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1 Universität Bremen, Fachbereich 3 – Mathematik und Informatik,
Postfach 330 440, 28334 Bremen, Germany

cgraf@informatik.uni-bremen.de
2 Deutsches Forschungszentrum für Künstliche Intelligenz,

Sichere Kognitive Systeme, Enrique-Schmidt-Str. 5, 28359 Bremen, Germany
Thomas.Roefer@dfki.de

Abstract. In this paper, we present a walking approach for the Nao
robot that improves the agility and stability of the robot when walking
on a flat surface such as the soccer field used in the Standard Platform
League. The gait uses the computationally inexpensive model of an in-
verted pendulum to generate a target trajectory for the center of mass
of the robot. This trajectory is adapted using the observed real motion
of the center of mass. This approach does not only allow compensating
the inaccuracies in the model, but it also allows for reacting to external
perturbations effectively. In addition, the method aims at facilitating a
preferably fast walk while reducing the load on the joints.

1 Introduction

Since 2008, the humanoid robot Nao [4] that is manufactured by the French
company Aldebaran Robotics is the robot used in the RoboCup Standard Plat-
form League. The Nao has 21 degrees of freedom. It is equipped with a 500 MHz
processor, two cameras, an inertial measuring unit, sonar sensors in its chest,
and force-sensitive resistors under its feet. The camera takes 30 images per sec-
ond while other sensor measurements are delivered at 100 Hz (50 Hz until 2009).
The joints can be controlled at the same time resolution, i. e. walking means to
generate 100 sets of 21 target joint angles per second.

Since the beginning of 2010, Aldebaran Robotics provides a gait for the
Nao [4] that, although being a closed-loop walk, only takes the actual joint
angles into account, not the measurements of the inertial measurement unit in
Nao’s chest. Thus the maximum speed reachable with the walk provided is still
severely limited. As delivered by the manufacturer, it is approximately 10 cm/s.
For RoboCup 2008, Kulk and Welsh designed an open-loop walk that keeps
the stiffness of the joints as low as possible to both conserve energy and to
increase the stability of the walk [9]. The gait reached 14 cm/s although it was
based on the previous walking module provided by Aldebaran Robotics. Two
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groups worked on walks that keep the Zero Moment Point (ZMP) [13] above the
support area using preview controllers. Both implement real omni-directional
gaits. Czarnetzki et al. [1] reached speeds up to 20 cm/s with their approach. In
their paper, this was only done in simulation. However, at RoboCup 2009 their
robots reached similar speeds on the actual field, but they seemed to be hard
to control and there was a certain lack in robustness, i. e., the robot fell down
quite often. Strom et. al [12] modeled the robot as an inverted pendulum in their
ZMP-based method. They reached speeds of around 10 cm/s.

In [6], [11], and [5], we already presented a robust closed-loop gait for the
Nao. The active balancing used in the approach is based on the pose of the torso
of the robot. In addition, we also presented an analytical solution to the inverse
kinematics of the Nao, solving the problems introduced by the special hip joint
of the Nao, i. e. dealing with the constraint that both legs share a degree of
freedom in the hip. The gait presented in this paper is a continuation of this
work.

The main contribution of this paper is presenting a computational inexpen-
sive way for using the inverted pendulum model with dynamic phase duration
for modeling a fast but omnidirectional and responsive walk and to use the same
model to react to perturbations. Hence in addition to previous works, the fo-
cus is placed on using sensor feedback to observe the state of the robot and to
adjust the inverted pendulum model to the observed state in order to improve
the stability of the walk. The resulting walk is one of the fastest omnidirectional
walks implemented on the Nao so far.

The structure of this paper is as follows: in the next section, modeling the
walking robot as an inverted pendulum to control position and speed of its center
of mass is discussed. In Section 3, the integration of sensor feedback is presented.
Section 4 discusses the results achieved, followed by Section 5, which concludes
the paper and gives an outlook on future work.

