
CTL with Finitely Bounded Semantics∗

Valentin Goranko1, Antti Kuusisto2, and Raine Rönnholm3

1 Stockholm University, Stockholm, Sweden; and
University of Johannesburg, Johannesburg, South Africa†

valentin.goranko@philosophy.su.se
2 University of Bremen, Bremen, Germany

kuusisto@uni-bremen.de
3 University of Tampere, Tampere, Finland

raine.ronnholm@uta.fi

Abstract
We consider a variation of the branching time logic CTL with non-standard, “finitely bounded”
semantics (FBS). FBS is naturally defined as game-theoretic semantics where the proponent of
truth of an eventuality must commit to a time limit (number of transition steps) within which the
formula should become true on all (resp. some) paths starting from the state where the formula
is evaluated. The resulting version CTLFB of CTL differs essentially from the standard one as
it no longer has the finite model property.

We develop two tableaux systems for CTLFB. The first one deals with infinite sets of formulae,
whereas the second one deals with finite sets of formulae in a slightly extended language allowing
explicit indication of time limits in formulae. We prove soundness and completeness of both
systems and also show that the latter tableaux system provides an EXPTIME decision procedure
for it and thus prove EXPTIME-completeness of the satisfiability problem.

1998 ACM Subject Classification F.4.1 Mathematical Logic, I.2.4 Knowledge Representation
Formalisms and Methods

Keywords and phrases CTL, finitely bounded semantics, tableaux, decidability

Digital Object Identifier 10.4230/LIPIcs.TIME.2017.14

1 Introduction

The branching time logic CTL ([4]) is interpreted in transition systems and its language
involves quantification over all infinite paths (computations) starting at the current state. It is
well known that in order to determine truth of any CTL formula in a finite transition system,
it suffices to consider only sufficiently long finite prefixes of paths starting at the current
state, in the sense that any existential (resp. universal) eventuality is satisfied at that state
iff it is satisfied on some (resp. all) of these finite prefixes. Furthermore, satisfiability/validity
in CTL has the finite model property. It is natural, therefore, to consider a finitary version
of the semantics of CTL, restricted on all models to finite paths. Such a version has recently
emerged as a compositional counterpart of the finitely bounded game-theoretic semantics
(FBS), developed for the multi-agent extension ATL of CTL in [6] (see also [7] for an extended
and revised version), where the length of the evaluation game is constrained by finite time
limits which the players must set and decrease after every transition move in the game.

∗ The work of Valentin Goranko was supported by a research grant 2015-04388 of the Swedish Research
Council. The work of Antti Kuusisto was supported by the ERC grant 647289 “CODA.”

† Visiting professorship.

© Valentin Goranko, Antti Kuusisto, and Raine Rönnholm;
licensed under Creative Commons License CC-BY

24th International Symposium on Temporal Representation and Reasoning (TIME 2017).
Editors: Sven Schewe, Thomas Schneider, and Jef Wijsen; Article No. 14; pp. 14:1–14:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TIME.2017.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2 CTL with Finitely Bounded Semantics

Intuitively, the main distinctive feature of the FBS is that a player who claims an
eventuality formula to be true must commit to a time bound (number of transition steps)
within which she can defend that claim by fulfilling that eventuality. Technically, the FBS
for CTL can be obtained by changing the definition of temporal operators so that a uniform
bound on the number of transition steps needed to fulfill a given eventuality is imposed.

In this paper we study the alternative version CTLFB of CTL, defined by the FBS.
CTLFB differs essentially from CTL with standard semantics. In particular, it falsifies the
fundamental fixed-point characterizations of the operators EG and AU . Based on this we
show that CTLFB lacks the finite model property and that the set of validities of CTLFB is
a proper subset of the validities of CTL.

We develop two equivalent versions of tableaux for CTLFB. The first tableaux deals with
infinite sets of CTL formulae, while the second one involves only finite sets of formulae, but in
a suitably extended language which allows explicit indication of time limits by corresponding
indexing parameters. Essentially, the parameters enable encoding infinitary formulae by
finite ones. We prove soundness and completeness of both tableau systems and also show
that the latter system provides a decision procedure for CTLFB. We thereby establish that
satisfiability in that logic is decidable and EXPTIME-complete.

We note that even though not being the actual motivation for the present study, a major
independent justification for considering bounded semantics for CTL is (the conceptual idea
behind) bounded model checking [2], which provides the main link with related previous work.
Other versions of bounded semantics for CTL, based on evaluation of formulae on finite
paths, have been considered in the context of bounded model checking in e.g. [8], [9], [10].

2 Preliminaries: CTL with finitely bounded semantics

Here we only provide brief preliminaries on CTL. For further details see e.g. [5, Ch.7].

2.1 The standard semantics of CTL
I Definition 1. A transition system is a tuple T = (S,R), where S is a nonempty set of
states and R ⊆ S×S a transition relation. We also assume that R is serial, i.e. for every
s ∈ S there is s′ ∈ S such that (s, s′) ∈ R. A path in T is a sequence λ : N → S of states
such that (λ(n), λ(n+1)) ∈ R for every n ∈ N.

An interpreted transition system (ITS) over T is a tupleM = (S,R,Φ, `), where Φ
a set of proposition symbols and ` : S→ P(Φ) is a state description function defining
for every state s the set of atomic propositions true at that state.

The syntax CTL is given by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ | E(ϕUϕ) | A(ϕUϕ) .

We also use the following abbreviations AXϕ := ¬EX¬ϕ, EFϕ := E(>Uϕ), AFϕ := A(>Uϕ),
EGϕ := ¬AF¬ϕ and AGϕ := ¬EF¬ϕ.

I Definition 2. Let M = (S,R,Φ, `) be an interpreted transition system, s ∈ S and ϕ a
CTL-formula. Truth of ϕ at s in M, denoted byM, s |= ϕ, is defined as follows:
M, s |= p iff p ∈ `(s).
M, s |= ¬ϕ iffM, s 6|= ϕ.
M, s |= ϕ ∨ ψ iffM, s |= ϕ orM, s |= ψ.
M, s |= EXϕ iff there is a state s′ such that (s, s′) ∈ R andM, s′ |= ϕ.

V. Goranko, A. Kuusisto, and R. Rönnholm 14:3

M, s |= E(ϕUψ) iff there is a path λ starting from s and i ≥ 0 such thatM, λ(i) |= ψ

andM, λ(j) |= ϕ for every j < i.
M, s |= A(ϕUψ) iff for every path λ starting from s, there is i ≥ 0 such thatM, λ(i) |= ψ

andM, λ(j) |= ϕ for every j < i.
We define the following operators on formulae, where Q ∈ {E,A}:

GQ;θ(ϕ) := θ ∧ QXϕ; UQ;ψ,θ(ϕ) := θ ∨ (ψ ∧ QXϕ) .

It is well-known that, for each Q ∈ {E,A}, in terms of their semantics:
QG θ is the greatest fixpoint of the operator GQ;θ, i.e. QG θ ≡ νZ.GQ;θ(Z),
Q(ψU θ) the least fixpoint of the operator UQ;ψ,θ, i.e. Q(ψU θ) ≡ µZ.UQ;ψ,θ(Z).

Now, we define recursively on n ∈ N the respective iterations of these operators:
G0

Q(θ) := θ; Gn+1
Q (θ) := GQ;θ(Gn

Q(θ))
U0

Q(ψ, θ) := θ; Un+1
Q (ψ, θ) := UQ;ψ,θ(Un

Q(ψ, θ)).

2.2 Game-Theoretic semantics for CTL
In [7] we have defined game-theoretic semantics (GTS) for the alternating time temporal
logic ATL ([1], [5, Ch.9]) by using evaluation games between two players, Abelard and Eloise.
Since CTL can be regarded as a (1-agent) fragment of ATL, a simple GTS for CTL can be
obtained from the mentioned GTS for ATL in a straightforward (but not immediate) way.

