lL(x) = lD(y) �= ⊥ then lL(x) else ⊥.

Let b: K → L and d: K → D be the projections from L×D to L and D, that is,
b(〈x, y〉) = x and d(〈x, y〉) = y, separately for nodes and edges. As in the case of
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totally labelled graphs, it is easy to check that b and d preserve the sources and
targets of edges. To see that b and d preserve labels, consider 〈x, y〉 ∈ Dom(lK).
Then lL(b(〈x, y〉)) = lL(x) = lK(〈x, y〉) and lD(d(〈x, y〉)) = lD(y) = lL(x) =
lK(〈x, y〉) by definition of b, d and lK . Hence b and d are graph morphisms.

Next we show that square (1) in Figure 4 is a pullback. By definition of b and
d, (1) commutes. To see that (1) satisfies the universal property, let b′: K ′ → L
and d′: K ′ → D be graph morphisms with g ◦ b′ = c ◦ d′. There is only one
choice (implying uniqueness) for a morphism u: K ′ → K such that b◦u = b′ and
d ◦ u = d′: define u(z) = 〈b′(z), d′(z)〉, for all z ∈ K ′. It remains to be shown
that u is a graph morphism. The proof that u preserves sources and targets
of edges is the same as in the case of totally labelled graphs, see [3]. To show
that u is label-preserving, let z ∈ Dom(lK′). If lL(b′(z)) = lD(d′(z)) �= ⊥, we
have lK(u(z)) = lK(〈b′(z), d′(z)〉) = lL(b′(z)) = lK′(z) by definition of u and
lK , and since b′ is label-preserving. If lL(b′(z)) = ⊥ or lD(d′(z)) = ⊥, then
lK(u(z)) = lK(〈b′(z), d′(z)〉) = ⊥ = lK′(z) by definition of u and lK , and since
b′ and d′ are label-preserving. This concludes the proof that diagram (1) is a
pullback. �


Lemma 2 (Existence of pushouts). Let b: K → R and d: K → D be graph
morphisms such that d is injective and for all x in R, {lR(x)} ∪ lD(d(b−1(x)))
contains at most one element. Then there exist a graph H and graph morphisms
R→ H and D → H such that diagram (2) in Figure 5 is a pushout.

K R

D H

d

c

b

h

H ′

h′

c′
u

(2)

Fig. 5. A pushout

Proof. Construct the node and edge sets of H as (D − d(K)) + R, and define
sH(e) = if e ∈ ER then sR(e) else sD(e), tH(e) analogously to sH(e), and

lH(x) =




lR(x) if x ∈ R and lR(x) �= ⊥,
lD(d(x′)) if x ∈ R, lR(x) = ⊥ and lD(d(x′)) �= ⊥

for some x′ ∈ b−1(x),
⊥ if x ∈ R, lR(x) = ⊥ and lD(d(x′)) = ⊥

for all x′ ∈ b−1(x),
lD(x) if x ∈ (D − d(K)).

Note that lH is well-defined because for all x ∈ R, the set {lR(x)}∪lD(d(b−1(x)))
contains at most one element. Now define h: R→ H and c: D → H by h(x) = x
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and c(x) = if x = d(x′) for some x′ ∈ K then b(x′) else x, separately for
nodes and edges. The proof that h and c preserve sources and targets is the
same as in the case of totally labelled graphs, see [3]. To show that h and c
preserve labels, let x ∈ Dom(lR). Then lH(h(x)) = lR(x) by definition of h and
lH , so h is label-preserving. Consider now x ∈ Dom(lD). If x ∈ (D−d(K)), then
lH(c(x)) = lD(x) by definition of c and lH . If x ∈ d(K), then x = d(x′) for some
x′ ∈ K. There are two cases:

– lR(b(x′)) �= ⊥. Then lH(c(x)) = lR(b(x′)) = lD(d(x′)) = lD(x) by definition
of lH , the assumption that for all x ∈ R, {lR(x)} ∪ lD(d(b−1(x))) contains
at most one element, the fact that x ∈ Dom(lD), and the fact that d is
label-preserving.

– lR(b(x′)) = ⊥. Then lH(c(x)) = lD(d(x′)) = lD(x) by the commutativity of
the diagram, the definition of lH and the fact that d is label-preserving.

