
Query Rewriting under EL-TBoxes:

Efficient Algorithms

Peter Hansen1, Carsten Lutz1, İnanç Seylan1, and Frank Wolter2

1 University of Bremen, Germany, {hansen,clu,seylan}@informatik.uni-bremen.de
2 University of Liverpool, UK, frank@csc.liv.ac.uk

Abstract. We propose a new type of algorithm for computing first-
order (FO) rewritings of concept queries under EL-TBoxes that is tailored
towards efficient implementation. The algorithm outputs a non-recursive
datalog rewriting if the input is FO-rewritable and otherwise reports
non-FO-rewritability. We carry out experiments with ontologies from
practical applications which show that our algorithm performs very well
in practice, and that EL-TBoxes originating from real-world applications
admit FO-rewritings (of reasonable size) in almost all cases, even when
in theory such rewritings are not guaranteed to exist.

1 Introduction

Query rewriting is an important technique for implementing ontology-based data
access (OBDA) based on a relational database system (RDBMS), thus taking
advantage of those systems’ efficiency and maturity [15, 9]. The general idea is to
transform the original query q and the relevant TBox T into a first-order (FO)
query qT that is then handed over to the RDBMS for execution. One limitation
of this approach is that, for the majority of description logics that are used as
ontology languages, the query qT is not guaranteed to exist. In fact, this is the
case already for the members of the popular EL family of lightweight DLs [2,
11], which underly the OWL2 EL profile and are frequently used as ontology
languages in health care and biology. This observation, however, does not rule
out the possibility that FO-rewritings still exist in many practically relevant
cases. In fact, TBoxes that emerge from practical applications tend to have a
rather simple structure and one might thus speculate that, indeed, FO-rewritings
under EL-TBoxes tend to exist in practice.

In this paper, we consider the computation of FO-rewritings of concept
queries under TBoxes that are formulated in the description logic EL, where
a concept query takes the form C(x) with C an EL-concept. It has recently been
shown in [6] that deciding whether a concept query C(x) is FO-rewritable under
an EL-TBox T is a PSpace-complete, and that the problem becomes ExpTime-
complete when a signature is imposed on the set of admitted database instances
(represented as an ABox). This shows that computing the desired rewritings is
not an easy task. The existing approaches to query rewriting in EL and their
relevance to the computation of FO-rewritings can be summarized as follows:

(i) approaches that target rewritings in the more expressive query language dat-
alog which are incomplete in the sense that the generated datalog-rewritings
are not guaranteed to be non-recursive even if there is an FO-rewriting [16, 14,
13]; (ii) backwards chaining approaches for existential rules (a strict generaliza-
tion of EL) which are complete in the sense that they find an FO-rewriting if
there is one, but need not terminate otherwise [8]; (iii) the complete and ter-
minating approach from [6] which aims at proving upper complexity bounds for
FO-rewritings which cannot be expected to be feasible in practice because it
relies on brute-force enumeration techniques.3

The aim of this paper is to design algorithms for computing FO-rewritings
of concept queries under EL-TBoxes that are complete, terminating, and feasible
in practice. To this end, we start with a marriage of approaches (ii) and (iii)
to get the best of both worlds; in particular, (ii) appears to be practically more
feasible than (iii) while (iii) provides a way to achieve termination. The resulting
algorithm is conceptually simple and constitutes a significant step towards our
goal. However, it produces FO-rewritings that are unions of conjunctive queries
(UCQs), which results in two significant drawbacks: first, recent experiments [10]
have shown that executing UCQ-rewritings on RDBMSs is prohibitively expen-
sive while executing equivalent rewritings that take the form of non-recursive
datalog programs is much more feasible (even when the original query is a con-
junctive query); and second, UCQ-rewritings can be of excessive size even in
practically relevant cases [17].

To address these shortcomings, we refine our original algorithm to what we
call a decomposed algorithm. While the original algorithm uses tree-shaped con-
junctive queries (CQs) as an internal data structure, the new algorithm only
represents single nodes of CQs together with information of how to reassemble
these nodes into full tree-shaped CQs. This can be seen as a way to imple-
ment structure sharing and it also allows us to directly produce rewritings that
are non-recursive datalog programs, avoiding UCQ-rewritings altogether. The
algorithm runs in exponential time, is capable of deciding the existence of FO-
rewritings in ExpTime, and produces monadic non-recursive datalog rewritings
that are of at most exponential size (but much smaller in practice). Technically,
the decomposed algorithm is much more subtle than the original one.

We then evaluate the decomposed algorithm by carrying out experiments
with seven ontologies from practical applications. We ask for an FO-rewriting
for every concept query A(x), with A a concept name from the ontology under
consideration. Out of 15970 requests in total, the decomposed algorithm times
out only on 158 inputs, with a timeout of 15 seconds. We also analyze the size
of the generated non-recursive datalog rewritings, with extremely encouraging
results. Our experiments show that the decomposed algorithm performs very
well on inputs from practical applications. They also confirm our initial belief
that EL-ontologies from practical applications often admit FO-rewritings. In
particular, only 31 of 15970 queries turn out to not be FO-rewritable.

Throughout the paper, proof details are deferred to the appendix.

3 For approaches to FO-rewritability for non-Horn DLs we refer the reader to [7, 4].

2 Preliminaries

We use NC and NR to denote countably infinite sets of concept names and role
names, respectively. An EL-concept is formed according to the syntax rule C ::=
A | > | C u C | ∃r.C, a concept inclusion (CI) takes the form C v D with C
and D EL-concepts, and a TBox is a finite set of CIs. The semantics of concepts
and TBoxes is defined as usual. We write T |= C v D when C is subsumed by
D under T .

An ABoxA is a set of assertions of the form A(a) and r(a, b) with A a concept
name, r a role name, and a, b individual names from a countably infinite set NI.
We use ind(A) to denote the set of individual names that occur in A. A concept
query is an expression C(x) with C an EL-concept and x a variable. We write
A, T |= C(a) if a is a certain answer to C given the ABox A and TBox T . For
an FO-query q(x) with one free variable, we write A |= q(a) if A (viewed as a
structure) satisfies q under the assignment that maps x to a.

A concept query C(x) is FO-rewritable under a TBox T if there is an FO-
formula ϕ(x) such that for all ABoxes A and individuals a, we have A, T |= C(a)
iff A |= ϕ(a). In this case, we call ϕ(x) an FO-rewriting of C(x) under T . An
FO-formula ϕ(x) is a partial FO-rewriting of A under T if for all ABoxes A and
a ∈ ind(A), A |= ϕ(a) implies A, T |= A(a). Thus a partial FO-rewriting is an
FO-rewriting that is sound, but not necessarily complete. When studying FO-
rewritability of concept queries C(x), we can assume w.l.o.g. that C is a concept
name since C(x) is FO-rewritable under a TBox T iff A(x) is FO-rewritable
under T ∪ {C v A} where A is a fresh concept name [6].

We will also consider more specific forms of FO-rewritings, in particular
UCQ-rewritings and non-recursive datalog rewritings. Although, strictly speak-
ing, non-recursive datalog rewritings are not FO-rewritings, the existence of ei-
ther kind of rewriting coincides with the existence of an FO-rewriting. In particu-
lar, non-recursive datalog rewritings can be viewed as a compact representation
of a UCQ-rewriting that implements structure sharing. By a monadic datalog
rewriting, we mean a datalog rewriting in which all intensional (IDB) predicates
are unary.

For our technical constructions, it will be convenient to view EL-concepts as
CQs that take the form of a directed tree. We will represent such queries as sets
of atoms of the form A(x) and r(x, y) with A a concept name, r a role name
and x, y variables, not distinguishing between answer variables and quantified
variables. Tree-shapedness of a conjunctive query q then means that the directed
graph (V, {(x, y) | r(x, y) ∈ q}) is a tree, where V is the set of variables in q, and
that r(x, y), s(x, y) ∈ q implies r = s. In the following, we will not distinguish
explicitly between an EL-concept C and its query representation. We thus use
var(C) to denote the set of variables that occur in C and xε to denote the
root variable in C. For an x ∈ var(C), we use C|x to denote the EL-concept
represented by (the subtree rooted at) x. When we speak of a top-level conjunct
(tlc) of an EL-concept C, we mean a concept name A such that A(xε) ∈ C or a
concept ∃r.D such that r(xε, y) ∈ C and D = C|y. We use tlc(C) to denote the

set of all top-level conjuncts of C. For any syntactic object (such as a concept
or a TBox), we define its size to be the number of symbols used to write it.

3 A Backwards Chaining Algorithm

Let T be an EL-TBox and A0 a concept name for which an FO-rewriting is
to be constructed. The algorithm presented in this section constructs a set of
partial rewritings of A0 under T by starting from {A0} and then exhaustively
applying the concept inclusions in T as rules in a backwards chaining manner.
Let C and D be EL-concepts and ϕ = E v F an EL-concept inclusion. Further,
let x ∈ var(C) and let there be at least one tlc G of C|x with |= F v G. Then D
is obtained from C by applying ϕ at x if D can be obtained from C by

– removing A(x) for all concept names A with |= F v A;
– removing the subtree rooted at y whenever r(x, y) ∈ C and |= F v ∃r.(C|y);
– adding A(x) for all concept name A that are a tlc of E;
– adding the subtree ∃r.H to x for each ∃r.H that is a tlc of E.

When the exact identity of x is not important, we say that D is obtained from C
by applying ϕ. This corresponds to a backwards chaining step based on so-called
piece unifiers in [3, 8]. The following is immediate.