I Definition 3. Let M = (S,R,Φ, `) be an ITS, sin ∈ S and ϕ a CTL-formula. The
(unbounded) evaluation game G(M, sin, ϕ) is defined as follows. A position of the
game is a tuple (P, s, ψ) where P ∈ {Abelard,Eloise}, s ∈ S and ψ is a subformula of ϕ. The
initial position of the game is (Eloise, sin, ϕ). The evaluation game proceeds according to
the following rules.
1. A position of the form (P, s, p), where p ∈ Φ, is called an ending position. If p ∈ `(s),

then P wins the evaluation game. Else the opposing player of P, denoted by P, wins.
2. In (P, s,¬ψ) the game moves to the next position (P, s, ψ).
3. In (P, s, ψ ∨ θ) the player P decides whether the next position is (P, s, ψ) or (P, s, θ).
4. In (P, s,EXψ) the player P may choose any state s′ such that (s, s′) ∈ R and the next

position is (P, s′, ψ).
For the rules for the formulae E(ψU θ) and A(ψU θ), we define the embedded game
G := g(V,L, s0, ψV, ψV), where V,L ∈ {Abelard,Eloise}, s0 is a state, and ψV and ψV
are formulae. The player V is called the verifier (of the embedded game) and L the leader.
These players may, but need not be, the same. We let V and L denote the opponents of V
and L, respectively. The embedded game G starts from the initial state s0 and proceeds
from any state s according to the following rules until an exit position is reached.
(i) V may end the game at the exit position (V, s, ψV).
(ii) V may end the game at the exit position (V, s, ψV).
(iii) L may select any state s′ such that (s, s′) ∈ R and then G is continued from s′.

If the embedded game G continues an infinite number of rounds, the verifier V loses the
entire evaluation game. The rest of the rules for the evaluation game are defined as follows:
5. In (P, s,E(ψU θ)) the game is continued from the exit position of g(P,P, s, θ, ψ).
6. In (P, s,A(ψU θ)) the game is continued from the exit position of g(P,P, s, θ, ψ).

In GTS, truth of a formula is defined as existence of a winning strategy for Eloise in the
corresponding evaluation game. By [7] we obtain the following equivalence:

M, s |= ϕ iff Eloise has a winning strategy in G(M, s, ϕ) .

TIME 2017

14:4 CTL with Finitely Bounded Semantics

2.3 Finitely bounded semantics for CTL
Note that unbounded evaluation games may continue infinitely long before a winner is
determined. In order to avoid this, we have also defined bounded evaluation games for
ATL in [7]. Such a game is obtained by modifying the unbounded game simply by attaching
ordinal values, called time limits, to the embedded games. A time limit is announced by
the verifier in the beginning of the embedded game and the verifier has to decrease it after
every transition. Since ordinals are well-founded, it is guaranteed that the whole bounded
evaluation game ends in a finite number of moves – even in infinite models.

If players are allowed to announce arbitrarily large time limits in the game, then unbounded
and bounded evaluation games become equivalent1. A particularly interesting and natural
variant of a bounded evaluation game is when only finite ordinals may be used by the players.
We call the corresponding game-theoretic semantics finitely bounded (FBS) and denote
its truth condition by |=fb. As shown in [7], the FBS for ATL differs from the standard
compositional semantics but corresponds to a natural variant of it, to be discussed further. In
the special case of CTL, this semantics modifies only the truth conditions of AU and EU so
that a uniform bound on the number of transition steps needed to fulfill a given eventuality
is imposed.
(AU fb) M, s |=fb A(ϕUψ) iff there is n ∈ N such that for every path λ starting from s,

there is i ≤ n such thatM, λ(i) |=fb ψ andM, λ(j) |=fb ϕ for every j < i.
(EU fb) M, s |=fb E(ϕUψ) iff there is n ∈ N, a path λ starting from s and i ≤ n such

thatM, λ(i) |=fb ψ andM, λ(j) |=fb ϕ for every j < i. (We note that since existential
quantifiers commute, (EU fb) is in fact equivalent to the standard truth definition of EU .)

Thus, the FBS of formulae of the type E(ϕUψ), is standard, even though they will not
be treated here as (existential) eventualities usually are, see Section 3.1.1. Furthermore, it
is easy to see that the FBS given to A(ϕUψ) by (AU fb) is not equivalent to the standard
one, and in fact, such formulae do not behave like universal eventualities, as they would
in standard CTL. Respectively, the derived FBS for AG is equivalent to the standard one,
while for EG we obtain the following non-equivalent version.
(EG fb) M, s |=fb EGϕ iff for every n ∈ N, there is a path λn starting from s such that
M, λn(i) |=fb ϕ for every i ≤ n. (Note that the path λn depends on n.)

By replacing the truth condition for AU (and EG) with the ones above, we obtain CTL
with finitely bounded semantics, denoted by CTLFB.

For a set of formulae Γ, byM, s |=fb Γ we denote the claim thatM, s |=fb ϕ for all ϕ ∈ Γ.
Satisfiability and validity of CTLFB formulae are defined and denoted as usual.

2.4 Some properties of CTLFB
All observations made for the finitely bounded semantics of ATL in [7] apply directly to
CTLFB. Here are the most important and interesting ones.
1. On all image finite models (where every state has finitely many immediate successors)

CTLFB = CTL, i.e., truth of CTL-formulae is independent of which semantics is used.
2. CTL 6= CTLFB in models that have infinite branchings. In particular, the fixed point

properties of the operators F and G fail since the implications EG p→ (p ∧ EX EG p) and
(dually) (p∨AX AF p)→ AF p are valid in CTL but not in CTLFB. For an explicit model
where the former implication fails, see the ITS in Figure 4 in Section 3.4.

1 It suffices to use ordinals that have the same cardinality as the model. For more details, see [7].

V. Goranko, A. Kuusisto, and R. Rönnholm 14:5

3. Since CTL has the finite model property, the two facts above imply that CTLFB does not
have the finite model property, as these implications cannot fail in (image-)finite models.
It is thus not immediately obvious that satisfiability for CTLFB should be decidable.

4. Consequently, the set of validities of CTLFB is properly included in the set of validities of
CTL. Indeed, every non-validity of CTL is falsified in a finite model and thus, by fact 1,
it is a non-validity of CTLFB, too.

On the one hand, the lack of finite model property of CTLFB can be regarded as an
increase of the semantic complexity and richness in comparison with standard CTL. But
on the other hand, the semantics of CTLFB can be seen as simpler than that of CTL, in
the sense that it only requires one to consider finite paths and does not involve dealing with
universal eventualities.

Note the conceptual parallels between FBS and for-loops on the one side, and between
the standard semantics and while-loops on the other. For more on this, see Section 5.2 of [7].

Finally, we list in the lemma below some validities in CTLFB used further. These can be
verified easily by using the respective fixpoint characterizations.

I Lemma 4. For every ITSM and s ∈M the following hold, for Q ∈ {E,A}:
1. M, s |=fb QGϕ iff M, s |=fb Gn

Q(ϕ) for every n ∈ N.
2. M, s |=fb Q(ϕUψ) iff M, s |=fb Un

Q(ϕ,ψ) for some n ∈ N.
3. |=fb AGϕ→ Gn

A(ϕ) and |=fb Un
E(ϕ,ψ)→ E(ϕUψ) for every n ∈ N.

4. |=fb Gn
A(θ)→ Gm

A (θ) and |=fb Um
A (ψ, θ)→ Un

A(ψ, θ) for all m,n ∈ N such that m < n.

3 Infinitary tableaux for CTLFB

We only provide a detailed sketch of the (infinitary) tableaux-building procedure for CTLFB
here. For further details that are essentially the same as in the tableaux method for the
standard CTL, see [5, Chapter 13], the style of which we closely follow here.