2 Using the Inverted Pendulum to Create Walking
Motions

Generating a walking motion for humanoid robot basically means to create a
sequence of joint angle sets, where each joint angle set will be executed succes-
sively. To be able to create a single set and a series of joint angles, a method is
required to represent the state and the change of the state of the robot while it
is walking. The approach presented in this paper reduces the model of the robot
to its center of mass and uses the position and desired velocity of the center
of mass to describe the state of the robot. The change of the state is described
by determining a trajectory for the movement of the center of mass. From the
position of the center of mass, the actual joint angles are determined by gener-
ating an additional trajectory for the position of the nonsupporting foot and by
applying inverse kinematics to both legs (details are given in [5]).

To describe the movement of the center of mass, the 3-Dimensional Linear
Inverted Pendulum Mode (3D-LIPM) [7] is used, which provides an approxima-



A Center of Mass Observing 3D-LIPM Gait 103

tion of a physically respectable model for the motion of the center of mass. In
addition, changes in rotation, as they occur while rotating on the spot or while
walking along a curve, are ignored. Hence, the position and velocity of the center
of mass on a plane of height h in parallel to the ground relative to the origin of
the inverted pendulum (see Fig. 1) are given by

x(t) = x0 · cosh(k · t) + ẋ0 ·
1

k
· sinh(k · t) (1)

ẋ(t) = x0 · k · sinh(k · t) + ẋ0 · cosh(k · t) (2)

where k =
√

g
h , g is the gravitational acceleration (≈ 9.81 m

s2 ), x0 ∈ R2 is the
position of the center of mass relative to the origin of the inverted pendulum
at t = 0, and ẋ0 ∈ R2 is the velocity of the center of mass at t = 0. A point
under the currently supporting foot is used as origin of the inverted pendulum
(see Fig. 4).
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Fig. 1. An inverted pendulum in the
three-dimensional space with fixed height
h.

Fig. 2. An inverted pendulum attached
to an obliquely forwards walking simu-
lated model of the Nao.

In a single support phase, the inverted pendulum defines the motion of the
center of mass according to its position and velocity relative to the origin of
the inverted pendulum. Hence at the beginning of a single support phase, the
position and velocity of the center of mass should be in a state that leads to
the proper position and velocity for the next single support phase (of the other
leg). The origin of the inverted pendulum should thereby be placed as close as
possible to an optimal position under the foot (see Fig. 4). Since the step sizes
to be performed can be chosen without severe constraints, the movement of the
center of mass has to be adjusted for each step so the origins of the inverted
pendulums used fit to the feet positions that are defined by the step sizes. Most
walking approaches applied on the Nao [12, 3, 1] use a short double support
phase for accelerating or decelerating the center of mass to achieve such an
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adjustment. To maximize the possible range that can be covered within a phase,
the single support phase should make up as much as possible of the whole step
phase to reduce the accelerations that are necessary for shifting the foot. Hence,
the approach presented in this paper aims on eliminating the need of a double
support phase, while keeping the origins of the inverted pendulums close to their
optimal positions.

Even though no double support phase is used, a method to manipulate the
movement of the center of mass is required. Therefore, the point in time for
altering the support leg is used to control the velocity of the center of mass
in the y (right→left) direction. To control the velocity in the x (back→front)
direction, the origin of the inverted pendulum is shifted along the x-axis towards
the elongated shape of the feet (see Fig. 4). This way the velocity of the center
of mass can be manipulated enough to cover a specific distance (step size) while
swinging from one leg to the other.

2.1 The System of Coordinates

Walking is a sequence of single support phases. In this paper, the symbols used
to describe the current single support phase have no extra markings, while the
symbols used to describe the following single support phase are dashed (e. g. x
vs. x̄). For each new single support phase, a new coordinate system Q is used to
describe the set points of the center of mass and the feet positions. The origin of
the inverted pendulum has the distance r ∈ R2 on the x-y-plane from the origin
of Q̄. This distance remains (almost) constant within a single support phase.
The origin of Q is located between both feet so that a step size s̄ describes the
offset from the origin of Q to the origin of Q̄ (see Fig. 3 and Fig. 4) where Q̄
is the coordinate system Q of the upcoming single support phase. If the robot
walks in place, the step size is 0 and Q is the same as Q̄.