Lemma 1. If T |= C v A0 and D can be obtained from C by applying some CI
in T , then T |= D v A0.

Apart from applying CIs from the TBox as rules, our algorithm will also minimize
the generated partial rewritings to attain completeness and termination. To make
this precise, we introduce some notation. For EL-concepts C and D, we write
C � D if there is x ∈ var(D) such that C = D \ D|x, that is the concept C
is obtained from D by dropping the subtree D|x from D. We use �∗ to denote
the transitive closure of � and say that C is �-minimal with T |= C v A0

if T |= C v A0 and there is no C ′ � C with T |= C ′ v A0. Note that if
T |= C v A0, then it is possible to find in polynomial time a C ′ �∗ C that is
minimal with T |= C ′ v A0 (since subsumption in EL can be decided in PTime).

The constructions in [6] suggest that, to achieve termination, we can use a
certain form of blocking, similar to the blocking used in DL tableau algorithms.
Let sub(T) denote the set of subconcepts of (concepts that occur in) T . For each
EL-concept C and x ∈ var(C), we set conCT (x) := {D ∈ sub(T) | T |= C|x v D}.
We say that C is blocked if there are x1, x2, x3 ∈ var(C) such that

1. x1 is an ancestor of x2, which is an ancestor of x3 and

2. conCT (x1) = conCT (x2) and con
C\C|x3

T (x1) = con
C\C|x3

T (x2).

The algorithm is formulated in Figure 1. Note that, by Lemma 1, the concept D
considered in the condition of the while loop satisfies T |= D v A0. We are thus
guaranteed to find the desired D′ inside the while loop. Also note that there are
potentially many different D′ that we could use, and each of them will work.

procedure find-rewriting(A0(x), T)

M := {A0}
while there is a C ∈M and a concept D such that

1. D can be obtained from C by applying some CI in T and

2. there is no D′ � D with D′ ∈M then

find a D′ �∗ D that is minimal with T |= D′ v A0

if D′ is blocked then

return ‘not FO-rewritable’

add D′ to M

return the UCQ
∨

M .

Fig. 1. The backwards chaining algorithm

Example 1. Let T = {∃r.(B1uB2) v A0, ∃s.B2 v B2, B1 v B2}. Starting with
M = {A0} and applying the first CI to C = A0, we get M = {A0,∃r.(B1uB2)}.
Applying the second CI to C = ∃r.(B1 u B2) then yields D = ∃r.(B1 u ∃s.B2)
which is not minimal with T |= D v A0 as witnessed by D′ = ∃r.B1, which is
added to M . At this point, rule application stops and the UCQ

∨
M is returned.

It is illustrative to try Example 1 without applying the minimization step. We
then find a blocked concept in M , which shows that without minimization the
algorithm is incomplete. It can also be seen that dropping minimization results
in non-termination since the out-degree of concepts in M can grow unboundedly.

We now establish correctness and termination, showing first that, if the al-
gorithm claims to have found an FO-rewriting, then this is indeed the case.

Proposition 1 (Soundness). If the algorithm returns
∨
M , then

∨
M is an

FO-rewriting of A0 under T .

Proof.(sketch) Let A be an ABox. We have to show: (1) if A |=
∨
M(a0), then

A, T |= A0(a0); (2) if A, T |= A0(a0), then A |=
∨
M(a0). For Point 1, assume

that A |=
∨
M(a0). Then there is a C ∈ M with A |= C(a0). Consequently

A, T |= C(a0). By construction of M , all its elements C satisfy T |= C v A0,
thus A, T |= A0(a0) as required.

For Point 2, we essentially follow the proof strategy from [3], based on the
chase procedure. If A, T |= A0(a0), then A0(a0) ∈ chaseT (A) and consequently,
there is a sequence of ABoxes A = A0,A1, . . . ,Ak that demonstrates A0(a) ∈
chaseT (A), that is, each Ai+1 is obtained from Ai by a single chase step and
A0(a) ∈ Ak. It thus suffices to prove by induction on k that if A = A0, . . . ,Ak
is a chase sequence that demonstrates A0(a0) ∈ chaseT (A), then A |=

∨
M(a0).

This is slightly tedious, but straightforward. o

Note that the generated UCQ-rewritings are not necessarily of minimal size. It is
possible to attain minimal-size rewritings by using a stronger form of minimality
when constructing the concept D′, namely by redefining the relation “�” so that
C � D if there is a root-preserving homomorphism from C to D (c.f. the notion
of most-general rewritings in [8]). As a consequence, the �-minimal concept D′

with T |= D′ v A can then be of size exponential in the size of D. However, D′

can still be constructed in output-polynomial time.

Proposition 2 (Completeness). If the algorithm returns ‘not FO-rewritable’,
then A0 has no FO-rewriting under T .

Proof. By Theorem 2 in [5], it suffices to show that if the algorithm returns ‘not
FO-rewritable’, then

(∗) for every k > 0, there is a concept C whose depth exceeds k and such that
T |= C v A0 and T 6|= C|−k v A0,

where C|−k denotes the concept obtained from C be removing all variables whose
depth exceeds k. Using a pumping argument, one can show the following suffi-
cient condition for (∗).

Fact. If there is a concept C that is blocked with variables x1, x2, x3 ∈ var(C),
T |= C v A0, and T 6|= C \ C|x3 v A0, then (∗) holds.

Now assume the algorithm returns ‘not FO-rewritable’. Then there is a concept
D that is minimal with T |= D v A0 and that is blocked with variables x1, x2, x3.
By minimality of D, T 6|= (D \D|x3

) v A0 and (∗) follows. o

We prove in the appendix that the algorithm always terminates by showing that
all concepts in M have outdegree at most n and depth at most 22n, n the size
of T . As remarked in [6], the size of UCQ-rewritings can be triple exponential
in the size of T , and thus the same is true for the runtime of the presented
algorithm. While this worst case is probably not encountered in practice, the
size of M can become prohibitively large for realistic inputs. For this reason,
we propose an improved algorithm in the subsequent section, which produces
non-recursive datalog rewritings instead of UCQ-rewritings and whose runtime
is at most single exponential.

4 A Decomposed Algorithm

The algorithm presented in this section consists of three phases. In the first phase,
a certain set Γ is computed that can be viewed as a decomposed representation
of the set M from Section 3 in the sense that we store only single nodes of the
tree-shaped concepts in M , rather than entire concepts. In the second phase,
we compute a certain set Ω that enriches the node representation provided by
Γ with sets of logical consequences as mentioned in Point 2 of the definition of
blocked concepts. In the third phase, we first execute a certain cycle check on
Ω, which corresponds to checking the existence of a blocked concept in M . If no
cycle is found, we can read off a rewriting from Ω.

Assume that T is a TBox and A0 a concept name for which we want to com-
pute an FO-rewriting. To present the algorithm, it is convenient to decompose
conjunctions on the right-hand side of CIs, that is, to assume that T consists of
CIs of the form C v A, A a concept name, or C v ∃r.D. We start with describ-
ing the construction of Γ , whose elements we call node pairs. A node pair has

the form (C, S), where C ∈ sub(T) and S ⊆ sub(T) is a set of concept names
and concepts of the form ∃r.C. Intuitively, a node pair (C, S) describes a set of
concepts D (subtrees of concepts in Γ) such that T |= D v C and the following
conditions are satisfied:

(i) if A ∈ S for a concept name A, then A is a tlc of D;
(ii) if ∃r.E ∈ S, then there is a tlc ∃r.E′ of D such that T |= E′ v E.

The computation of Γ starts with {(A0, {A0})} and proceeds by exhaustively
applying the following two rules:

(r1) if (C, S) ∈ Γ , D v A ∈ T and A ∈ S, then add pair (C, (S \ {A}) ∪ tlc(D))

(r2) if (C, S) ∈ Γ , D v ∃r.F ∈ T , and there is an ∃r.G ∈ S with T |= F v G,
then add the pair (C, (S \ {∃r.G | T |= F v G}) ∪ tlc(D))

After applying either rule, we also have to add the pair (G, tlc(G)) for every
∃r.G ∈ sub(D) to trigger further derivation.

The set Γ represents a (potentially infinitary) UCQ-rewriting of A0 under T
in a sense that we make precise now. Let Γ̂ be the set obtained as the limit of
the sequence of sets Γ̂0, Γ̂1, . . . defined as follows:

– Γ̂0 := {(C,uS) | (C, S) ∈ Γ and S ⊆ NC}.
– Γ̂i+1 is Γ̂i extended with all pairs (C,D) such that there are (C, S) ∈ Γ and

(G,Cr,G) ∈ Γ̂i for each ∃r.G ∈ S and D = u
A∈S∩NC

A u u
∃r.G∈S

∃r.Cr,G.

Proposition 3 (Soundness and Completeness of Γ̂). For all ABoxes A and

a ∈ ind(A), we have A, T |= A0(a) iff there is a (A0, D) ∈ Γ̂ with A |= D(a).

Note that Γ provides us with a sufficient condition for FO-rewritability and
suggests a way to produce a non-recursive datalog rewriting. In fact, if Γ is
acyclic in the sense that the directed graph

GΓ = (Γ, {((C, S), (C ′, S′)) | S contains a concept ∃r.C ′})

contains no cycle, then Γ̂ is finite and we obtain a non-recursive datalog program
ΠΓ that is a rewriting of A0 under T by taking the rule

PC(x)←
∧
A∈S

A(x) ∧
∧

∃r.D∈S

(r(x, yr,D) ∧ PD(yr,D))

for each (C, S) ∈ Γ and using A0 as the goal predicate. However, if Γ is not
acyclic, then A0 could still be FO-rewritable under T , but the above program
will be recursive. To deal with this problem, we need the next two phases.