3.1 Preliminaries

3.1.1 Types and components of formulae
In this section we will regard each of >,⊥,¬,∧,EX ,AX ,EG ,AG ,EU ,AU as primitive con-
nectives in the language, while ∨,→,↔,EF ,AF will be regarded as abbreviations. We
will distinguish five types of formulae: literals, conjunctive, disjunctive, existential
successor and universal successor formulae. Literals are atomic propositions and nega-
tions of these, and >, ⊥. Successor formulae are those beginning with EX (existential) and
AX (universal). For each of the latter three types of formulae listed above we define their
respective components as in Figure 1. Literals have no components. We write scomp(χ) to
denote the successor component of the formula χ. Note that formulae of the type EU and
¬AG , even though having standard semantics, are not treated here as existential eventualities
are treated in standard tableaux for CTL. This is mainly for the sake of uniformity with the
finitary tableaux for CTLFB presented further.

I Lemma 5. For every ITSM, s ∈M and a formula ϕ of CTLFB the following hold:
1. If ϕ is any conjunctive formula, then M, s |=fb ϕ iff M, s |=fb ψ for every conjunctive

component ψ of ϕ.
2. If ϕ is any disjunctive formula, then M, s |=fb ϕ iff M, s |=fb ψ for some disjunctive

component ψ of ϕ.

TIME 2017

14:6 CTL with Finitely Bounded Semantics

successor successor conjunctive conjunctive disjunctive disjunctive
formula component formula components formula components

EXϕ (exist.) ϕ ¬¬ϕ ϕ

AXϕ (univ.) ϕ ϕ ∧ ψ ϕ, ψ ¬(ϕ ∧ ψ) ¬ϕ, ¬ψ
¬AXϕ (exist.) ¬ϕ AGϕ {ϕ,AX AGϕ} ¬AGϕ {¬Gn

A(ϕ)}n∈N

¬EXϕ (univ.) ¬ϕ EGϕ {Gn
E (ϕ)}n∈N ¬EGϕ {¬Gn

E (ϕ)}n∈N

¬E(ϕUψ) {¬ψ,¬ϕ ∨ ¬EX E(ϕUψ)} E(ϕUψ) {Un
E (ϕ,ψ)}n∈N

¬A(ϕUψ) {¬Un
A(ϕ,ψ)}n∈N A(ϕUψ) {Un

A(ϕ,ψ)}n∈N

Figure 1 Types and components of formulae in CTLFB.

3.1.2 Extended closure of a formula
In order to determine the truth of a CTLFB formula η one has to consider a set of ‘simpler’
formulae which appear in the process of the truth evaluation of η and are needed in the
tableaux construction for it. As in the case of CTL, some of these auxiliary formulae are
not really simpler, as they come from the unfoldings of the temporal operators and are
generally not subformulae of η. Still, they can be identified quite simply and collected in
the extended closure of the formula η, denoted ecl(η), obtained by closing under taking
respective components of already added formulae, which is defined generically as follows.

I Definition 6. The extended closure ecl(ϕ) of formula ϕ is the least set of formulae
such that ϕ ∈ ecl(ϕ) and ecl(ϕ) is closed under taking all conjunctive, disjunctive, successor
components of formulae in ecl(ϕ). For any set of formulae Γ we define ecl(Γ) :=

⋃
{ ecl(ϕ) |

ϕ ∈ Γ }. A set of formulae Γ is closed if Γ = ecl(Γ).

I Example 7. Let η := EG p ∧ ¬(p ∧ EX EG p). This formula will be used in the running
examples later on. Here is the extended closure of η: ecl(η) = {η,EG p,¬(p ∧ EX EG p)} ∪
{Gn

E(p)}n∈N∪{¬p,¬EX EG p}∪{EX Gn
E(p)}n∈N∪{¬EG p}∪{¬EX Gn

E(p)}n∈N∪{¬Gn
E(p)}n∈N.

3.1.3 Full expansions
I Definition 8. A set of formulae is patently inconsistent if it contains ⊥, or ¬>, or a
contradictory pair of formulae ϕ and ¬ϕ.

I Definition 9. A set of formulae Γ is fully expanded iff:
1. it is not patently inconsistent,
2. for every conjunctive formula in Γ, all of its conjunctive components are in Γ,
3. for every disjunctive formula in Γ, at least one of its disjunctive components is in Γ.

I Definition 10. A fully expanded set of formulae Ψ is a full expansion of a set of formulae
Γ if Ψ can be obtained from Γ by the following procedure FullExpansion, consisting in
repeated application of the following rules, where initially no formula is marked as ‘used’:
(C-comp) for every conjunctive formula ϕ in the current set Γ′, not yet marked as ‘used’,

add all of its conjunctive components to Γ′ and mark ϕ as ‘used’.
(D-comp) for every disjunctive formula ϕ in the current set Γ′, not yet marked as ‘used’,

add to Γ′ one of its disjunctive components that is not already in Γ′ and mark ϕ as ‘used’.

Since the procedure FullExpansion is non-deterministic, it can produce (possibly
infinitely) many full expansions of Γ (or none). This procedure can be readily replaced with
a deterministic process that constructs all fully expanded sets allowed by FullExpansion.

V. Goranko, A. Kuusisto, and R. Rönnholm 14:7

Moreover, in the finitary tableau (see Section 4), this process runs in EXPTIME. We denote
the set of all full expansions of Γ (obtained by the procedure FullExpansion) by FE(Γ).
Intuitively, a full expansion of Γ consists of all formulae appearing on some open branch in
the saturated local (propositional) tableau for input set Γ.

I Proposition 11. For any set of CTLFB-formulae Γ, ITSM and state s ∈M:

M, s |=fb Γ iffM, s |=fb ∆ for some ∆ ∈ FE(Γ) .

The proof for this proposition is routine, using Lemma 5.
The purpose of the tableaux method outlined further is to determine whether at least

one full expansion of the input formula set is satisfiable.

I Example 12. Let Γ1 := {η}, where η := EG p ∧ ¬(p ∧ EX EG p) (recall Example 7) and let
Γ2 := {Gk

E(p),¬EG p}, where k ∈ N. These sets of formulae will be used later in Example 17.
Γ1 has the following full expansion: {η,EG p,¬(p∧EX EG p)}∪{Gn

E(p)}n∈N∪{¬EX EG p}∪
{EX Gn

E(p)}n∈N. This is the only full expansion of Γ1, because choosing the disjunctive
component ¬p of ¬(p ∧ EX EG p) creates a patently inconsistent set (since G0

E(p) = p).
On the other hand, the set FE(Γ2) is infinite, because for eachm ∈ N such thatm /∈ {0, k}

the set Ψm = {Gk
E(p),¬EG p, p, EX Gk−1

E (p),¬Gm
E (p),¬EX Gm−1

E (p)} is a full expansion of
Γ2. The disjunctive components ¬Gk

E(p) and ¬G0
E(p) = ¬p of ¬EG p are the only ones that

create patently inconsistent sets.

3.2 Hintikka structures
Intuitively, a Hintikka structure represents a partly defined rooted ITS satisfying the input
formula. It is a graph, every node of which is labeled by a set of formulae. These labels are
fully expanded subsets of the extended closure of a designated input formula, the satisfiability
of which is tested by the tableau. All desired properties of the transition relations in a
Hintikka structure are encoded by means of the labels of the states. Membership to the
label of the state of a Hintikka structure simulates the notion of truth of a formula at a
state of an interpreted transition system and the labelling of states must ensure that the
Hintikka structure can generate a model of the input formula. The purpose of the tableau
construction is to check for existence of a Hintikka structure ‘satisfying’ the input formula, in
the sense described above. Here is the formal definition of a Hintikka structure for CTLFB.

I Definition 13. Given a closed set of CTLFB-formulae Γ, a Hintikka structure (HS)
for Γ is a tuple H = (S,R,H) s.t. (S,R) is a transition system and H : S → P(Γ) is a
labelling function satisfying the following conditions for every s ∈ S:
(H1) H(s) is fully expanded (in the sense of Def. 9).
(H2) If ϕ ∈ H(s) is an existential successor formula, then scomp(ϕ) ∈ H(s′) for some s′ such

that sR s′. (Recall that scomp(ϕ) denotes the successor component of the formula ϕ.)
(H3) If ϕ ∈ H(s) is a universal successor formula, then scomp(ϕ) ∈ H(s′) for every s′ such

that sR s′.

