|
10., 14., 16. Juli
PRIESTLEY DUALITY AND PROGRAM SEMANTICS
(3 Termine mit Diskussion und Ausrichtung auf Inhalte bzgl.
des UniForM-Kontextes:
Logics, Semantics and Combination of Methods)
Prof. Dr. Chris Brink, University of Cape Town
From non-classical logics we have the following paradigm: any
well-behaved logic characterises and is characterised by both
a relational structure (its Kripke semantics) and an algebra
(its Lindenbaum-Tarski algebra -- typically some kind of lattice).
Since programs can be regarded as binary relations over some
state space, and hence as forming a relational structure, this
raises the question whether the triangular relationship of
logic-algebra-semantics also holds good for program semantics.
The short answer is Yes. The long answer is that there is
in fact a much richer relationship between four versions of
program semantics: the relational model, predicate transformer
semantics, information systems and powerdomains. We present the
state space as a certain kind of Priestley space, and programs
as certain structure-preserving relations over such a space. The
technique of Priestley duality then allows a circular derivation
of a predicate transformer semantics from the relational model,
an information system from the predicate transformer semantics,
a powerdomain from the information system, and the original
relational model back again from the powerdomain. The information
system is also related to Hoare logic. To clarify the intuition
behind this approach we present a case study, which is a
"Priestley version" of the so-called universal domain due to
Plotkin. Various ideas about properties of programs and predicates
can be explicated in terms of this case study.
13., 20., 27. Juni
Eine Führung durch die wunderbare Welt der Kategorien.
Christoph Lueth
Kategorientheorie hat sich in den letzten fünfzehn Jahren als eines
der wichtigsten mathematischen Hilfsmittel für theoretische und
theoretisch orientierte Informatiker etabliert. Einige Konferenzen,
wie z.B. LICS, sind ohne Grundkenntnisse in diesem Bereich mehr oder
weniger unverständlich, und immer öfter gelten Grundkenntnisse in
Kategorientheorie als unerläßlich.
Ich werde versuchen, in drei Vorträgen eine Einführung in die
Grundbegriffe der Kategorientheorie zu geben, und in einige Gebiete,
von denen ich denke, daß sie für den praktisch arbeitenden
theoretischen Informatiker (viz. uns) wichtig und interessant
sind. Der Stil der Vorträge wird informell sein; ich werde versuchen,
die grundlegenden Ideen darzustellen, ohne die (manchmal durchaus
verwirrenden) technischen Details auszubreiten. Der Sinn der Übung ist
zu zeigen, was man mit Kategorien alles machen kann, und ein paar
Grundideen anzureißen. Die schweißtreibenden Einzelheiten überlasse
ich dann gerne dem geneigten Zuhörer :-)
Teil I: Grundbegriffe
- Kategorien, Funktoren und natürliche Transformationen
- Funktorkategorien
- Repräsentierbarkeit und das Yoneda-Lemma
- Limiten, Kolimiten, Adjunktionen
- Monaden
- Monoidale und geschlossene Kategorien
Teil II: Monaden
- Algebren für Monaden, die Eilenberg-Moore-Kategorie
- die Kleisli-Konstruktion
- Beck's Theorem und Monadizität
- Universelle Algebra ist die Theorie von Monaden auf der
Kategorie aller Mengen
- Sketche, Lawvere-Theorien und die Gabriel-Ulmer-Dualität
- Monaden als Fixpunkte: freie Monaden
- Moggi's "computational monads"
Teil III: Kategorielle Logik und Domaintheorie:
- Kartesisch geschlosssene Kategorien (ccc's) als Modelle für
getypten Lambda-Kalküle; der getypte Lambda-Kalkül als interne
Sprache von ccc's.
- Logik höherer Stufe in einem Topos
- Die kategorielle Lösung von Domain-Gleichungen
6.Juni A Modular extension to Z for Specification, Reasoning and Refinement
Owen Traynor, Software Verification Research Centre,
The University of Queensland, Australia
We introduce the concept of modules for the Cogito
specification language, Sum (a variant of Z). An outline of the
module reference mechanism, parameterisation and access methods is
presented. Some illustrative examples and rationale are included and
the advantages of the module concept in the context of reasoning and
refining (Z) specifications are discussed.
Extensive tools support for the management and analysis of Sum
specifications is available. A summary of these tools is given,
together with an overview of the environment that has been
constructed to allow reasoning about Sum specifications
(i.e. to allow formal proof about properties of specifications).
An outline of the tools available for animating Sum specifications and
refining these specifications to Ada code is also given.
A demonstration of the Cogito system will be given after the talk.
23.Mai Static and Semantic Analysis of CASL
Kolyang B. Krieg-Brückner T. Mossakowski
This talk presents a static and semantic analysis
of CASL. Represented in the higher-order logical
framework of Isabelle, the embedding yields abstract
syntax trees, that are readed for a static-semantic check.
Furthermore, an overload resolution algorithm is implemented
that takes the resulting abstract trees and yields CASL fully
qualified abstract trees.
At the end, a schematic overall architecture of the embedding
of CASL in a logical framework, using thus all facilities given by
a generic theorem prover, is presented.
2.Mai Bericht TAPSOFT'97
Burkhart Wolff, Christoph Lüth
4.April
Component Software Engineering in Object Orientation
Prof. Dr. Yulin Feng, Academia Sinica, Peking
The development of object oriented technology causes
great changes to traditional methods of application software
design. These changes make it possible that
application systems can be constructed through some software
components. It is not simply a set of prepackaged solutions
from which a customer may pick and choose, it involves an
actual custom tailoring and reengineering during the later
1990's mass customization. The talk gives a brief
description of our research on component software engineering
in object orientation, including semantic model, specification
languages, design methodology and OO trends and directions etc.
|
|