We construct a set of node tuples Ω from Γ by further annotating and
duplicating the pairs in Γ . A node tuple takes the form t = (Ct, St, cont, st, xcont)
where Ct and St have the same form as the components of node pairs in Γ ,
cont ⊆ sub(T), st is an existential restriction in St or the special symbol “−”,
and xcont is either a subset of sub(T) or the special symbol “−”. Intuitively, a
node tuple t ∈ Ω describes a set of concepts D (subtrees of concepts in Γ) such
that (Ct, St) describes D in the way described above and the following additional
conditions are satisfied:

(iii) for each E ∈ sub(T), we have T |= D v E iff E ∈ cont;
(iv) in the subtree of D rooted at st there is a leaf node such that for the concept

D′ obtained by dropped this node and each E ∈ sub(T), we have T |= D′ v
E iff E ∈ xcont.

When St contains no existential restrictions, we use “−” in the last two com-
ponents. To understand st, it is useful to think of D as a tree and of st as a
selected successor of the root of that tree. We start the construction of Ω with

Ω0 := {(C, S, conT (S),−,−) | (C, S) ∈ Γ with S ⊆ NC},

where for a set of concepts M , conT (M) denotes the set of concepts D ∈ sub(T)
such that T |= uM v D. We call the tuples in Ω0 leaf tuples. The final set Ω
is constructed by exhaustively applying the following rule:

(r3) If t is a node tuple such that ∃r0.D0, . . . ,∃rn.Dn are the existential restric-
tions in St, st = ∃r`.D`, and t0, . . . , tn ∈ Ω with Cti = Di for 0 ≤ i ≤ n,
then add t to Ω if the following conditions are satisfied:
• there is a node pair (Ct, S) ∈ Γ with St ⊆ S and S ∩ NC = St ∩ NC;
• cont = conT (M), where M =

⋃
(St∩NC)∪{∃ri.G | i ≤ n and G ∈ conti};

• xcont = conT (M ′), where M ′ is⋃
(St ∩ NC) ∪ {∃r`.G | G ∈ xcont`} ∪ {∃ri.G | ` 6= i ≤ n and G ∈ conti}.

In Points 3, the concept ∃r.− (which might occur in the set M ′) is identified
with >. For t, t′ ∈ Ω, we write t Ω t′ if there are t0, . . . , tn ∈ Ω that satisfy
the conditions listed in (r3) and such that t′ = t`, that is, t′ is the tuple that
was chosen for the selected successor. Note that the computation of the sets cont
and xcont is complete, relying on the following observation [12].

Lemma 2. For any concept C = A1 u · · · uAn u ∃r1.G1 u · · · u ∃rm.Gm,

conT (C) = conT ({A1, . . . , An} ∪
⋃

1≤i≤m

{∃ri.D | D ∈ conT (Gi)})

We now describe the third and last phase of the algorithm, which first checks
whether an FO-rewriting exists at all and, if so, produces a rewriting that takes
the form of a non-recursive monadic datalog program.

We start with introducing the relevant notion of a cycle. A tuple t ∈ Ω is a
root tuple if A0 ∈ cont and A0 /∈ xcont. A path through Ω is a finite sequence of
node tuples t1, . . . , tk from Ω such that ti Ω ti+1 for 1 ≤ i < k. A tuple t ∈ Ω
is looping if there is a path t1, . . . , tk through Ω of length at least one such that
t = t1, cont = contk , and xcont = xcontk . We say that Ω contains a root cycle if
there are tuples t, t′ ∈ Ω such that t is a root tuple, t′ is a looping tuple, and t′

is reachable from t along Ω .

Proposition 4. A0 is not FO-rewritable under T if and only if Ω contains a
root cycle.

Proof.(sketch) “if”. Assume that Ω contains a root cycle. Using this cycle as a
guide, we show how to find a concept C that is blocked in the sense of Section 3
and satisfies T |= C v A0 as well as T 6|= (C \ C|x3) v A0, where x3 is as in
the definition of ‘blocked’. Once we have constructed such a concept C, we can
again rely on the results of [5], as in the proof of Proposition 2.

“only if”. Assuming that Ω contains no root cycle, we show below how to con-
stuct a non-recursive datalog-rewriting of A0 under T , thus A0 is FO-rewritable
under T . o

As suggested by Proposition 4, our algorithm first checks whether Ω contains
a root cycle and, if so, returns ‘not FO-rewritable’. Otherwise, it constructs a
non-recursive datalog program ΠT ,A0

as follows. First, we drop from Ω all tuples
that are not reachable from a root tuple along an Ω-path. For t, t′ ∈ Ω and
∃r.D ∈ St, we write t ∃r.D t′ if there is a tuple t̂ = (Ct, St, cont,∃r.D, xcont̂) ∈
Ω such that t̂ Ω t′. Note that, by definition of “ Ω”, t ∃r.D t′ implies
Ct′ = D. Now, ΠT ,A0

contains for every t ∈ Ω, the rule

PCt,cont(x)←
∧

A∈St∩NC

A(x) ∧
∧

∃r.D∈St

(r(x, yr,D) ∧
∨

t′∈Ω|t ∃r.Dt′

PD,cont′ (yr,D))

Note that the disjunctions can be removed by introducing auxiliary IDB pred-
icates, without causing a significant blowup. The goal predicates of ΠT ,A0

are
all predicates of the form PA0,con(x) with A0 ∈ con.

Theorem 1.
1. The program ΠT ,A0

is a rewriting of A0 under T .
2. If Ω contains no root cycle, then ΠT ,A0 is non-recursive.

Even if Ω contains no root-cycles, the program ΠT ,A0
may have up to (single)

exponentially many IDB predicates. We observe that this cannot be significantly
improved without giving up monadicity.

Theorem 2. There is a family of TBoxes T1, T2, . . . such that for all n ≥ 1,
Tn is of size O(n2), the concept name A0 is FO-rewritable under Tn, and the
smallest non-recursive monadic datalog rewriting has size at least 2n.

Let us briefly analyze the complexity of the decomposed algorithm. It is easy to
verify that the number of Γ -pairs and Ω-tuples is singly exponential in the size
of T and that all required operations for building Γ and Ω and for determining
the existence of a root cycle require only polynomial time. By Proposition 4,
we have thus found an ExpTime algorithm for deciding FO-rewritability of EL-
concept queries. This is almost optimal as the problem we are dealing with is
PSpace-complete and becomes ExpTime-hard if slightly varied, see [6].

5 Experiments

We have implemented the decomposed algorithm in Java and conducted a num-
ber of experiments. The implementation is not highly optimized, but some as-
pects of handling the set Γ are worth to point out. In particular, we use numbers

TBox concept inclusions concept names role names timeouts not FO-rewritable

XP 1046 906 27 0 1
NBO 1468 962 8 0 6
ENVO 1848 1538 7 0 7
FBbi 567 517 1 0 0
MOHSE 3665 2203 71 2 1
not-galen 4636 2748 159 149 0
SO 2740 1894 13 7 16

Table 1. TBoxes used in the experiments.

to represent subconcepts in T , store the S-component of each pair (C, S) ∈ Γ ,
which is a set of subconcepts of T , as an ordered set, and use so-called tries as a
data structure to store Γ . We remove pairs (C, S) ∈ Γ where S is not minimal,
that is, for which there is a (C, S′) ∈ Γ with S′ (S. It is easy to see that this
optimization does not compromise correctness.

The experiments were carried out on a Linux (3.2.0) machine with a 3.5Ghz
quad-core processor and 8GB of RAM. Although a large number of EL-TBoxes
is available on the web and from various repositories, most of them are acyclic
TBoxes in the traditional DL sense, that is, the left-hand sides of all CIs are
concept names, there are no two CIs with the same left-hand side, and there
are no syntactic cycles. Since concept queries are always FO-rewritable under
acyclic EL-TBoxes [5], such TBoxes are not useful for our experiments. We have
identified seven TBoxes that do not fall into this class, listed in Table 1 together
with the number of concept inclusions, concept names, and role names that they
contain. All TBoxes together with information about their origin are available
at http://tinyurl.com/q96q34z.

For each of these TBoxes, we have applied the decomposed algorithm to every
concept name in the TBox. In some rare cases, the set Γ has reached excessive
size, resulting in non-termination. We have thus established a 15 second timeout
for the Γ -phase of the algorithm. With that timeout, our algorithm was able to
decide FO-rewritability in almost all of the cases, see Table 1. The overall runtime
for all our experiments as a batch job (15970 invocations of the algorithm) took
only 80 minutes. The generated non-recursive datalog-rewritings are typically
of very reasonable size. The number of rules in the rewriting is displayed in the
upper part of Figure 2; for example, for NBO, about 55% of all rewritings consist
of a single rule, about 18% have two or three rules, about 10% have 4–7 rules,
and so on. Note that the x-axis has logarithmic scale. The size of the rule bodies
is typically very small, between one and two atoms in the vast majority of cases,
and we have never encountered a rule with more than ten body atoms. It is also
interesting to consider the number of IDB predicates in a rewriting, as intuitively
these correspond to views that have to be generated by a database system that
executes the query. As shown in the lower part of Figure 2, the number of IDB
predicates is rather small, and considerably lower than the number of rules in
the produced programs (we again use logarithmic scale on the x-axis).