I Definition 14. A formula ϕ ∈ CTLFB is satisfiable in a Hintikka structure H =
(S,R,H) for a set Γ if ϕ ∈ H(s) for some s ∈ S. A set of formulae Ψ ⊆ Γ is satisfiable in H
if Ψ ⊆ H(s) for some state s in H.

Note that every rooted ITS uniformly generates a rooted Hintikka structure for any closed
set of formulae Γ by labelling each state of the ITS with the set of all formulae from Γ that
are true at that state. Formally:

TIME 2017

14:8 CTL with Finitely Bounded Semantics

I Lemma 15. For any closed set of CTLFB-formulae Γ (in the sense of Def. 6) over as
set of atomic propositions Φ and for every interpreted transition system M = (S,R,Φ, `)
the structure H(M) = (S,R,H), where H(s) = {ϕ ∈ Γ | M, s |= ϕ} for every s ∈ S, is a
Hintikka structure for Γ.

An essential difference between interpreted transition systems and Hintikka structures is
that, while an ITS determines the truth value of every formula at every state, a Hintikka
structure only contains just enough information to determine the truth values of those
formulae that are directly involved in the evaluation of the input formula η at the root state.

Given a formula ϕ for which we look for a model, we will be interested in Hintikka
structures for the set ecl(ϕ). For that class of Hintikka structures to be suitable for our
purpose, every formula satisfiable in a Hintikka structure must also be satisfiable in an ITS,
so the two notions of satisfiability are equivalent. Thus, the following result is needed. (See
the Appendix for a sketch of proof).

I Theorem 16. A CTLFB-formula η is satisfiable iff it is satisfiable in some Hintikka
structure for ecl(η).

3.3 Construction of the tableaux
The tableau procedure presented here attempts to construct for a given input formula η a
non-empty graph T η, called a tableau, representing (in a way) sufficiently many possible
Hintikka structures for η. The procedure consists of three major phases:
1. Construction phase. In that phase a finite directed graph Pη with labeled vertices, called

the pretableau for η, is produced, following prescribed construction rules. The set of
nodes of the pretableau properly contains the set of nodes of the tableau T η that is to be
ultimately built. The pretableau has two types of nodes: states and prestates. The
states are labeled with fully expanded subsets of ecl(η) and represent states of a Hintikka
structure, while the prestates can be labeled with any subsets of ecl(η) and they play
only an auxiliary and temporary role. In this tableau construction states and prestates
with an already existing label are not created again, but reused. So, when there is no
danger of confusion, we will identify prestates or states with their labels.

2. Prestate elimination phase. Here the prestates are removed using the prestate elim-
ination rule. The result is a smaller graph T η0 , called the initial tableau for η.

3. State elimination phase. In this phase we remove, using state elimination rules, all
(if any) states from T η0 that cannot be satisfied in any Hintikka structure. In the case
of CTLFB, where there are no explicit eventualities to be satisfied, an elimination of a
state can happen for only one reason: some of the successor states that the state needs
for the satisfaction of its successor formulae, have already turned out unsatisfiable and
have been removed in the elimination process so far. The state elimination phase results
in a (possibly empty) subgraph T η of T η0 , called the final tableau for η.

If there is a state in the final tableau T η containing η in its label, the tableau is declared
open and the input formula η is pronounced satisfiable; otherwise, the tableau is declared
closed and η is pronounced unsatisfiable.

3.3.1 The pretableau construction phase
The pretableau construction phase consists of two rules: PrExpCTLFB producing all off-
spring states of a given prestate; and NextCTLFB producing the successor prestates of

V. Goranko, A. Kuusisto, and R. Rönnholm 14:9

a given state. The rule PrExpCTLFB involves the procedure FullExpansion, described in
Section 3.1.3, for computing the family FE(Γ) of full expansions of a given set Γ ⊆ ecl(η).

PrExpCTLFB : Given a prestate Γ to which the rule has not yet been applied, do the following:
1. Compute the family FE(Γ) of full expansions of Γ and add these as (labels of) new states

in the pretableau, called the offspring states of Γ.
2. For each newly introduced state ∆, create an edge Γ 99K ∆.
3. If, however, the pretableau already contains a state with label ∆ then do not create a

new state with that label, but create an edge to ∆ instead.
We denote the set {∆ | Γ 99K ∆ } of offspring states of Γ by states(Γ). Hereafter we write
X (∆) := {ψ | AXψ ∈ ∆ } ∪ {¬ψ | ¬EXψ ∈ ∆ } for any set of CTLFB-formulae ∆.

NextCTLFB : Given a state ∆ to which the rule has not yet been applied, do the following:
1. For each existential successor formula ϕ ∈ ∆ (i.e., ϕ = EXχ or ϕ = ¬AXχ) add a

successor prestate Γ of ∆ with label X (∆) ∪ {scomp(ϕ)} and create an edge ∆ ϕ−→Γ.
2. Consider the case where ∆ has no existential successor formulae. If X (∆) 6= ∅, add one

prestate Γ with label X (∆) and an edge ∆−→Γ. If X (∆) = ∅, simply create a loop ∆−→∆.
3. If the pretableau already contains a prestate with the label of Γ, then do not create a

new prestate with that label, but create an edge to Γ instead.
The construction phase of building a pretableau for η begins with creating a single prestate {η},
followed by alternating applications of the rules PrExpCTLFB and NextCTLFB , respectively
to the prestates and the states created at the previous stages of the construction. The
construction phase is completed if/when none of these rules can add any new states or
prestates to the current graph. The resulting graph is the pretableau Pη.

Note that there are two types of branching in the pretableau: search branching, from a
prestate to its offspring states, indicated by 99K, and structural branching, from a state to
its successor prestates, indicated by χ−→ for an EX -formula χ. Search branching is branching
of the search tree, and thus it is disjunctive, or existential: only one offspring state of
every prestate is eventually needed to build a satisfying structure. Structural branching is
conjunctive, or universal. Since it represents branching in the structure to be built, all
successor prestates of every state are potentially needed in the construction.

In the subsequent figures illustrating tableau examples, prestates are indicated with shaded
square boxes and labeled by P with indices, while states are indicated with transparent
boxes with rounded corners and labeled by S with indices.

I Example 17 (Pretableau). (Recall Example 12.) The sentence η = EG p ∧ ¬(p ∧ EX EG p)
has the countably infinite pretableau given in Figure 2. From state S0 there is an infinite
structural branching to prestates {P0n | n ∈ N}. Since the pretableau construction is
analogous for all of these prestates, we only present a single one of them here, namely P0k.
From P0k there is an infinite search branching to states {S0km | m ∈ N \ {0, k}}. But all
cases where 0 < m < k are analogous to each other. Similarly, all cases where m > k are
analogous to each other. Note that when m < k, the prestates P0km0m−1 do not have any
offspring states since then FE({Gk−m

E (p),¬G0
E(p)}) = ∅.

3.3.2 Prestate elimination phase and initial tableaux

In this phase, all prestates are removed from Pη, together with their incoming and outgoing
arrows, by applying the following generic prestate elimination rule:

TIME 2017

14:10 CTL with Finitely Bounded Semantics

{η}P0

{η,EG p,¬(p ∧ EX EG p)} ∪ {Gn
E (p)}n∈N ∪ {¬EX EG p} ∪ {EX Gn

E (p)}n∈NS0

{Gk
E(p),¬EG p}P0k· · · · · ·

n=kn=0

{Gk
E(p),¬EG p, p, EX Gk−1

E (p),¬Gm
E (p),¬EX Gm−1

E (p)}

S0km

0<m<k

{Gk−1
E (p),¬Gm−1

E (p)}P0km

...