Thus h and c are graph morphisms.
Next we show that diagram (2) in Figure 5 is a pushout. By definition of h

and c, we have h ◦ b = c ◦ d. To show the universal property, let h′: R→ H ′ and
c′: D → H ′ be graph morphisms with h′ ◦ b = c′ ◦ d. There is only one choice
(implying uniqueness) to define u: H → H ′ such that u ◦ h = h′ and u ◦ c = c′:
let u(x) = if x ∈ R then h′(x) else c′(x), separately for nodes and edges. It
remains to be shown that u is a graph morphism. That u is structure-preserving
follows as in the proof of Lemma 2.8 in [3]. To show that u preserves labels, let
x ∈ Dom(lH). We have three cases:

– x ∈ R and lR(x) �= ⊥. Then lH′(u(x)) = lH′(h′(x)) = lR(x) = lH(x) by the
definition of u, the fact that h′: R→ H ′ preserves labels, and the definition
of lH .

– x ∈ R, lR(x) = ⊥ and lD(d(x′)) �= ⊥ for some x′ ∈ b−1(x). Then lH′(u(x)) =
lH′(h′(b(x′))) = lH′(c′(d(x′))) = lD(x) = lH(x) by the definition of u, the
fact that h′ ◦ b = c′ ◦ d, the fact that c′: D → H ′ preserves labels, and the
definition of lH .

– x ∈ (D − d(K)). Then lH′(u(x)) = lH′(c′(x)) = lD(x) = lH(x) by definition
of u, the fact that c′: D → H ′ preserves labels, and the definition of h.

This concludes the proof that square (2) in Figure 5 is a pushout. �

Next we characterise the naturalness of pushouts.

Lemma 3 (Characterisation of natural pushouts). Given two graph mor-
phisms b: K → L and d: K → D such that b is injective, pushout (1) in Figure 2
is natural if and only if

(∗) for all z ∈ K, lK(z) = ⊥ implies lL(b(z)) = ⊥ or lD(d(z)) = ⊥.

Proof. Let square (1) in Figure 2 be a natural pushout with graph morphisms
g: L→ G and c: D → G. Since (1) is a pullback, an explicit construction of K up
to isomorphism is given by {〈x, y〉 ∈ L×D | g(x) = c(y)}, separately for nodes
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and edges, where lK(〈x, y〉) = lL(x) if and only if lL(x) = lD(y) �= ⊥. It follows
that lK(〈x, y〉) = ⊥ if and only if lL(x) = ⊥ or lD(y) = ⊥. Hence condition (∗)
is satisfied.

Conversely, let (1) be a pushout satisfying condition (∗). In the diagram
below, let (1’) be a pullback of g: L → G and d: D → G. Let b′ and d′ be the
morphisms from K ′ to L and D, respectively. By the universal property of (1’),
there exists a unique morphism u: K → K ′ such that b′ ◦ u = b and d′ ◦ u = d.

L K

G D

b

dg

c

K ′
=

=
(1’)

We show that u is an isomorphism. Injectivity of u follows from injectivity of
b = b′ ◦ u. To see that u is surjective, consider some z′ ∈ K ′. Then g(b′(z′)) =
c(d′(z′)) by commutativity of diagram (1’). Hence, by injectivity of b and the
pushout characterisation of [5] (Theorem 1.2) applied to diagram (1), there is
some z ∈ K such that b(z) = b′(z′) and d(z) = d′(z′). Applying the pullback
characterisation of [5] (Theorem 1.7) to (1’) gives u(z) = z′.

Finally, u preserves undefinedness by condition (∗). Thus u is an isomorphism,
implying that diagram (1) is a pullback and hence a natural pushout. �


4 Existence and Uniqueness of Direct Derivations

Our main result (Theorem 1) will show that, given a rule r = 〈L ← K → R〉
and an injective graph morphism g: L→ G, there exists a direct derivation as in
Figure 2 if and only if g satisfies the dangling condition. Moreover, in this case r
and g determine D and H uniquely up to isomorphism. The proof of this result
is based on the following lemma which provides a condition for the existence and
uniqueness of “natural pushout complements”.

A graph morphism g: L→ G satisfies the dangling condition with respect to
an inclusion K → L, if no node in g(L)−g(K) is incident to an edge in G−g(L).