2.2 Computing Step Durations

To apply the functions (1) and (2) for generating walking motions, a definition
of the point in time t = 0 is required to determine when to alter the support
leg. t = 0 is defined as the inflection point of the pendulum motion where the
y-component of the velocity is 0 ((ẋ0)y = 0). The position of the center of mass
at this point (x0)y is an arbitrary parameter and has a value of greater or lower
than 0 depending on the active support leg. Since (ẋ0)y = 0, the function

xy(t) = (x0)y · cosh(k · t) (3)

in the range t ≥ tb and t ≤ te can be used to compute the y-component of the
center of mass position relative to the origin of the inverted pendulum. A single
support phase starts at t = tb (tb < 0) and ends at t = te (te > 0).

If the nonsupporting foot should be placed with a distance of r̄y + s̄y − ry
to the supporting foot at the end of the single support phase (see Fig. 5) and if
x̄(t̄) and ¯̇x(t̄) are position and velocity of the center of mass relative to the next
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Fig. 3. y-z-cross section of the coordinate
system used for the altering inverted pen-
dulums.
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Fig. 4. x-y-cross section showing the step
size s̄ and the inverted pendulum origins
r and r̄. The small gray circle marks the
foot position that is also referred as opti-
mal inverted pendulum origin. The dot-
ted line marks allowed inverted pendulum
origins.

pendulum origin, the point in time to alter the support leg can be determined
by finding the ending of a single support phase te where:

(x(te))y − (x̄(t̄b))y = r̄y + s̄y − ry (4)

(ẋ(te))y = (¯̇x(t̄b))y (5)

The ending of a single support phase te and a matching beginning of the next
single support phase t̄b cannot be found by simply solving equation (4) and (5)
for te and t̄b. This is not possible since it cannot be assumed that the functions
(x(t))y and (x̄(t̄))y are symmetric. To handle this problem an iterative method
is used, in which te is initially guessed. The equation (5) can be transformed into

t̄b =
1

k̄
· arcsinh

(
(x0)y · k · sinh(k · te)

(x̄0)y · k̄

)
(6)

to compute a value for t̄b that matches to the guessed te. The guessed te can
then be refined using the velocity of the center of mass at te and the length
(x(te))y − (x̄(t̄b))y.

2.3 Walking Forwards and Backwards

Up to now, the length of a single support phase and the y-component of the
center of mass position at every point in time can be determined. To cover
a step size s̄x, the origin of the inverted pendulum of the next single support
phase should be placed in a distance of r̄x− s̄x−rx from the origin of the current
inverted pendulum. In addition, the velocities of the center of mass relative to
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Fig. 5. Two facing inverted pendulum pendulums used to cover step size s̄y.

each pendulum origin should be equal at the point in time when the support leg
alternates. So, analogically to the equations (4) and (5) for the y-direction, the
following equations should apply in the x-directions:

(x(te))x − (x̄(t̄b))x = r̄x + s̄x − rx (7)

(ẋ(te))x = (¯̇x(t̄b))x (8)

Two properties are planned ahead for the next single support phase. On the
one hand, the position of the origin of the inverted pendulum should be optimal,
so that r̄x = 0. On the other hand, the center of mass should be exactly over
the next pendulum origin (x̄(0))x = 0 at t = 0. The latter is substantiated on
simple forward walking (s̄x = 0) where −tb = te, so that (x̄(0))x = 0 guarantees
an evenly distributed center of mass motion that allows using optimal inverted
pendulum origins (rx and r̄x = 0) when walking with a constant step size. In
order to cover a distance of s̄x, the origin of the inverted pendulum rx of the
current single support phase is chosen in a way that equation (7) applies.