{Gk−m
E (p),¬G0

E(p)}P0km0m−1

{Gk
E(p),¬EG p, p, EX Gk−1

E (p),¬Gm
E (p),¬EX Gm−1

E (p)}

S0km
m>k

{Gk−1
E (p),¬Gm−1

E (p)} P0km

...

{G0
E(p),¬Gm−k

E (p)} P0km0k−1

{p,¬Gm−k
E (p),¬EX Gm−k−1

E (p)}S0km0k−1

{¬Gm−k−1
E (p)}P0km0k

{¬p}S0km0k1 {¬EX Gm−k−2
E (p)}

S0km0k2

{¬Gm−k−2
E (p)}P0km0k2

{¬p}S0km0k21
...

{¬p}S0km0k2m−k

Figure 2 Infinitary pretableau for η = EG p ∧ ¬(p ∧ EX EG p).

PrestateElimCTLFB . For every prestate Γ in Pη, do the following:
1. If there is a ∆ ∈ Pη with ∆−→Γ, then for every ∆′ ∈ states(Γ), create an edge ∆−→∆′;
2. Remove Γ from Pη together with its outgoing arrows.
The resulting graph is called the initial tableau for η, denoted T η0 . The offspring states of
the input prestate {η} are called input states of T η0 .

3.3.3 State elimination phase and the final tableau
This phase is carried out in a sequence of stages, starting with the initial tableau T η0 , and
eliminating at each stage n at least one state for the current tableau T ηn , by applying the state
elimination rule stated below, to produce the new current tableau T ηn+1, until stabilisation.
StateElimCTLFB : If a state ∆, containing an existential successor formula EXψ (respectively,
¬AXψ), has no successor states containing ψ (respectively, ¬ψ) in the current tableau, then
remove ∆ from the tableau. Remove ∆ from the tableau also if ∆ has no successor states.

The rule StateElimCTLFB is applied repeatedly until reaching a stage when no further
elimination of states is possible. Such a stage may not be reached at any finite stage, so
the elimination phase may have to go on for transfinitely many steps, in which case every
limit-stage tableau is the limit of the decreasing chain (by inclusion) of current tableaux.

V. Goranko, A. Kuusisto, and R. Rönnholm 14:11

{η,EG p,¬(p ∧ EX EG p)} ∪ {Gn
E (p)}n∈N ∪ {¬EX EG p} ∪ {EX Gn

E (p)}n∈NS0

· · · · · ·{Gk
E(p),¬EG p, p, EX Gk−1

E (p),¬Gm
E (p),¬EX Gm−1

E (p)}S0km

m>k>0

{p,¬Gm−k
E (p),¬EX Gm−k−1

E (p)}S0km0k−1

...

{¬p}S0km0k1 {¬EX Gm−k−2
E (p)} S0km0k2

{¬p}S0km0k21
...

{¬p} S0km0k2m−k

Figure 3 Final tableau for η = EG p ∧ ¬(p ∧ EX EG p).

When the state elimination phase reaches a (finite or limit) stabilization stage, the
resulting tableau then is the final tableau for η, denoted by T η, with a set of states
denoted by Sη.

I Definition 18. The final tableau T η is open if η ∈ ∆ for some ∆ ∈ Sη; else, T η is closed.

The tableau procedure returns “not satisfiable” if the final tableau is closed; otherwise, it
returns “satisfiable” and, moreover, provides sufficient information for producing a countable
Hintikka structure satisfying η, as described in the completeness proof below.

I Example 19 (Final tableau). Recall the pretableau from Example 17. The initial tableau is
obtained removing the prestates by applying PrestateElimCTLFB . The branches starting
from states S0km where 0 < m < k end at a prestate that has no offspring state. Therefore
all of states on these branches are eliminated when the final tableau is formed. All the other
states remain in the final tableau and therefore it is open. See Figure 3 for the final tableau.

3.4 Soundness and completeness of the infinitary tableau for CTLFB
Note that in general none of the three phases of the construction terminates at any finite
stage if performed consecutively, because the set of full expansions of a prestate may be
infinite, or because infinitely many successor prestates may have to be introduced. However,
each of these stages does reach saturation at some transfinite stage.

Soundness of the tableau procedure means that if the input formula η is satisfiable,
then the final tableau T η is open, so the tableau procedure is guaranteed to establish the
satisfiability. A generic proof of soundness consists of showing that at least one tableau
state containing η will survive forever, i.e. will never be eliminated. Note first that if η is
satisfiable, and hence propositionally consistent, there will be at least one offspring state of
the initial prestate containing η, due to Proposition 11. Moreover, for every rooted ITS (M, s)
satisfying η, the set {ψ ∈ ecl(η) | M, s |= ψ} contains at least one such state. Thereafter, it
suffices to show that only unsatisfiable states get eliminated in the state elimination phase.
Thus, we will establish the soundness of the tableau for CTLFB by proving that the state
elimination rule is ‘sound’ in a sense that it never eliminates a state with a satisfiable label.
The soundness of the overall procedure is then an immediate consequence. The proof of that

TIME 2017

14:12 CTL with Finitely Bounded Semantics

p
S0

¬pS0001 pS012 pS023 pS034

· · ·

¬pS01201 pS0230 pS0340

¬pS023001 pS03400

¬pS0340001 . . .

Figure 4 A model satisfying EG p ∧ ¬(p ∧ EX EG p).

claim follows a fairly routine argument (see [5, Chapter 13]) by induction on the applications
of the state elimination rule. However, since the elimination phase for CTLFB may take a
transfinite sequence of steps, the soundless argument now uses transfinite induction. For a
proof sketch, see the Appendix.

I Lemma 20. Let Γ be a prestate of Pη such that M, s |= Γ for some rooted interpreted
transition system (M, s). ThenM, s |= Ψ for at least one Ψ ∈ states(Γ).

I Lemma 21. No satisfiable state ∆ ∈ T η0 is removed by any application of StateElimCTLFB

during the state elimination phase.

I Theorem 22 (Soundness). If η ∈ CTLFB is satisfiable then T η is open.

Completeness of the tableau procedure means that if the input formula η is not
satisfiable, then the final tableau T η is closed, so the tableau procedure is guaranteed to
establish the unsatisfiability. By contraposition, completeness means that if the final tableau
is open, the input formula η is satisfiable. The proof of the completeness is sketched in the
Appendix.

I Theorem 23 (Completeness). For any formula η ∈ CTLFB, if the final tableau T η is open,
then η is satisfiable.

I Example 24. Since the final tableau of η = EG p ∧ ¬(p ∧ EX EG p) is open, η is satisfiable
by Theorem 23. Thus EG p→ (p ∧ EX EG p) is not a valid CTLFB sentence. Consider the
final tableau in Example 19 as a transition system T . By using any state description function
` that satisfies the labels of the states in T , we obtain an ITS which satisfies η.

However, by analysing the pretableau of η (Example 17) we can construct a simpler ITS
that satisfies η. It suffices that, for every prestate Γ, a single state in states(Γ) survives the
state elimination process. Thus, for a prestate P0k (k ∈ N), we can choose any offspring state
S0km for which m > k; e.g. we can choose m := k + 1. Furthermore, it suffices that, for a
prestate P0km0k , we choose only the state S0km0k1 (and remove the state S0km0k2).

By removing states from T η as described above, we obtain the ITS in Figure 4 which can
be seen as the simplest model satisfying η. Note that since S0001, S01201, S023001, S0340001, ...

have the same label {¬p}, they are actually merged into a single state by the tableau rules.

I Example 25. Consider η′ := (p ∧ EX EG p) ∧ ¬EG p. Since ¬G0
E(p) = ¬p is a conjunctive

component of ¬EG p and p is a conjunctive component of p∧ EX EG p, we have FE({η′}) = ∅.
Therefore the pretableau of η′ will only have a single prestate, namely {η′}, and not any
states. Thus the final tableau for η′ is empty and thus it is trivially closed. Hence by
Theorem 22 η′ is not satisfiable, i.e. (p ∧ EX EG p)→ EG p is a valid CTLFB formula.