Lemma 4 (Existence and uniqueness of natural pushout complements).
Let g: L → G be an injective graph morphism and K → L an inclusion that re-
flects undefinedness. Then there exist a graph D and graph morphisms K → D
and D → G such that diagram (1) in Figure 2 is a natural pushout if and only
if g satisfies the dangling condition. Moreover, in this case D is unique up to
isomorphism.

Proof. “Only if”: Let diagram (1) in Figure 2 be a pushout. By forgetting all
labels, this diagram becomes a pushout in the category of unlabelled graphs.
By the pushout characterisation of [5] (Theorem 1.2), g satisfies the dangling
condition in that situation. Since the dangling condition is not concerned with
labels, g in diagram (1) satisfies the dangling condition as well.
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“If”: Let g be an injective graph morphism satisfying the dangling condition.
Construct the graph D as follows: D has node and edge sets (G− g(L)) + g(K),
and sD and tD are the restrictions of sG and tG to these sets. Note that sD

and tD are well-defined because g satisfies the dangling condition. We define D’s
labelling by

lD(x) = if x = g(x′) and lL(x′) �= ⊥ for some x′ in K then lK(x′) else lG(x),

separately for nodes and edges. These mappings are well-defined because K → L
and L → G are injective. Next define the graph morphism c: D → G as the
inclusion of D in G and the morphism d: K → D as the restriction of K →
L → G to D. In [11] (Lemma 4.4) it is shown that c and d defined in this way
preserve sources and targets. We show that they preserve labels in our case. For
x ∈ Dom(lK), we have lD(d(x)) = lK(x) by definition of d and lD. So d is label-
preserving. To see that c is label-preserving as well, let x ∈ Dom(lD). There are
two cases to consider.

– x ∈ G− g(L). Then lG(c(x)) = lG(x) = lD(x) by the definition of c and lD.
– x ∈ g(K). Let x′ ∈ K with g(x′) = x. If lL(x′) �= ⊥, then lG(c(x)) = lG(x) =

lG(g(x′)) = lL(x′) = lK(x′) = lD(x) by definition of c, the fact that K → L
and L→ G are label-preserving, and the definition of lD. On the other hand,
if lL(x′) = ⊥, then lG(c(x)) = lG(x) = lD(x) by definition of lD.

So c is label-preserving and hence c and d are graph morphisms in the category
of partially labelled graphs.

By forgetting all labels, diagram (1) becomes a diagram in the category of
unlabelled graphs. In [11] (Lemma 4.4) it is shown that (1) is a pushout in
that case. Denote the inclusion K → L by b. The pushout property means that
g ◦ b = c ◦ d, and that for every unlabelled G′ and graph morphisms g′: L→ G′

and c′: D → G′ with g′ ◦ b = c′ ◦ d, there is a unique morphism u: G→ G′ such
that u ◦ g = g′ and u ◦ c = c′. To prove that (1) remains a pushout if the graphs
have labels, we have to show that u preserves labels. Let x ∈ Dom(lG). Since
G = (D−d(K))∪g(L), separately for nodes and edges, we consider the following
cases:

– x ∈ g(L) and lL(x̄) �= ⊥ for the unique x̄ ∈ L with g(x̄) = x. Then
lG′(u(x)) = lG′(u(g(x̄))) = lG′(g′(x̄)) = lL(x̄) = lG(g(x̄)) = lG(x) since
g′ and g are label-preserving.

– x ∈ g(L) and lL(x̄) = ⊥ for the unique x̄ ∈ L with g(x̄) = x. Since the
inclusion K → L reflects undefinedness, we have x̄ ∈ K. By definition
of lD, lD(d(x̄)) = lG(d(x̄)) = lG(g(x̄)) = lG(x)) �= ⊥. Thus lG′(u(x)) =
lG′(u(g(x̄))) = lG′(u(d(x̄))) = lG′(c′(d(x̄))) = lD(d(x̄)) = lG(x), since c′

preserves labels.
– x ∈ (D − d(K)). Then lG′(u(x)) = lG′(c′(x)) = lD(x) = lG(x) by definition

of lD and since c′ is label-preserving.