When the center of mass has the position xtb and velocity ẋtb relative to the
origin of Q at the beginning of a single support phase, rx can be computed by
using the following linear system of equations:

r + x0, cosh(k t) + ẋ0
sinh(k t)

k = xt
x0 k sinh(k t) + ẋ0 cosh(k t) = ẋt
x0 k sinh(k te) + ẋ0 cosh(k te) − x̄0 k̄ sinh(k̄ t̄b) − ¯̇x0 cosh(k̄ t̄b) = [0, 0]T

r + x0 cosh(k te) + ẋ0
sinh(k te)

k − x̄0 cosh(k̄ t̄b) − ¯̇x0
sinh(k̄ t̄b)

k̄
− s̄ = r̄

(9)
It is not only possible to compute rx using the linear system of equations

(9), but also to compute (x0)x and (ẋ0)x, so that a complete set of pendulum
parameters (r, x0 and ẋ0) can be determined.
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Depending on the desired step size s̄, position xtb , and velocity ẋtb of the
center of mass at the beginning of the single support phase, the absolute value
of rx can reach values that would shift the pendulum origin out of the convex
hull of the foot or out of a range that can be considered to ensure a stable walk.
Hence, a computed rx can be limited and an alternative value for s̄x can be
computed using the linear system of equations (9) as well. This allows making
sure that only step sizes are used that result in inverted pendulum origins close
enough to the optimal positions. |rx| can be capped to only a few millimeters
(e. g. 4 mm), to reduce the possible acceleration and deceleration of walking
speeds and to improve the stability of the walk.

3 Balancing

The results of a walk generated solely using the center of mass trajectory as de-
scribed in Section 2 are not convincing. It might be possible to find parameters
that keep the robot upright and that allow slow locomotion, but it is obvious
that the model alone is not suitable to keep the walk permanently stable. Fur-
thermore, the robot is not capable to react on perturbations of any kind.

Without balancing the trajectory of the center of mass is static and can only
be executed as it was computed before. In the case that an external perturbation
affects the robot or when the model used is simply not precise enough to represent
the dynamics of the robot, the motion of the center of mass does not follow the
trajectory as intended and the robot may fall in any direction. There are several
approaches to handle this problem. As soon as a deviation in the motion of
the center of mass is detected, a counteraction can be executed to bring the
center of mass back to the desired position. Another approach is to compute
a slightly modified trajectory for the center of mass to continue the deviated
motion according to the inverted pendulum model and to adjust future steps to
the deviated motion. The walk presented in this paper uses the second approach.
Using the first approach, it is hardly possible to compensate a perturbation
completely, but it is quite useful to prevent the error from increasing with further
movement of the center of mass. The advantage of the second approach is that
it acts in a more farsighted manner. If an error is in the system, it is absorbed
to continue the intended step as stable as possible. But at first, both approaches
require observing the actual position of the center of mass to detect an error.

3.1 Observing the Center of Mass

For determining an observed position of the center of mass, a four-dimensional
(simple) Kalman filter [8] is used for the x and y-components of the position
and the velocity of the center of mass. It is actually implemented using two in-
dependent two-dimensional Kalman filters. Estimating the z-component is left
out, since the 3D-LIPM used can not handle any dynamic pendulum heights.
Instead of computing the sensor readings for a predicted center of mass position,
the error ∆xi between the expected center of mass position xei relative to Q and
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the measured center of mass position xmi at time ti are computed and used as
innovation. The expected center of mass position is computed using x(t) with
the inverted pendulum parameters of the current single support phase. The mea-
sured center of mass position xmi is basically computed by using an estimated
orientation of the robot torso and the kinematic chain to the supporting foot
that is constructed using the joint angle sensor readings of the Nao.

xei = r + x(ti) (10)

∆xi = xmi − xei (11)

The Kalman filter uses xei and the function ẋ(ti) with the inverted pendu-
lum parameters of the current single support phase as the predicted state µi

′.
The covariance Σi

′ of the predicted state is computed as in an ordinary four-
dimensional Kalman filter that estimates a position and a velocity of an object
in two-dimensional space with a process noise Σεi.