V. Goranko, A. Kuusisto, and R. Rönnholm 14:13

It is easy to show that the structural branchings in the tableau are always countable.
Thus we can prove the following claim for CTLFB. For more details, see the the Appendix.

I Proposition 26. CTLFB has the countable model property, i.e. if η ∈ CTLFB is
satisfiable, then η is satisfiable in a countable model.

4 Finitary tableaux for CTLFB

4.1 Construction of finitary tableaux
Hereafter we will use a set of new symbols {ni | i ∈ N+}, called iteration parameters,
which will be used instead of natural numbers ni in formulae of type Gni

Q (ϕ) and Uni

Q (ϕ,ψ).
We denote the resulting extended language CTLparFB. Here Gni

Q (ϕ),Uni

Q (ϕ,ψ) ∈ CTLparFB
(i ∈ N+) are not abbreviations; they are treated as actual formulae of CTLparFB. We will
not give any semantics for Gni

Q (ϕ) or Uni

Q (ϕ,ψ) as they will only be used “symbolically” in
the construction of the finite tableau. In particular, the iteration parameter ni is just a
symbol which does not have any actual value. However, intuitively, each parameter ni takes
an “arbitrarily large” but finite and fixed value which represents the number of iterations
of the given recursive operator. The index i (recall i ∈ N+) of the iteration parameter
ni indicates when the “value” of ni has been fixed (with respect to the other iteration
parameters). The “value” of ni may depend on the “values” of all iteration parameters with
smaller subindices, as they have been set earlier. Thus, we may assume that each iteration
parameter is “arbitrarily larger” than all the parameters with smaller indices.

We now re-define the conjunctive and disjunctive components of formulae in CTLparFB as in
the table below (with no changes for the formulae that are not listed there). Note here that,
since we give no semantics for the formulae Gni

Q (ϕ) and Uni

Q (ϕ,ψ), their components are
“symbolical” and are only defined in order to be used with the procedure FullExpansion.

formulae conjunctive component formulae disjunctive component

AGϕ {ϕ,AX AGϕ} ¬AGϕ, ¬Gni
A (ϕ) {¬ϕ,¬AX Gni

A (ϕ)}
EGϕ, Gni

E (ϕ) {ϕ,EX Gni
E (ϕ)} ¬EGϕ, ¬Gni

E (ϕ) {¬ϕ,¬EX Gni
E (ϕ)}

¬E(ϕUψ) {¬ψ,¬ϕ ∨ ¬EX E(ϕUψ)} E(ϕUψ), Uni
E (ϕ,ψ) {ψ,ϕ ∧ EX Uni

E (ϕ,ψ)}
¬A(ϕUψ),¬Uni

A (ϕ,ψ) {¬ψ,¬ϕ ∨ ¬AX Uni
A (ϕ,ψ)} A(ϕUψ), Uni

A (ϕ,ψ) {ψ,ϕ ∧ AX Uni
A (ϕ,ψ)}

The cases with two formulae (e.g. EGϕ and Gni

E (ϕ)), in the table above, have the same
component for both formulae. However, the index i chosen for the iteration parameter ni
with the second component (e.g. EX Gni

E (ϕ)) is chosen differently for the formula on the left
(e.g. EGϕ) and the formula on the right (e.g. Gni

E (ϕ)); see below.
(Left) Here we need to introduce a new parameter ni for the component. The value of
the index i ∈ N+ depends on the context; see the construction of the set FE(∆) below.
(Right) Here the same iteration parameter ni (with the same index i) that occurs in the
original formula is used for the second component as well.

The notions of extended closure and full expansions for any set of formulae ∆ in CTLparFB
are defined as for CTLFB. When creating the set FE(∆) we may need to introduce new
iteration parameters ni for the components of formulae in ∆ (e.g. in the case of EGϕ in the
table above). When this happens, the index i ∈ N+ of ni is chosen to be the smallest integer
i that is greater than all other indexes of iteration parameters that currently occur in ∆.
Note that the same index i can be used for all formulae for which we need to introduce a
new parameter ni (at the same time). Therefore in FE(∆) there is at most one parameter
ni that does not occur in ∆. Also note that for a finite set ∆, the set FE(∆) is also finite.

TIME 2017

14:14 CTL with Finitely Bounded Semantics

{η}P0

{η,EG p,¬(p ∧ EX EG p), p, EX Gn1
E (p),¬EX EG p}S0

{Gn1
E (p),¬EG p}P00

{Gn1
E (p),¬EG p, p ,EX Gn1

E (p),¬EX Gn2
E (p)}S00

{Gn1
E (p),¬Gn2

E (p)}P000

{p, EX Gn1
E (p),¬EX Gn2

E (p)}S000

{p,¬Gn2
E (p)}P0000

{p,¬EX Gn2
E (p)}S0000

{¬Gn2
E (p)}P00000

{¬p}S00001 {¬EX Gn2
E (p)} S00002

{¬p} P000020

Figure 5 Finitary pretableau for η = EG p ∧ ¬(p ∧ EX EG p).

Finally we consider the case when a successor prestate Γ would be created for a state ∆
but there already exists a prestate Γ′ with the same label as Γ. If no iteration parameter ni
occurs in Γ, then we proceed as normally by adding an arrow ∆−→Γ′. Else, we apply the
following “parameter elimination” procedure:

ParElim: Let i be the smallest integer for which ni occurs (possibly many times) in Γ. Now
we first create a set Γ/i by replacing all formulae in Γ that contain ni with the formulae
in the table below. Then we add a successor prestate of ∆ with the label Γ/i and then
continue the finitary pretableau construction as normally.

formula replacement formula replacement

Gni
E (ϕ) ϕ ¬Gni

A (ϕ), ¬Gni
E (ϕ) ¬ϕ

Uni
E (ϕ,ψ), Uni

A (ϕ,ψ) ψ ¬Uni
A (ϕ,ψ) ¬ψ

Note that here ni is intuitively “lowered to zero”, as e.g. ¬G0
A(ϕ) = ¬G0

E(ϕ) = ¬ϕ.
Apart from the changes described above, the finitary pretableau for CTLparFB is constructed

in the same way as the infinitary pretableau for CTLFB.

I Example 27. The formula η = EG p ∧ ¬(p ∧ EX EG p) has the finitary pretableau given in
Figure 5. Here the procedure ParElim is applied when the prestates P0000 and P000020 are
created. Note that this pretableau is finite and rather simple, but it still (in some sense)
encodes all the relevant information of the corresponding infinitary pretableau in Example 17.

The prestate and state eliminations are done exactly as in the infinitary tableau for
CTLFB; they always terminate in finite number of steps and produce a finite final tableau.
We will show that the final finitary tableau for a formula ϕ is open if and only if ϕ is
satisfiable.

V. Goranko, A. Kuusisto, and R. Rönnholm 14:15

4.2 Equivalence of the two tableaux and their complexity
I Theorem 28. The infinitary tableau for a formula η ∈ CTLFB is open if and only if the
finitary tableau for η is open.

A detailed proof sketch for this equivalence is given in the appendix, but we explain
here the main ideas. The infinite branchings in the infinitary tableau are replaced with
only a single branch in the finitary tableau. For example, for ¬EGϕ, (typically) in the
infinitary tableau there is an infinite branching such that for each n ∈ N, there is an offspring
state in which ¬EX Gn

E(ϕ) occurs, while in the finitary tableau, the single CTLparFB-formula
¬EX Gni

E (ϕ), for some i ∈ N+, is used in the place of all these formulae. We can show that
for sufficiently large values of n, all the corresponding branches in the infinitary tableau have
essentially the same structure. Furthermore, it suffices to only consider these high values of
n when checking whether a state gets eliminated from the infinitary tableau.