So u preserves labels and hence diagram (1) is a pushout in the category of
partially labelled graphs. Moreover, by definition of lD, property (∗) of Lemma
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3 holds: for all x ∈ K, lK(x) = ⊥ implies lL(x) = ⊥ or lD(d(x)) = ⊥. Thus, by
Lemma 3, diagram (1) is a natural pushout.

It remains to be shown that D is unique up to isomorphism. Again we first
forget the labels of all graphs in diagram (1) to obtain a pushout in the category
of unlabelled graphs. Then by Lemma 4.2 in [11], D is uniquely determined up to
isomorphism. To lift this result to our setting, we have to show that D’s labelling
is uniquely determined. Consider any x ∈ D.

Case 1: x ∈ (G− g(L)). It can be shown that for every pushout of form (1),
for each x ∈ G there is x′ ∈ L with g(x′) = x and lL(x′) = lG(x) or there is
x′ ∈ D with c(x′) = x and lD(x′) = lG(x). Since in the present case x �∈ g(L)
and c is an inclusion, lD(x) must be equal to lG(x).

Case 2: x ∈ g(K). Let x′ be the unique element in K with g(x′) = x.
Case 2.1: lL(x′) = ⊥. Then by the property of pushouts mentioned in Case

1 and since c preserves labels, again lD(x) must equal lG(x).
Case 2.2: lL(x′) �= ⊥. If lK(x′) �= ⊥, then lD(x) = lD(d(x′)) = lK(x′) because

d preserves labels. If lK(x′) = ⊥, then by the characterisation of natural pushouts
in Lemma 3, lD(x) = lD(d(x′)) = ⊥. �


The following theorem is our main result.

Theorem 1 (Existence and uniqueness of direct derivations). Given a
rule r = 〈L← K → R〉 and an injective graph morphism g: L→ G, there exists
a direct derivation as in Figure 2 if and only if g satisfies the dangling condition.
Moreover, in this case D and H are unique up to isomorphism.

Proof. “Only if”: For a direct derivation as in Figure 2, g satisfies the dangling
condition by Lemma 4.

“If”: If g satisfies the dangling condition, then by Lemma 4 there exist a
graph D and graph morphisms d: K → D and D → G such that diagram (1)
in Figure 2 is a natural pushout. In order to obtain pushout (2) of Figure 2 by
Lemma 2, we have to show that for all x ∈ R, the set {lR(x)} ∪ lD(d(b−1(x)))
contains at most one element.

Case 1: lR(x) = ⊥. Then lK(x′) = ⊥ for all x′ ∈ b−1(x) because b preserves
labels. By the definition of a rule, there is exactly one x′ ∈ b−1(x) with lL(x′) =
⊥. Hence for each other element x̄ ∈ b−1(x), lL(x̄) �= ⊥ and therefore lD(d(x̄)) =
⊥ by the characterisation of natural pushouts in Lemma 3. Thus {lR(x)} ∪
lD(d(b−1(x))) contains at most one label.

Case 2: lR(x) �= ⊥. Then, by the definition of a rule, lL(x′) �= ⊥ for all
x′ ∈ b−1(x). Consider any x′ ∈ b−1(x).

Case 2.1: lK(x′) �= ⊥. Then lD(d(x′)) = lK(x′) = lR(b(x′)) = lR(x) because
d and b preserve labels.

Case 2.1: lK(x′) = ⊥. Then lD(d(x′)) = ⊥ by the characterisation of natural
pushouts in Lemma 3.

Hence in Case 2, elements in b−1(x) are either labelled with lR(x) or are
unlabelled. Thus again {lR(x)} ∪ lD(d(b−1(x))) contains at most one label.

Now Lemma 2 shows that pushout (2) in Figure 2 exists. We also have to show
that (2) is natural. Consider any x ∈ K with lK(x) = ⊥ and lR(b(x)) �= ⊥. Then
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lL(x) �= ⊥ by the definition of a rule. Hence lD(d(x)) = ⊥ by the naturalness of
pushout (1) and Lemma 3. Thus, by Lemma 3, diagram (2) is a natural pushout.

Finally, by Lemmas 4 and 2, the graphs D and H are uniquely determined
up to isomorphism. This concludes the proof of Theorem 1. �


Theorem 2 (Totality of labelling). For every direct derivation G ⇒ H, H
is totally labelled if and only if G is totally labelled.