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

0

20

40

60

80

Number of rules

%
o
f

co
n
ce

p
t

n
a
m

es XP

NBO

ENVO

FBbi

MOHSE

not-galen

SO

1 2 4 8 16 32 64
0

50

100

Number of IDB predicates

%
o
f

co
n
ce

p
t

n
a
m

es XP

NBO

ENVO

FBbi

MOHSE

not-galen

SO

Fig. 2. Number of rules and IDB predicates in the rewriting

The experiments also confirm our initial belief that ontologies which are
used in practical applications have a simple structure. As shown in Table 1,
the number of concept names that are not FO-rewritable is extremely small.
Moreover, if a concept name was FO-rewritable, then we were always able to
determine this already in the Γ -phase of our algorithm, without ever entering
the Ω-phase. Note, though, that for those cases that turned out to be not FO-
rewritable, we had to go through the full Ω-construction.

6 Outlook

We plan to optimize the implementation of the decomposed approach further to
eliminate the timeouts we encountered in the experiments. Moreover, we plan
to extend the algorithm and implementation in several ways. First, we plan to
generalize the approach from concept queries to conjunctive queries. Second, in
many applications the ABox signature (i.e., the concept and role names occurring
in the ABoxes) is a small subset of the signature of the TBox [1, 6]. Queries that
are not FO-rewritable without any restriction on the ABox signature can become
FO-rewritable under smaller ABox signatures. We therefore plan to extend the
decomposed approach to arbitrary ABox signatures. Finally, we plan to extend
our approach to more expressive Horn-DLs such as ELI with role inclusions and
thereby unify DL-Lite and EL query rewriting approaches in one framework.

References

1. Baader, F., Bienvenu, M., Lutz, C., Wolter, F.: Query and predicate emptiness in
description logics. In: KR. pp. 192–202 (2010)

2. Baader, F., Brandt, S., Lutz, C.: Pushing the EL Envelope. In: IJCAI. pp. 364–369
(2005)

3. Baget, J.F., Leclère, M., Mugnier, M.L., Salvat, E.: On rules with existential vari-
ables: Walking the decidability line. Artif. Intell. 175(9-10), 1620–1654 (2011)

4. Bienvenu, M., ten Cate, B., Lutz, C., Wolter, F.: Ontology-based data access: a
study through Disjunctive Datalog, CSP, and MMSNP. In: PODS. pp. 213–224
(2013)

5. Bienvenu, M., Lutz, C., Wolter, F.: Deciding FO-rewritability in EL. In: Description
Logics. pp. 70–80 (2012)

6. Bienvenu, M., Lutz, C., Wolter, F.: First order-rewritability of atomic queries in
horn description logics. In: IJCAI. pp. 754–760 (2013)

7. Kaminski, M., Grau, B.C.: Sufficient conditions for first-order and datalog
rewritability in ELU . In: Description Logics. pp. 271–293 (2013)

8. König, M., Leclère, M., Mugnier, M.L., Thomazo, M.: A sound and complete back-
ward chaining algorithm for existential rules. In: RR. pp. 122–138 (2012)

9. Kontchakov, R., Rodriguez-Muro, M., Zakharyaschev, M.: Ontology-based data
access with databases: A short course. In: Reasoning Web. pp. 194–229 (2013)

10. Lutz, C., İnanç Seylan, Toman, D., Wolter, F.: The combined approach to OBDA:
Taming role hierarchies using filters. In: ISWC. pp. 314–330 (2013)

11. Lutz, C., Toman, D., Wolter, F.: Conjunctive query answering in the description
logic el using a relational database system. In: IJCAI. pp. 2070–2075 (2009)

12. Lutz, C., Wolter, F.: Deciding inseparability and conservative extensions in the
description logic EL. J. Symb. Comput. pp. 194–228 (2010)

13. Mora, J., Corcho, Ó.: Engineering optimisations in query rewriting for OBDA. In:
I-SEMANTICS. pp. 41–48 (2013)

14. Pérez-Urbina, H., Motik, B., Horrocks, I.: Tractable query answering and rewriting
under description logic constraints. J. Applied Logic 8(2), 186–209 (2010)

15. Poggi, A., Lembo, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.:
Linking data to ontologies. J. Data Semantics 10, 133–173 (2008)

16. Rosati, R.: On conjunctive query answering in EL. In: Description Logics. pp.
451–458 (2007)

17. Rosati, R., Almatelli, A.: Improving query answering over DL-Lite ontologies. In:
KR. pp. 290–300 (2010)

A Proofs for Section 3

For the proof of Proposition 1, we remind the reader of the standard chase pro-
cedure. The chase is a forward chaining procedure that exhaustively applies the
CIs of a TBox to an ABox in a rule-like fashion. Its final result is a (potentially
infinite) ABox in which all consequences of T are materialised. To describe the
procedure in detail and in the following proof it is helpful to regard EL-concepts
C as tree-shaped ABoxes AC . AC can be obtained from the concept query cor-
responding to C by identifying its individual variables with individual names.
Now let T be an EL-TBox and A an ABox. A chase step consists in choosing
a CI C v D ∈ T and an individual a ∈ ind(A) such that A, T |= C(a), and
then extending A by taking a copy AD of D viewed as an ABox with root a
and such that all non-roots are fresh individuals, and then setting A := A∪AD.
The result of chasing A with T , denoted with chaseT (A), is the ABox obtained
by exhaustively applying chase steps to A in a fair way. It is standard to show
that for all EL-concepts C, we have A, T |= C(a) iff chaseT (A) |= C(a).

Proposition 1 (Soundness). If the algorithm returns
∨
M , then

∨
M is an

FO-rewriting of A0 under T .

Proof. Let A be an ABox. We have to show: (i)

1. if A |=
∨
M(a0), then A, T |= A0(a0);

2. if A, T |= A0(a0), then A |=
∨
M(a0).

We start with Point 1. Thus assume that A |=
∨
M(a0). Then there is a C ∈M

with A |= C(a0). By construction of M , we have T |= C v A0, thus A, T |=
A0(a0) as required.

For Point 2, assume that A, T |= A0(a0). Then A0(a0) ∈ chaseT (A). Con-
sequently, there is a sequence of ABoxes A = A0,A1, . . . ,Ak that demonstrates
A0(a) ∈ chaseT (A), that is, each Ai+1 is obtained from Ai by a single chase step
and A0(a) ∈ Ak. It thus suffices to prove by induction on k that

(∗) ifA = A0, . . . ,Ak is a chase sequence that demonstratesA0(a0) ∈ chaseT (A),
then A |=

∨
M(a0).

The induction start is trivial: for k = 0, A0(a0) ∈ Ak implies A0(a0) ∈ A.
Since A0 ∈ M , we have A |=

∨
M(a0). For the induction step, assume that

A = A0, . . . ,Ak is a chase sequence that demonstrates A0(a) ∈ chaseT (A),
with k > 0. Applying IH to the subsequence A1, . . . ,Ak, we obtain that A1 |=∨
M(a0). Thus there is a C ∈M with A1 |= C(a0). Assume that A1 is obtained

from A0 by choosing E v F ∈ T and a ∈ Ind(A0) with A0 |= E(a), and adding
a copy of the ABox AF to A0:

– A(a) for each concept name A that occurs as a top-level conjunct in F ;

– the sub-ABox A∃r.G rooted at a for each ∃r.G that is a top-level conjunct
of F .

We might or might not have A0 |= C(a0), depending on whether or not the
truth of C at a0 depends on the additions due to applying E v F as a (forward)
rule at a. If A0 |= C(a0) does hold, then we are done. Otherwise, let h be a
homomorphism from C to A1 with h(xε) = a0 and let x1, . . . , xn be all elements
of var(C) such that h(xi) = a and there is at least one tlc Gi of C|xi

with F v Gi.
There must be at least one such xi since, otherwise, h does not depend on any
assertions added in the construction of A1 from A0 and thus witnesses A0 |=
C(a0), a contradiction. Let the concepts C0, . . . , Cn be such that C0 = C and
Ci+1 can be obtained from Ci by doing the following if xi ∈ var(Ci) (otherwise,
just set Ci+1 := Ci):

1. remove A(xi) for all concept names A with |= F v A;
2. remove the subtree rooted at y whenever r(xi, y) ∈ C and |= F v ∃r.(C|y);
3. add A(xi) for all concept names A that are a top-level conjuncts of E;
4. add the subtree ∃r.H to xi for each ∃r.H that is a top-level conjunct of E;
5. minimize the resulting C ′i, that is, choose Ci+1 �∗ C ′i such that Ci+1 is

minimal with T |= Ci+1 v A0.

It is easy to prove by induction on i that Ci ∈ M for all i ≤ n. It thus remains
to argue that A0 |= Cn(a0). To do this, we produce maps h0, . . . , hn such that
hi is a homomorphism from Ci to A1 with hi(xε) = a0 and such that hi(xj) = a
if xj ∈ var(Ci), for all i ≤ n. Start with h0 = h. To produce hi+1 from hi,
first restrict hi to the ‘remainder’ of Ci after the removals in Steps 1 and 2
were carried out. Then extend hi to cover all fresh elements introduced via the
subtrees ∃r.H in Step 4. Note that, since A0 |= E(a) and hi(xi) = a, this is
possible. For the same reason, the resulting homomorphism h′i respects all the
concept assertions added in Step 3. Finally, to deal with the minimization in
Step 5, restrict h′i to var(Ci+1).