Note that in the rules of the finitary tableau, the iteration parameter ni is treated as
an (actual) iteration counter n except that its value is not lowered normally in transitions.
But if the same state is to be repeated in the finitary tableau, then one of the iteration
parameters is replaced with the value zero (by the procedure ParElim). In the corresponding
situation in the infinitary tableau, the similar states could be repeated until some of the
iteration counters goes to zero. When considering only sufficiently large values of n, we may
suppose that n is larger than all the iteration counters that have been set before the value
of n has been fixed. Therefore n goes to zero only after all iteration counters set earlier
have gone to zero. The same thing happens with the finitary tableau rules, as the iteration
parameters ni are lowered to zero in the order in which they have been introduced.

As seen above, the iteration parameter ni is treated as if it had “as large a value as
possible.” Therefore we can show that the branches in the finitary tableau where ni is used
in the place of n, have essentially the same structure as the branches in the infinitary tableau
where sufficiently large values of n are used. As only these branches are relevant for checking
whether the infinitary tableau closes, it follows that the two tableaux are equivalent.

I Corollary 29. The finitary tableau for CTLFB is sound and complete.

I Theorem 30. The complexity of the finitary tableau for CTLFB is EXPTIME-complete.

The upper bound is easy to see by first noticing that the set of different labels of states
in the finitary tableau is exponential with respect to the size of the input formula. The
lower bound is obtained by a simple translation from the bi-modal logic with an additional
reflexive-transitive closure operator. See more details in the Appendix.

I Corollary 31. The satisfiability problem of CTLFB is decidable and EXPTIME-complete.

5 Concluding remarks

The motivation for the logic CTLFB introduced here was two-fold: natural game-theoretic
semantics and uniform boundedness of the time limit for satisfaction of eventualities across
all branches. Both apply well beyond CTL, e.g. also to produce respective versions of the
logics CTL∗ and ATL, to be studied further. While CTLFB is a simple semantic variation
of CTL, it turns out to display some essentially different semantic features, the most striking
being the lack of finite model property. That, in particular, makes capturing its validities
more difficult and requiring an infinitary Hilbert-style axiomatization which will be presented
in a subsequent work. An implementation of the finitary tableau method developed here will

TIME 2017

14:16 CTL with Finitely Bounded Semantics

also be considered in future. Lastly, symbolic model checking of CTLFB on some classes of
finitely presented infinite models is another natural direction for future work.

Acknowledgements We thank the reviewers for useful remarks.

References
1 R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic. J. ACM,

49(5):672–713, 2002.
2 Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Symbolic model

checking without BDDs. In Proc. of TACAS’99, pages 193–207, 1999.
3 P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. CUP, 2001.
4 E.M. Clarke and E.A. Emerson. Design and synthesis of synchronisation skeletons using

branching time temporal logic. In Logics of Programs, pages 52–71. Springer, 1981.
5 Stéphane Demri, Valentin Goranko, and Martin Lange. Temporal Logics in Computer

Science. Cambridge University Press, 2016.
6 Valentin Goranko, Antti Kuusisto, and Raine Rönnholm. Game-theoretic semantics for

alternating-time temporal logic. In Proc. of AAMAS 2016, pages 671–679, 2016.
7 Valentin Goranko, Antti Kuusisto, and Raine Rönnholm. Game-theoretic semantics for

alternating-time temporal logic. arXiv:1602.07667 [math.LO], submitted, 2017.
8 Wojciech Penczek, Bozena Wozna, and Andrzej Zbrzezny. Bounded model checking for the

universal fragment of CTL. Fundam. Inform., 51(1-2):135–156, 2002.
9 Bozena Wozna. ACTLS properties and bounded model checking. Fundam. Inform.,

63(1):65–87, 2004.
10 Wenhui Zhang. Bounded semantics. Theor. Comput. Sci., 564:1–29, 2015.

A Appendix

Proof sketch of Theorem 16

One direction is immediate by Lemma 15, for Γ = ecl(η). For the converse, suppose η ∈ H(s0)
for some state s0 in some Hintikka structure H = (S,R,H). We define the interpreted
transition system M = (S,R,Φ, `) where ` is a state description in S defined as follows:
`(s) := PROP ∩H(s).

We show by induction on the main components of ϕ ∈ ecl(η) that for every s ∈ S:

if ϕ ∈ H(s) thenM, s |= ϕ .

The details are fairly routine. The cases of the temporal operators follow directly from
Lemma 4.

Now, since η ∈ H(s0) we have thatM, s0 |= η.

Proof sketch of Lemma 21

Suppose the elimination phase terminates at some ordinal β, i.e. no states are eliminated
from T ηβ . It suffices to show, by transfinite induction on the ordinal number of elimination
steps α ≤ β taken in the elimination phase, that no satisfiable state ∆ ∈ T ηα is removed
by an application of StateElimCTLFB to T ηα . For that purpose we will prove a somewhat
stronger inductive claim, viz., that for every ordinal α ≤ β:
1. If ∆ ∈ T ηα is satisfiable, then for any EXϕ ∈ ∆ there is a satisfiable state Ψϕ ∈ T ηα such

that ∆ EXϕ−−−→Ψϕ in T ηα .

V. Goranko, A. Kuusisto, and R. Rönnholm 14:17

2. If ∆ ∈ T ηα is satisfiable, then for any ¬AXϕ ∈ ∆ there is a satisfiable state Ψ¬ϕ ∈ T ηα
such that ∆ ¬AXϕ−−−−→Ψ¬ϕ in T ηα .

3. All satisfiable states in T η0 are still present in T ηα .

Note that the inductive hypothesis refers simultaneously to all satisfiable ∆ ∈ T ηα and all
successor formulae EXϕ ∈ ∆ and ¬AXϕ ∈ ∆. We will only give the proof of claim 1; claim
2 is completely analogous, and then claim 3 follows immediately from these.

Assume the claim holds for all γ < α and consider 3 cases for α.
1. Let α = 0. Take a satisfiable ∆ ∈ T ηα and EXϕ ∈ ∆, Then,M, s |= ∆ for some rooted

ITS (M, s). Recall, that all states ∆′ ∈ T η0 such that ∆ EXϕ−−−→∆′ in T η0 are obtained as
full expansions of the prestate Γ = {ϕ} ∪ {ψ | AXψ ∈ ∆ } ∪ {¬ψ | ¬EXψ ∈ ∆ }. Since
EXϕ ∈ ∆, we have thatM, s |= EXϕ, hence there is an R-successor r of s inM such
thatM, r |= ϕ. By the truth definition for successor formulae, it follows thatM, r |= Γ
because {ψ | AXψ ∈ ∆ } ∪ {¬ψ | ¬EXψ ∈ ∆ } is satisfied at every R-successor of s in
M. Then, by Lemma 20, at least one full expansion Ψϕ of Γ is satisfied by (M, r), and,
by construction of the initial tableau, there is a state (with label) Ψϕ in T η0 such that
∆ EXϕ−−−→Ψϕ. Therefore, the state ∆ cannot be removed from T η0 by an application of the
rule StateElimCTLFB .

2. Let α be a successor ordinal. Assuming the claim holds for all γ < α, take a satisfiable
∆ ∈ T ηα . For any EXϕ ∈ ∆, by the argument for α = 0 there is a satisfiable state Ψϕ

in T η0 such that ∆ EXϕ−−−→Ψϕ in T η0 , and hence, by the inductive hypothesis, Ψϕ has
remained intact in T ηα . Therefore, ∆ cannot be removed from T ηα by an application of
the rule StateElimCTLFB .

3. In the case when α is a limit ordinal, T ηα is the intersection of all T ηγ for γ < α and the
argument is essentially the same as in the previous case, but now applied to each T ηγ for
γ < α.

Proof of Lemma 20. Follows easily from Proposition 11.

Proof of Theorem 22. Follows immediately from Lemmas 20 and 21.