Proof. “If”: Let G be totally labelled. By the uniqueness of H up to isomorphism
(Theorem 1) and the proof of Lemma 2, we can assume that H has node and
edge sets (D − d(K)) + R, where D is constructed as in the proof of Lemma 4.
Let x ∈ H. We consider three cases. If x ∈ (D − d(K)), then lH(x) = lD(x) =
lG(x) �= ⊥ by definition of lH and lD, and since G is totally labelled. If x ∈ R
with lR(x) �= ⊥, then lH(x) = lR(x) �= ⊥. Finally, if x ∈ R with lR(x) = ⊥,
then lL(x′) = ⊥ for exactly one x′ ∈ b−1(x) by the definition of a rule. Hence
lH(x) = lD(d(x′)) = lG(g(x′)) �= ⊥ by definition of lH and lD, and because G is
totally labelled.

“Only if”: Let x ∈ G with lG(x) = ⊥. We consider two cases, using the
constructions of D and H referred to above. If x �∈ g(L), then lH(x) = lD(x) =
lG(x) = ⊥ by definition of lH and lD. If x ∈ g(L), then by the definition of a
rule there is some x′ ∈ K such that g(x′) = x and lR(b(x′)) = ⊥. Since also
lD(d(x′)) = lD(x) = ⊥, we have lH(h(x′)) = ⊥ by definition of lH in Lemma 2.

�


5 Related Work

In this section we compare our approach with previous work on partially labelled
graphs in the double-pushout approach.

Rosen [11] allows partially labelled graphs in rules (but requires that trans-
formed graphs are totally labelled) and considers possibly non-injective matching
morphisms. To ensure the existence of direct derivations, matching morphisms
must not only satisfy the gluing condition but also an additional labelling con-
dition. Moreover, non-injective rules as the rule in Figure 1 cannot be handled.
Probably the most serious drawback of [11] is that direct derivations are not
double-pushouts in the usual sense but consist of two pushouts which need not
share a common morphism. That is, the morphism K → D in Figure 2 is re-
placed by two morphisms K → D1 and K → D2 where the transition from
D1 to D2 corresponds to a relabelling. This feature makes the approach of [11]
complicated, especially for proving properties of derivations.

In [6], Ehrig et al. extend the double-pushout approach from graphs to re-
lational structures. Their results can be specialised to partially labelled graphs.
Corollary 5.9 in [6] states under which conditions certain special derivations
starting from a totally labelled graph yield a totally labelled graph. The ap-
proach of [6] (specialised to graphs) is more restrictive than the present approach
in that only injective rules are allowed. Moreover, since matching morphisms are
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allowed to be non-injective, a labelling condition has to be satisfied in addition
to the gluing condition.

Parisi-Presicce, Ehrig and Montanari [9] extend the traditional double-push-
out approach by considering graphs with labels from an alphabet equipped with
a partial order. Since every partially labelled graph can be seen as a totally
labelled graph over a label alphabet containing a special label ⊥ and being
equipped with the flat order {〈⊥, x〉 | ⊥ �= x}, their approach can be specialised
to the case of partially labelled graphs. Again [9] is more restrictive than the
present approach in that only injective rules are allowed. For example, our rule
in Figure 1 cannot be used. Moreover, an injective rule like the second rule in
the introduction does not satisfy the consistency condition of [9]. Apart from
these restrictions, Proposition 3.13 in [9] states that a direct derivation exists if
and only if the gluing condition is satisfied. However, a counterexample is given
by the rule having a single node labelled with ⊥ as left-hand side, an empty
interface and an empty right-hand side (which is allowed in [9]). The unique
graph morphism from the left-hand side to a graph consisting of a single node
not labelled with ⊥ satisfies the gluing condition, but there does not exist a
pushout complement in this situation.

Finally, Berthold, Fischer and Koch [1] recently considered the double-push-
out approach over partially attributed graphs. They employ injective matching
morphisms but restrict themselves to injective rules. The framework is liberal
with respect to attributes in rules but requires extra conditions besides the usual
gluing condition for matching morphisms. [1] does not contain correctness proofs
for the indicated constructions of pushouts and pushout complements.
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