By construction of the concepts C0, . . . , Cn and the homomorphisms h0, . . . , hn,
there is no atom in Cn such that the image of the atom under hn was added by
applying E v F as a (forward) rule at a. To show this, assume to the contrary
that there is such an atom A(x) in Cn. There are two cases:

1. h(x) = a.
Then x = xi for some i. Since A(h(x)) = A(a) was added by the application
of E v F , A is a top-level conjunct of F . Consequently, A(x) was removed
in Step 1 when constructing Ci+1 from Ci, in contradiction to A(x) being in
Cn.

2. h(x) 6= a.
Then h(x) is a non-root node of the sub-ABox A∃r.G of A1, where ∃r.G
is a top-level conjunct of F . Consider the unique path in C from xε to x,
that is, the sequence of individuals y0, . . . , y` with y0 = xε and y` = x such
that ri(yi, yi+1) ∈ C for some ri, for all i < `. We find a corresponding path
h(y0), . . . , h(y`) in A1, and since A1 is tree-shaped, a must be on that second
path. Let yp be such that h(yp) = a. We must have yp = xi for some i. Then
rp = r and A∃r.G |= ∃r.(C|yp+1)(a). Hence |= F v ∃r.(C|yp+1) since ∃r.G is
a top-level conjunct of F . Consequently, the subtree of C rooted at yp+1 was

removed in Step 2 when constructing Ci+1, in contradiction to A(x) being
in Cn.

The case of role atoms is similar to subcase 2 above, but simpler. We have thus
shown that there is no atom in Cn such that the image of this atom under hn was
added by applying E v F as a (forward) rule at a. Consequently A0 |= Cn(a0)
via hn. This completes the proof. o

Proposition 2 (Completeness). If the algorithm returns ‘not FO-rewritable’,
then A0 has no FO-rewriting under T .

Proof. It remains to prove the following

Fact. If there is a concept C that is blocked with variables x1, x2, x3 ∈ var(C),
T |= C v A0, and T 6|= C \ C|x3

v A0, then (∗) holds, where (∗) states that
for every k > 0, there is a concept C whose depth exceeds k and such that
T |= C v A0 and T 6|= C|−k v A0,

Consider a concept C that is blocked with variables x1, x2, x3 ∈ var(C),
T |= C v A0, and T 6|= C \C|x3

v A0. So the following conditions are satisfied:

1. x1 is a (proper) ancestor of x2, which is a (not necessarily proper) ancestor
of x3,

2. conCT (x1) = conCT (x2) and con
C\C|x3

T (x1) = con
C\C|x3

T (x2).

Let G be obtained from C by replacing the subconcept C|x2
with a copy of C|x1

in which every variable x has been renamed to x′. It can be proved that

1. conCT (x1) = conGT (x1′) = conGT (x1);

2. con
C\C|x3

T (x1) = con
G\G|x′

3

T (x′1) = con
G\G|x′

3

T (x1);
3. conCT (xε) = conGT (xε);

4. con
C\C|x3

T (xε) = con
G\G|x′

3

T (xε).

In particular, we thus have that G is blocked with variables x1, x′1, and x′3,
T |= G v A0 and T 6|= G \ G|x′

3
v A0. Also note that the depth of x′3 in G

is larger than the depth of x3 in C. We now apply the same construction to G
again until the copy of x3 has depth exceeding k. For the resulting concept G′

we have T |= G′ v A0 and T 6|= G′|−k v A0, as required. o

Proposition 5. The algorithm terminates on any input.

Proof. Let T be of size n. Every concept of depth larger than 22n must be
blocked. For this reason, M can only contain concepts of depth at most 22n.
Since every round of the while loop adds a fresh concept to M , it thus suffices
to show that each concept in M has outdegree at most n. This is in fact a
consequence of minimization. Assume that D′ is minimal with T |= D′ v A0

and that, to the contrary of what we aim to show, there is some x ∈ var(D′) that
has successors r1(x, x1), . . . , rn+1(x, xn+1). For each existential restriction ∃r.C
in sub(T) such that T |= D′|x v ∃r.C, choose a successor xi such that ri = r and

T |= D′|xi
v C. Let D′′ be obtained from D′ by dropping all subtrees rooted at

nodes xi that were not chosen in this way. Then we have T |= D′′ v A0. Since
at least one xi-rooted subtree was dropped in the construction of D′′ from D′,
this contradicts the minimality of D′. o

B Proofs for Section 4

We split the proof of Proposition 3 into a soundness and a completeness part.

Lemma 3 (Soundness of Γ̂). For all ABoxes A and a ∈ ind(A), if there is a

(A0, D) ∈ Γ̂ with A |= D(a), then A, T |= A0(a).

Proof. We first show the following

Claim 1. For all (C, S) ∈ Γ we have T |=uS v C.

Proof of Claim 1. Let Γ0, . . . , Γk = Γ be the sets of pairs obtained by repeatedly
applying rules (r1) and (r2) to the initial set Γ0 = {(A0, {A0})}. We show by
induction on i that for all (C, S) ∈ Γi we have T |= uS v C. The induction
start is trivial. For the inductive step, first suppose that Γi+1 is obtained from Γi
by applying Rule (r1). Then there are (C, S) ∈ Γi and D v A ∈ T with A ∈ S
and such that Γi+1 is Γi extended with the following tuples:

(a) (C, S \ {A} ∪ tlc(D));

(b) for every ∃r.G ∈ sub(D), the pair (G, {G}).

The claim is trivially true for tuples added in (b). For the tuple in (a), the claim
is a consequence of IH and the semantics.

Now assume that Γi+1 is obtained from Γi by applying Rule (r2). Then there
are (C, S) ∈ Γ and T |= D v ∃r.F ∈ T such that Γi+1 is Γi extended with the
following tuples:

(a) (C, (S \ {∃r.G | T |= F v G}) ∪ tlc(D);

(b) for every ∃r.G ∈ sub(D), the pair (G, {G}).

Again, the claim is a consequence of the IH and semantics. This finishes the
proof of the claim.

Using Claim 1 one can now prove the corresponding result for Γ̂ by induction
over i for all Γ̂i.

Claim 2. For all (C,D) ∈ Γ̂ we have T |= D v C.

Claim 2 directly implies Proposition 3: assume there is a (A0, D) ∈ Γ̂ with
A |= D(a). By Claim 2, T |= D v A0. Thus A, T |= A0(a), as required. o

For the completeness part of Proposition 3 we require some preparation. First,
for every (C,D) ∈ Γ̂ and variable x ∈ var(D), we denote by µC,D(x) the element
of Γ used in the construction of D at variable x. Thus, for every (C, S) ∈ Γ

with S ⊆ NC we set µ
C,uS

(aε) = (C, S) and if (C,D) ∈ Γ̂i+1 is constructed

from some (C, S) ∈ Γ and (G,Cr,G) ∈ Γ̂i for ∃r.G ∈ S by putting D = u(S ∩
NC) u u

∃r.G∈S
∃r.Cr,G, then we let µC,D(xε) = (C, S) and µC,D(x) = µG,Cr,G

(x)

for x ∈ var(Cr,G).
We also need a suitable version of the chase procedure that reflects our

rules (r1) and (r2) for constructing Γ . This chase introduces new ABox elements
that are called nulls. It applies the following two rules:

(Ch1) If A |= C(a), a is not a null, C v A ∈ T , A a concept name, and A(a) /∈ A,
then add A(a) to A;

(Ch2) If A |= C(a), a is not a null, C v ∃r.F ∈ T , and A 6|= ∃r.F (a), then add
r(a, b) to A with b a fresh null; further add the sub-ABox AE (using only
fresh nulls) rooted at b for every ∃r.E ∈ sub(T) such that T |= F v E.

We set A0(a) ∈ chaseT (A) if there exists a sequence of ABoxes A = A0, . . . ,Ak
such that each Ai+1 is obtained from Ai by a single application of rule (Ch1) or
(Ch2) and A0(a) ∈ Ak. We then say that the sequence A0, . . . ,Ak demonstrates
that A0(a) ∈ chaseT (A).

Lemma 4. Let T be a TBox in rhs-nf and A an ABox with a ∈ Ind(A). Then
A, T |= A0(a) iff A0(a) ∈ chaseT (A).

We are now in the position to prove the completeness part of Proposition 3.

Lemma 5 (Completeness of Γ̂). For all ABoxes A and a ∈ Ind(A), if A, T |=
A0(a), then there is an (A0, D) ∈ Γ̂ with A |= D(a).

Proof. Assume that A, T |= A0(a). Then A0(a) ∈ chaseT (A) and consequently
there is a sequence of ABoxes A = A0,A1, . . . ,Ak that demonstrates A0(a) ∈
chaseT (A). It thus suffices to prove by induction on k that

(∗) if A = A0, . . . ,Ak is a sequence that demonstrates A0(a) ∈ chaseT (A), then

A |= D(a) for some (A0, D) ∈ Γ̂ .

The induction start is trivial: for k = 0, A0(a) ∈ Ak implies A0(a) ∈ A,

and clearly we have (A0, A0) ∈ Γ̂ . For the induction step, assume that A =
A0, . . . ,Ak is a chase sequence that demonstrates A0(a) ∈ chaseT (A), with

k > 0. Applying IH to the subsequence A1, . . . ,Ak, we find an (A0, C) ∈ Γ̂ with
A1 |= C(a).