Proof sketch of Theorem 23

It suffices to show how from the open final tableau T η one can construct a Hintikka structure
satisfying η. That construction for CTLFB is similar to the construction for CTL described
in [5, Chapter 13], to which the reader is referred for further details. It consists in extracting
a subgraph of the final tableau T η which contains an initial state with the input formula
and represents any ‘logical branch’ of the search procedure encoded by T η. Such a ‘logical
branch’ can be extracted by selecting just one alternative state from every set of states in
T η generated in the pretableau construction phase as full expansions of the same prestate.
The resulting subgraph itself can be taken as a Hintikka structure, with a labelling function
assigning to each state its own label. The proof that it is a Hintikka structure for ecl(η) is
straightforward by the construction of the tableau.

Proof sketch of Proposition 26

Since there are only countably many formulae, each state in a tableau is a finite or countably
infinite set of formulae. Thus each state has at most countably many EX -formulae that
require a successor prestate, one prestate for each EX -formula. In the process of selecting

TIME 2017

14:18 CTL with Finitely Bounded Semantics

‘logical branches’ (cf. the proof of Theorem 23), we eliminate all except for one of the states
generated from a single prestate by the full expansion procedure. Thus, we observe that the
out-degree of each state in the ultimate model is at most countably infinite and each such
state is constructed after finitely many steps from the initial state. Therefore, the whole
model is a countable union of countable sets of states.

Proof sketch of Theorem 28

For simplicity we suppose here that η does not have subformulae of the form E(ϕUψ) or
A(ϕUψ), since these can be treated in a very similar way to the formulae EGϕ and AGϕ.
As the rules of the infinitary and the finitary tableau differ now only in those rules related to
EGϕ, ¬AGϕ and ¬EGϕ, we compare how these formulae are treated in the two tableaux. In
the infinitary tableau, the rules for these formulae typically create infinite branchings, with a
branch for every iteration counter n ∈ N, while in the finitary tableau an iteration parameter
ni is used in the place of every n. We aim to show that it suffices to consider only certain
‘sufficiently large’ values of n in order to determine whether the infinitary tableau closes or
not. Furthermore, we will argue that a branch with such a large value of n has (essentially)
the same structure as a branch in the finitary tableau with the iteration parameter ni. The
equivalence of the two tableaux will then be easy to see from these observations.

We will first define explicitly what we mean above by ‘sufficiently large’ value of n. For
this, consider a prestate Γ whose label contains some formulae of the form EGϕ, ¬AGϕ or
¬EGϕ. Let m ∈ N be the smallest integer that is greater than all iteration counters which
currently occur in the label of Γ (in the infinitary tableau). We now define n := m+ k, where
k is the size of the formula η (i.e. the number of symbols in η). We will show that this (or
any greater) value of n is the only one that needs to be considered as iteration counter when
we create offspring states of Γ.

We first consider the case of the formula ¬EGϕ. If ¬EGϕ occurs in some prestate Γ of
the infinitary tableau, then for each value of n ∈ N the formula ¬EX Gn−1

E (ϕ) occurs in some
offspring state of Γ; excluding those values of n that create patently inconsistent sets. The
only difference between the different values of n here is that n is lowered to zero at a different
stage in the tableau construction process. We first observe that if a state with certain value
of n survives the state elimination process, then all the larger values will survive as well.
Therefore if a state with some lower than m+ k value is not eliminated, then m+ k is not
eliminated either. But on the other hand, if a state with some larger than m+ k value of n
is not eliminated, then the state with n = m+ k cannot be eliminated either. In order to see
this, we first observe the following facts:
1. n = m+ k cannot go down to zero before all iteration counters that have been set before

n have gone down to zero.
2. After all other other iteration counters set before n = m+ k have gone to zero, all the

nested temporal operators EX or AX will be removed before n goes to zero.

So after n = m+ k has gone to zero, the elimination of the reached state depends only on
the values set after n. If this state will be eliminated, then it is easy to see that it would be
eliminated even if some larger than m+ k value of n was selected, since all the values, set
after fixing n, can always be arbitrarily larger than n.

The iteration parameter ni in the finitary tableau is treated essentially the same way as
the value n = m+k in the infinitary tableau. This is simply because ni cannot be ‘lowered to
zero’ unless a state with the same label is to be repeated in the tableau, and all the iteration
parameters set before ni are first eliminated (recall the procedure ParElim). Hence, it is easy

V. Goranko, A. Kuusisto, and R. Rönnholm 14:19

to see that a state with n = m+ k in the infinitary tableau is eliminated if and only if the
state with ni in the finitary tableau is eliminated.

We then consider the case of ¬AGϕ. If ¬AGϕ occurs in some prestate Γ of the infinitary
tableau, then for each value of n ∈ N the formula ¬AX Gn

A(ϕ) occurs in some offspring state
of Γ (except those values of n that create patently inconsistent sets). Hereafter the reasoning
can be done similarly as for the formula ¬EGϕ.

Finally we consider the case of EGϕ. If EGϕ occurs in some prestate Γ of the infinitary
tableau, then all the formulae EX Gn−1

E (ϕ) (n ∈ N) occur in every offspring state of Γ.
Consider some offspring state ∆ of Γ. When creating successor prestates for ∆, we must
create a successor prestate Γn for each value n ∈ N and include Gn−1

E (ϕ) in the label Γn. In
order for ∆ to survive the state elimination process, the following must hold for every n ∈ N:

Γn has an offspring state ∆n which survives the state elimination process. (Cn)

We first observe that if the condition (Cn) does not hold for some n < m+ k, then it cannot
hold for n = m+ k, either. But, with similar observations as in the case for ¬EGϕ, we can
also see that if (Cn) does not hold for some n > m+ k, then it cannot hold for n = m+ k

either. Hence it suffices that we only consider the case n = m+ k to see whether (Cn) holds
for every n ∈ N. With similar reasoning as above we see that this case is essentially the same
as the use of iteration parameter ni in the finitary tableau.

Proof sketch of Theorem 30

(A) Upper bound. The number of formulae (possibly containing iteration parameters) that
are used in a tableau for an input formula η, is linear in |η|. Thus, the number of different
labels of states (prestates) is exponential in |η|. Therefore, the number of nodes appearing in
the tableau construction is, likewise, exponential in |η|. The different construction maneuvers
are computationally straightforward and can easily be done deterministically. Therefore,
only exponentially many (in |η|) steps are required for carrying out the tableau procedure.

(B) Lower bound. Consider standard modal logic with the reflexive and transitive closure
operator, i.e., the logic generated by the grammar

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) |♦ϕ |♦∗ϕ

where p is a proposition symbol. The semantics is the standard one, with ♦∗ denoting the
diamond interpreted by the reflexive-transitive closure of the binary relation interpreting ♦. It
is well known that the satisfiability problem of this logic is EXPTIME-complete; see, e.g., [3].
Consider the simple translation T from this logic into CTLFB, preserving atomic propositions
and Boolean connectives, and mapping T (♦ϕ) to EX T (ϕ) and T (♦∗ϕ) to EFT (ϕ). It easy
to see that this translation preserves equivalence, i.e., precisely the same points of any model
satisfy ϕ and T (ϕ).

TIME 2017

	Introduction
	Preliminaries: CTL with finitely bounded semantics
	The standard semantics of CTL
	Game-Theoretic semantics for CTL
	Finitely bounded semantics for CTL
	Some properties of CTL-FB

	Infinitary tableaux for CTL-FB
	Preliminaries
	Types and components of formulae
	Extended closure of a formula
	Full expansions

	Hintikka structures
	Construction of the tableaux
	The pretableau construction phase
	Prestate elimination phase and initial tableaux
	State elimination phase and the final tableau

	Soundness and completeness of the infinitary tableau for CTL-FB

	Finitary tableaux for CTL-FB
	Construction of finitary tableaux
	Equivalence of the two tableaux and their complexity

	Concluding remarks
	Appendix