Assume first that A1 is obtained from A0 by rule (Ch1); i.e., by choosing a CI
D v A ∈ T , A a concept name, and an individual b ∈ ind(A0) with A0 |= D(b),
and adding A(b). Let h be a homomorphism from C to A1 with h(xε) = a and
let x1, . . . , xk be all elements of var(C) such that A(xi) ∈ C and h(xi) = b. If
this list of elements is empty, then A0 |= C(a) and we are done. Otherwise, let
the concept C ′ be obtained from C by replacing A with the concept D at every
xi, that is:

1. remove A(xi);
2. add B(xi) for each concept name B ∈ tlc(D);
3. add the subconcept ∃r.F rooted at xi for each ∃r.F that is a tlc in D.

We show that (A0, C
′) ∈ Γ̂ and A0 |= C ′(a), starting with the former. Fix some

xi and consider the pair µA0,C(xi) = (Fi, Si) ∈ Γ . By construction of Γ̂ and since
A(xi) ∈ C, we must have A ∈ Si. Therefore, Rule (r1) from the construction of
Γ is applicable to (Fi, Si) and yields the pair

pi = (Fi, Si \ {A} ∪ tlc(D)) ∈ Γ.

When building up the pair (A0, C) ∈ Γ̂ and dealing with node xi, we can use
the pair pi in place of (Fi, Si) and then proceed in a way such that the subtree

rooted at x is D. From this, we obtain (A0, C
′) ∈ Γ̂ as required.

Now we show A0 |= C ′(a). Since A0 |= D(b), there is a homomorphism h′

from D to A0 that maps xε to b. We obtain a homomorphism from C ′ to A0

that maps xε to a by starting with the homomorphism h and ‘plugging in’ h′

at every node xi to cover the subtrees generated by the subconcepts ∃r.F of D
added in Step 3 above.

Assume now that A1 is obtained from A0 by an application of rule (Ch2); i.e.,
by choosing a CI D v ∃r.F ∈ T , and an individual b ∈ ind(A0) with A0 |= D(b),
and adding r(b, c) and the sub-ABox AE rooted at c for every ∃r.E ∈ sub(T)
such that T |= F v E. Let h be a homomorphism from C to A1 with h(xε) = a
and let x1, . . . , xk be all elements of var(C) such that h(xi) = b and there is
an x′i with r(xi, x

′
i) ∈ C and h(x′i) = c. If this list of elements is empty, then

A0 |= C(a) and we are done. Otherwise, let the concept C ′ be obtained from C
by replacing all ∃r.G with T |= F v G with D at every xi, that is:

1. if r(xi, x
′
i) ∈ C and T |= F v C|x′

i
, then remove from C the edge r(xi, x

′
i)

and the subtree rooted at x′i;
2. add B(xi) for each concept name B ∈ tlc(D);
3. add the subconcept ∃s.E rooted at xi for each ∃s.E that is a tlc in D.

We show that there is a concept C ′′ such that (i) there is a homomorphism from

C ′′ to C ′ and (A0, C
′′) ∈ Γ̂ and (ii) A0 |= C ′(a), starting with (i). Fix some

xi and let xi1, . . . , x
i
k(i) be all individual variables such that r(xi, x

i
j) ∈ C and

h(xij) = c. By construction of A1, and since h(xij) = c, for 1 ≤ j ≤ k(i), we
must have T |= F v C|xi

j
. Now consider the pair µA0,C(xi) = (Fi, Si) ∈ Γ . Let

1 ≤ j ≤ k(i). By construction of Γ̂ and since (A0, C) ∈ Γ and r(xi, x
i
j) ∈ C,

there must be an ∃r.Gj ∈ Si such that (Gj , C|xi
j
) ∈ Γ̂ . By Claim 1 from the

proof of Lemma 3, this yields T |= C|xi
j
v Gj . Together with T |= F v C|xi

j
, we

obtain T |= F v Gj . Thus Rule (r2) from the construction of Γ is applicable to
(Fi, Si) and yields the pair

pi = (Fi, (Si \ {∃r.Gj | 1 ≤ j ≤ k(i)}) ∪ tlc(D).

When constructing the pair (A0, C) ∈ Γ̂ and dealing with node xi, we can use
the pair pi in place of (Fi, Si) and then proceed in a way such that the subtree
rooted at xi is DuuSi \ (tlc(D)∪{∃r.Gj | 1 ≤ j ≤ k(i)}), in this way obtaining

a pair (A0, C
′′) ∈ Γ̂ . It can be verified that there is a homomorphism of C ′′

(which amounts to checking that there is a homomorphism from C ′′|xi
to C ′|xi

;
in fact, we have tlc(C ′′) ⊆ tlc(C ′)), and thus we are done with proving (i).

For (ii), we have to show that A0 |= C ′(a). Since A0 |= D(b), there is a
homomorphism h′ from D to A0 that maps xε to b. We obtain a homomorphism
of from C ′ to A0 that maps xε to a by starting with the homomorphism h
and ‘plugging in’ h′ at every node xi to cover the subtrees generated by the
subconcepts ∃s.E of D added in Step 3 above. o

Proposition 4. If Ω contains a root cycle, then A0 is not FO-rewritable under
T .

Proof. Assume thatΩ contains a root cycle.. We show that there exists a blocked
concept C with T |= C v A0 as well as T 6|= (C \ C|x3) v A0, where x3 is as in
the definition of blocked concepts. Once we have constructed such a concept C,
non-FO-rewritability follows as in the proof of Proposition 2.

We will construct the desired concept C as the limit of a finite sequence of
concepts C0, . . . , Cm. Along with this concept sequence, we construct a sequence
of mappings µ0, . . . , µm where µi associates with each individual variable in
var(Ci) a tuple from Ω. To start the construction, choose a root tuple tε ∈ Ω
and a looping tuple tloop ∈ Ω that is reachable from tε along Ω . Set C0 = {A ∈
NC | A ∈ Stε}, and µ0(xε) = tε.

Now assume that C` is already defined. To construct C`+1, choose an x ∈
var(C`) with µ`(x) = (Cx, Sx, conx, sx, xconx) such that the set of existential
restrictions in Sx is non-empty but x does not yet have any successors in C`. Since
the set of existential restrictions in Sx is non-empty the tuple µ`(x) is not a leaf
tuple and by the construction of Ω this implies that there are tuples t0, . . . , tn ∈
Ω such that Rule (r3) can be applied to t0, . . . , tn and selected successor ` ≤ n to
generate µ`(x); i.e., for t = µ`(x) such that ∃r0.D0, . . . ,∃rn.Dn are the existential
restrictions in St and st = ∃r`.D` we have Cti = Di for 0 ≤ i ≤ n and:

– there is a node pair (Ct, S) ∈ Γ with St ⊆ S and S ∩ NC = St ∩ NC;;
– cont = conT (M), where M =

⋃
(St ∩ NC) ∪ {∃ri.G | i ≤ n and G ∈ conti};

– xcont = conT (M ′), where M ′ is⋃
(St ∩ NC) ∪ {∃r`.G | G ∈ xcont`} ∪ {∃ri.G | ` 6= i ≤ n and G ∈ conti}.

To construct C`+1, add ri(x, yi) to C`, for fresh individual variables yi and all
i ≤ n. Further add the assertion A(yi) for each A ∈ Sti ∩ NC. The resulting
concept is C`+1. Finally, µ`+1 is µ` extended by setting µ`+1(yi) = ti for all
i ≤ n.

Unless guided in an appropriate way, the above construction need not ter-
minate and will not result in a concept that has the desired properties. Let

Ω0, Ω1, . . . Ωk with Ωk = Ω be the sequence of sets generated by repeated ap-
plication of Rule (r3). For each t ∈ Ω, let rank(t) denote the smallest i such that
t ∈ Ωi. We guide, in the above construction, the selection of the tuples from Ω
in the following way.
Step 1. We construct C0, C1, . . . , Cm1

such that µm1
(x1) = tloop for some leaf

variable x1 of Cm1 . We know that tloop is reachable from tε along Ω . We start
with tε as before but at each step `, we choose t0, . . . , tn such that Rule (r3) can
be applied to t0, . . . , tn and selected successor j ≤ n to generate µ`(x) so that tj
brings us closer to tloop, that is, the shortest Ω-path from tj to tloop is shorter
than the shortest such path from µ`(x) to tloop. Let yj be the individual that
we introduced as a successor of x with µ`+1(yj) = tj . In step `+ 1, we continue
from yj .
Step 2. Step 1 guarantees that we have C0, C1, . . . , Cm1

with µm1
(x1) = tloop for

some leaf variable x1 of Cm1
. In Step 2 we extend the sequence C0, C1, . . . , Cm1

by Cm1+1, . . . , Cm2 in such a way that µm2(x2) = t′ for some leaf variable x2 of
Cm2 such that the con and xcon components of tloop and t′ coincide. Since tloop is
looping, there is a tuple t′ ∈ Ω such that t′ is reachable from tloop on a Ω-path
and the con and xcon components of tloop agree with those of t′. To construct
Cm1+1, . . . , Cm2

, we start with x1 and follow the same strategy as in Step 1, but
this time to reach t′ instead of tloop.
Step 3. Let C0, C1, . . . , Cm2

be the sequence constructed in Step 2. To finish the
construction of C we expand this sequence as follows. Assume n ≥ m2, Cn has
been constructed, and x ∈ var(Cn) is such that x does not have any successors in
Cn but there is some ∃r.D ∈ Sx. Then we choose t0, . . . , tn such that Rule (r3)
can be applied to t0, . . . , tn and selected successor j ≤ n to generate µ`(x) so
that t0, . . . , tn brings us closer to a leaf tuple, i.e., rank(ti) < rank(µ`(x)) for all
i ∈ {0, . . . , n}. Note that, by construction of Ω, this is always possible.

It should be clear that this way of guiding tuple selection guarantees termina-
tion. Call the concept and mapping obtained in the limit C and µ, respectively.
For each x ∈ C, px is defined as the (unique) path x0, . . . , xk such that x0 = x,
xk is a leaf of C, and for all i ∈ {0, . . . , k−1}, if t0, . . . , tn are the tuples that we
picked in the inductive construction above while adding successors of xi using
Rule (r3) with selected successor j ≤ n, then we have µ(xi+1) = tj .

Claim. For all x ∈ var(C) we have

1. conµ(x) = conCT (x);

2. if y 6= x is the last element of px, then xconµ(x) = con
C\C|y
T (x).

Proof of claim. The proof is by induction on the length of the path px. As the
base case, px is of length one and thus, µ(x) is a leaf tuple. By definition, this
implies that Sx consists of concept names. Let Sµ(x) = {A1, . . . , Ak}. By our
construction, C|x = A1 u · · · u Ak. Let D ∈ sub(T). By definition, D ∈ conµ(x)
iff T |= A1 u . . . u Ak v D, which is Point 1 in the claim. Since µ(x) is a leaf,
we have y = x for the last element y of px. Hence Point 2 in the claim holds
trivially and the base case is proved.

For the inductive step, suppose px is of length i > 1. Let t0, . . . , tn be the
tuples that we picked in the inductive construction of C while adding succes-
sors y0, . . . , yn of x using Rule (r3) with selected successor ` ≤ n. Assume the
existential restrictions in Sµ(x) are ∃r0.D0, . . . ,∃rn.Dn and we have

– rk(x, yk) ∈ C and Cµ(yk) = Dk for 0 ≤ k ≤ n.
– conµ(x) = conT (M), where

M =
⋃

(Sµ(x) ∩ NC) ∪ {∃rk.G | k ≤ n and G ∈ conµ(yk)}

– xconµ(x) = conT (M ′), where

M ′ =
⋃

(Sµ(x) ∩ NC) ∪ {∃r`.G | G ∈ xconµ(y`)} ∪
{∃rk.G | ` 6= k ≤ n and G ∈ conµ(yk)}.

Observe that C|x =u(Sµ(x) ∩ NC) u ∃r0.C|y0 u · · · ∃rn.C|yn . The IH implies

– conµ(yk) = conCT (yk) for all k ≤ n;

– xconµ(y`) = con
C\C|y
T (y`) for the last element y of px.

Hence we obtain with Lemma 2 and the IH that conµ(x) = conCT (x) and xconµ(x) =

con
C\C|y
T (x), as required. a

Recall that there is a path x0, . . . , xk ∈ var(C) such that x0 is the root of C,
xk is a leaf of C, for all i < k, xi+1 represents the selected successor of µ(xi),
and there are nodes xp and xq on the path such that p < q, µ(xp) = tloop, and
µ(xq) = t′. By the claim we have

– conCT (xp) = conµ(xp) = conµ(xq) = conCT (xq);

– con
C\C|xk

T (xp) = xconµ(xp) = xconµ(xq) = con
C\C|xk

T (xq).

It follows that C is blocked and T |= C v A0 but T 6|= C \ C|xk
v A0, as

required. o

We fix some notation for the semantics of datalog programs. Assume Π is a
monadic datalog program with goal predicate G(x). For an ABox A we define a
sequence of ABoxes Π0(A), Π1(A), . . . by setting:

– Π0(A) = A;
– Πn+1(A) is defined by adding to Πn(A) the set of all P (a) with a ∈ ind(A)

and P an IDB of Π such that there exists a rule P (x) ← ϕ in Π and a
variable assigment π with π(x) = a and Πn(A) |=π ϕ.

Set Π(A) =
⋃
n≥0Π

n(A). We use conAT (a) to denote {D ∈ sub(T) | A, T |=
D(a)}.

Theorem 1.

1. The program ΠT ,A0 is a rewriting of A0 under T .

2. If Ω contains no root cycle, then ΠT ,A0
is non-recursive.

Proof. For Point 1, first assume PA0,con0(a0) ∈ ΠT ,A0
(A) for a goal predicate

PA0,con0 of ΠT ,A0
. We have to show that A, T |= A0(a0). The following claim

can be proved by induction using the construction of Ω:

Claim. For all n ≥ 0, all a ∈ ind(A), and all IDBs PC,con of ΠT ,A0
with

PC,con(a) ∈ Πn(A) we have con ⊆ conAT (a).

Now, since PA0,con0(a0) ∈ ΠT ,A0(A) and A0 ∈ con0 (by the definition of goal
predicates in ΠT ,A0) we obtain A0 ∈ conAT (a0), as required.

Conversely, assume that A, T |= A0(a0). We have to show that G(a0) ∈
ΠT ,A0

(A) for a goal predicateG ofΠT ,A0
. By Proposition 3, there is an (A0, C

′) ∈
Γ̂ with A |= C ′(a0). Let C �∗ C ′ be minimal with T |= C v A0. Since C ho-
momorphically maps to A, it suffices to show that G(xε) ∈ ΠT ,A0

(AC) with xε
the root of AC . Note that C can be obtained from C ′ by removing subtrees.
Thus, each node in C is in the domain of the function µA0,C′ . For brevity, when
x ∈ var(C) and µA0,C′(x) = (D,S), we use Cx to denote D and Sx to denote S.

We aim to show that for each x ∈ var(C), the following rule Rx is in ΠT ,A0 :

PCx,conCT (x)(v)←
∧

A∈Sx∩NC

A(v) ∧
∧

r(x,y)∈C

(r(v, w) ∧ PCy,conCT (x)(w)).

Note that, by definition of µA0,C′ , A ∈ Sx ∩ NC implies A(x) ∈ AC . Thus if we
have shown that the above rules are all in ΠT ,A0 , it is easy to prove by induction
on the co-depth of x that for all x ∈ var(C), we have PCx,conCT (x)(x) ∈ ΠT ,A0(AC).

From AC , T |= A0(xε), we obtain A0 ∈ conCT (xε); moreover, the definition of
µA0,C′ yields Cxε

= A0. Consequently, PCxε ,con
C
T (xε)(xε) is a goal predicate of

ΠT ,A0
and we are done.

We now exhibit a way to decorate the individuals in AC with tuples from Ω.
Fix any choice function f that assigns to each non-leaf x ∈ ind(AC) an atom
r(x, y) ∈ AC . Then associate with each node x ∈ ind(AC) a node tuple ζf (x) in
a bottom-up way as follows:

(a) for each leaf x ∈ ind(AC), set

ζf (x) = (Cx, Sx ∩ NC, conT (Sx),−,−).

(b) for each non-leaf node x ∈ ind(AC), set

ζf (x) = (Cx, S, conT (M), s, conT (M ′))

where

– S = (Sx ∩ NC) ∪ {∃r.E ∈ S | r(x, y) ∈ AC , Cy = E};
– M = (Sx ∩ NC) ∪ {∃r.G | r(x, y) ∈ AC , G ∈ conζf (y)};
– for f(x) = r̂(x, ŷ),
• s = ∃r̂.Cŷ and

• M ′ = (Sx ∩ NC) ∪ {∃r̂.G | G ∈ xconζf (ŷ)}∪
{∃r.G | G ∈ conζf (y), r(x, y) ∈ AC and y 6= ŷ}.

Observe that for each non-leaf x, there exists y with r(x, y) ∈ AC and ζf (x) Ω

ζf (y). Thus one can show by induction on the co-depth of x in AC that ζf (x)
was in Ω before we have dropped tuples that were not reachable from a root
tuple. Let x0, . . . , xm be the path through AC from the root to a leaf that is
obtained by following the successors selected by f . It follows from Lemma 2 that

(i) conAC

T (x) = conζf (x), for all x ∈ ind(AC);

(ii) con
AC\C|xm

T (xi) = xconζf (xi), for all i < m.

Thus, since AC , T |= A0(x0), we have A0 ∈ conζf (x0). Since C is minimal with
T |= C v A0, we have AC\C|xm

T 6|= A0(x0) and so A0 /∈ xconζf (x0). Conse-
quently, ζf (x0) is a root tuple. Since the above holds for any choice of f , we
find for each x ∈ ind(AC) a choice function f such that ζf (x) is in Ω also after
dropping all node tuples that are not reachable from a root tuple: simply choose
f so that x is reachable from the root along successors selected by f . Also note
that, by Point (i) above and the construction of the decorations ζf , the first
three components of the tuple ζf (x) are independent of f .

It is now also easy to show that for all x ∈ ind(AC), the rule Rx is in ΠT ,A0
.

In fact, as we have seen above, there is a choice function f with ζf (x) ∈ Ω.
Consider the rule R corresponding in ΠT ,A0 to t = ζf (x). It is easily verified
that the conjunctions in Rx and R range over the same sets. It thus remains to
be verified that for every r(x, y) ∈ AC , there is a t′ ∈ Ω such that t ∃r.Cy

t′

and cont′ = conAC

T (y). In other words, we have to show that there are t̂ =

(Ct, St, cont,∃r.Cy, xcont̂) ∈ Ω and t′ ∈ Ω such that cont′ = conAC

T (y) and

t̂ Ω t′. To identify these tuples, select f ′ so that y is reachable from the root
along successors selected by f ′. Then ζf ′(z) is in Ω for all nodes z on the path
between x0 and y, including for z = x. Now set t̂ = ζf ′(x) and t′ = ζf ′(y). It
can be verified that t̂ and t′ are as required.

It remains to establish Point 2. Assume that Ω contains no root cycle,
but, to the contrary of what is to be shown, there are rules PC0,con0(x) ←
ϕ0(x), . . . , PCn,conn(x) ← ϕn(x) such that (i) PC0,con0 = PC,con and (ii) PCi,coni

occurs in ϕi+1 for all i ≤ n and with ϕn+1 = ϕ0. We show that this gives rise
to a path through Ω that starts at a root tuple and has length exceeding 22|T |.
Since any such path must contain a root cycle we have derived a contradiction
to the fact that no such cycle exists.

We construct the path by traveling backwards along “ Ω”. With each tuple t
on the path, we associate a rule PCi,coni(x) ← ϕi(x) such that Ct = Ci and
cont = coni. Start the path with some tuple t0 ∈ Ω that gives rise to the rule
PC0,con0(x) ← ϕ0(x) (note that different tuples might give rise to the same
rule). Clearly, we have Ct0 = C0 and cont0 = con0 as required. Assume that
an initial piece tk Ω · · · Ω t0 of the path through Ω has already been
constructed. To extend it, let PCi,coni(x)← ϕi(x) be the rule associated with tk.
Then we have Ctk = Ci and contk = coni. Let t be some tuple that gives rise

to PCi+1,coni+1
(x)← ϕi+1(x). Then Ct = Ci+1 and cont = coni+1. Since PCi,coni

occurs in ϕi+1, there must be an ∃r.D ∈ St and a tuple t′ ∈ Ω with t ∃r.D t′

and such that Ct′ = D = Ci and cont′ = coni. By definition of “ ∃r.D”, there is
a tuple t̂ = (Ct, St, cont,∃r.D, xcont̂) such that t̂ Ω t′. By definition of “ Ω”
and since Ct′ = Ctk = Ci and cont′ = contk = coni, we find a tuple t̂′ with
Ct̂′ = Ct̂, cont̂′ = cont̂, and t̂′ Ω tk (note that t̂′ need not be the same as
t̂ since the xcon-component might change). We use t̂′ as the next tuple tk+1

on our path through Ω. Note that Ct̂′ = Ci+1 and cont̂′ = coni+1 as required.
Proceeding in this way, we can continue to build up a backwards path through Ω
until its length exceeds 22|T |. It remains to further extend the path (backwards)
towards a root tuple. This is trivially possible since we have dropped from Ω all
tuples that are not reachable from a root tuple. o

Theorem 2. There is a family of TBoxes T1, T2, . . . such that for all n ≥ 1, Tn is
of size O(n2), the concept name A0 is FO-rewritable under Tn, and the smallest
non-recursive monadic datalog rewriting has size at least 2n.

Proof. We first observe that one can assume w.l.o.g. that the monadic datalog
programs are connected. We call a rule P (x)← ϕ connected if the graph whose
vertices are x and the remaining variables in ϕ and whose edges are {x1, x2} for
r(x1, x2) ∈ ϕ is connected. A monadic datalog program is connected if all its
rules are connected.

Claim 1. If Π is a non-recursive monadic datalog rewriting of A0 relative to T ,
then there exists a connected non-recursive monadic datalog rewriting Π ′ of A0

relative to T whose size does not exceed the size of Π.

To prove Claim 1 assume Π is given. Define Π ′ by replacing each rule P (x)← ϕ
with the rule P (x) ← ϕ′, where ϕ′ is obtained from ϕ by removing all atoms
A(y) and r(x1, x2) whose variables are not connected to x in ϕ (thus, if x does
not occur in ϕ then P (x) ← ϕ is replaced by P (x) ← . We show that Π ′ is a
datalog rewriting of A0 relative to T . Clearly Π(A) ⊆ Π ′(A) for any ABox A.
Thus, it remains to show that if G(a) ∈ Π ′(A) for an ABox A, a ∈ ind(A), and
goal predicate G, then G′(a) ∈ Π(A) for some goal predicate G′. Assume this is
not the case. Take A, a ∈ ind(A), and goal predicate G such that G(a) ∈ Π ′(A)
but G′(a) 6∈ Π(A) for any goal predicate G′. Define an ABox A′ by adding to A
the assertions A(c) and r(c, c) for every concept name A and role name r in Π
and a fresh individual name c. Clearly G(a) ∈ Π(A′) since the atoms removed
from Π can all be satisfied in c. Hence A′, T |= A0(a) since Π is a rewriting
of A0 relative to T . But then A, T |= A0(a) since T is an EL-TBox and c is
disconnected from the individuals in A. We have derived a contradiction to the
assumption that Π is a rewriting of A0 relative to T . This finishes the proof of
Claim 1.

We now provide a reformulation of Theorem 2. A tree-UCQ-rewriting of A0

relative to T is a disjunction
∨
M , where M is a finite set of EL-concepts.

Claim 2. Theorem 2 follows if there is a family of TBoxes T1, T2, . . . such that
for all n ≥ 1, Tn is of size O(n2), the concept name A0 is tree-UCQ-rewritable

under Tn, but any tree-UCQ-rewriting of A0 under Tn contains a concept C of
depth at least 2n.

To prove Claim 2, let Tn be one of the TBoxes from the claim. Let Π be a non-
recursive monadic datalog rewriting of A0 w.r.t. T . We have to show that Π
has size at least 2n. By Claim 1, we may assume that Π is connected. Let

∨
M

be a tree-UCQ-rewriting of A0 under Tn. We may assume that each C ∈ M is
minimal (i.e., if C ′ � C, then T 6|= C ′ v A0). Since Tn is a TBox from the claim,
we find a C ∈M whose depth is at least 2n. We now have G(xε) ∈ Π(AC) for the
root xε of the ABox AC corresponding to C. Using that assumptions that Π is
connected and non-recursive and that C is minimal with T |= C v A0 it follows
immediately that there is a sequence of distinct rules P0(x)← ϕ0, . . . , Pm(x)←
ϕm in Π with Pi+1 in ϕi for i < m and

∑m
i=1 |ϕi| ≥ 2n, as required. This finishes

the proof of Claim 2.

It thus remains to identify TBoxes T1, T2, . . . with the properties of Claim 2.
As an abbreviation, define C0 := B0 and Ci := Bi u ∃r.Ci−1. Let n ≥ 1. Then
Tn consists of the following CIs, for all i < n:

∃r.(A0 uBi) v A0

∃r.(A0 uBi) v A0

Bi u ∃r.Bj v A0 for 1 ≤ j < n with i 6= j + 1

Bi u ∃r.Bj v A0 for 1 ≤ j < n with i 6= j + 1

Bi u ∃r.Bj v A0 for 1 ≤ j < n with i 6= j + 1

Bi u ∃r.Bj v A0 for 1 ≤ j < n with i 6= j + 1

Bi u ∃rn+1.(Bi u ∃r.Ci−1) v A0

Bi u ∃rn+1.(Bi u ∃r.Ci−1) v A0

Bi u ∃rn+1.(Bi u ∃rj .Bi−j) v A0 for 1 ≤ j < i

Bi u ∃rn+1.(Bi u ∃rj .Bi−j) v A0 for 1 ≤ j < i

Cn−1 v A0.

Note that the concept names B0, . . . , Bn−1 and B0, . . . , Bn−1 are trivially FO-
rewritable because they do not occur on the right-hand side of any CI. Because
of the first two CIs, the concept name A0 propagates ‘backwards’ along r-chains
in an ABox, which in principle gives rise to non-FO-rewritability of A0. FO-
rewritability is regained, though, by enforcing the existence of a binary counter
in the ABox via the concept names B0, . . . , Bn−1 and B0, . . . , Bn−1, which rep-
resent positive and negative bits, respectively. The counter is ‘spaced out’ in
the sense that every individual on a backwards r-chain stores only a single bit
of the counter. Concept inclusions 3-6 ensure that the bits appear in the right
order and CIs 7-10 make sure that the counter is incremented properly, by other-
wise entailing A0, thus disrupting the unbounded propagation. The last concept
inclusion entails A0 if the counter value has reached maximum, thus stopping
unbounded propagation after at most 2n · n steps.

A concrete tree-UCQ-rewriting for A0 under T is as follows. For any concept
C and i ≥ 0, define a set of concepts S[C] as follows: S0[C] = {C} and Si+1[C] :=
{∃r.(BiuD),∃r.(BiuD) | i ≤ n and D ∈ Si[C]}. LetM be the set of all left-hand
sides of concept inclusions 3-11. Now the tree UCQ-rewriting is

ϕ =
∨

i≤2n+1

∨
C∈M∪{A0}

∨
D∈Si[C]

D.

Clearly, ϕ is a tree-UCQ of depth exceeding 2n. It remains to note that every
tree-UCQ-rewriting of A0 under T must comprise a concept C of depth at least
2n. Let X1, . . . , Xm, m = 2n+1−n, be the sequence of concept names from the set
{B0, . . . , Bn−1, B0, . . . , Bn−1} that represent the counter sequence 0, 1, . . . , 2n−
1, let D0 := A0 and Di+1 := Bi+1 u ∃r.Di for all i < 2n − 1. Then every tree-
UCQ-rewriting of A0 under T must comprise the tree-UCQ D2n−1, which is of
depth 2n. o