µi
′ =


(xei)x
(xei)y
(ẋ(ti))x
(ẋ(ti))y

, Σi
′ = A ·Σi−1 ·AT +Σεi, A =


1 0 ∆ti 0
0 1 0 ∆ti
0 0 1 0
0 0 0 1

, ∆ti = ti − ti−1

(12)
The Kalman gain Ki for the innovation ∆xi can be computed assuming covari-
ance Σmi for the measurement xmi.

Ki = Σi
′ · CT · (C ·Σi

′ · CT +Σmi)
−1 with C =

[
1 0 0 0
0 1 0 0

]
(13)

And finally, the filtered position xf i, the filtered velocity ẋf i, and the updated
covariance Σi can then be computed.

µi =


(
xf i
)
x(

xf i
)
y(

ẋf i
)
x(

ẋf i
)
y

 = µi
′ +Ki ·∆xi, Σi = Σi

′ −Ki · C ·Σi
′ (14)

The parameters of the Kalman filters, i. e. the assumed process noise Σεi and
the deviation of the computed error Σmi, can control how much sensor feedback
is used to correct the pendulum parameters (see Section 3.2). Using a small
process noise and a large deviation of the computed error results in only little
corrections according to the measured position of the center of mass.

3.2 Correcting the Inverted Pendulum Parameters

The filtered position xf i and the filtered velocity ẋf i of the Kalman filter that
estimates the true position and velocity of the center of mass are used to re-
determine the parameters of the inverted pendulum of the current single support
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phase. Since the prediction of the natural motion of the center of mass is based
on the pendulum parameters, the main purpose of the correction is to improve
the prediction in the next iteration. So the pendulum parameters r, x0, ẋ0, and ti
are re-determined to find a pendulum function that fits to the estimated position
and the estimated velocity of the center of mass:

r′ + x′(ti
′) = xf i (15)

ẋ′(ti
′) = ẋf i (16)

The y-component (x0)y
′

of the center of mass at the point in time t = 0
as well as the corrected current time ti

′ can be computed using the estimated
position and the estimated velocity. (x0)y

′
is calculated by using equation (3)

and its derivation:
(xf )y − ry ′ = (x0)y

′ · cosh(k′ · ti′) (17)

(ẋf )y = (x0)y
′ · k′ · sinh(k′ · ti′) (18)

Equation (17) can be solved for k′ ·ti′ and inserted into (18) to solve the resulting
equation for (x0)y

′
:

(x0)y
′

=

√
((xf i)y − ry ′)2 −

(ẋf i)y
2

k′2
(19)

ti
′ can then be computed by solving equation (18) for ti

′:

ti
′ =

1

k′
· arcsinh

(
(ẋf )y

k′ · (x0)y

)
(20)

Given the corrected y-component of the pendulum position at t′ = 0 (which
is possibly shifted to t = 0) a corrected point in time te

′ for the ending of the
current single support phase can be computed using the iterative method as
described in Section 2.2 with the current step size s̄. The x-components of the
estimated position xf i and the estimated velocity ẋf i can be used for computing

the corrected pendulum origin rx
′ and the other pendulum parameters (x0)x

′

and (ẋ0)x
′

by using the linear system of equations (9).

3.3 Controlling the Predicted Positions of the Center of Mass

A general problem with balancing a walk is that the sensor readings are not in
sync with the controlled joint angles. On the Nao, 40 ms or 4 cycles in the walk
generation process elapse until a reaction from a joint angle request becomes
recognizable. Hence, a pendulum motion in sync with the measurements is con-
sidered at first. At this frame, the estimated position and the estimated velocity
of the center of mass are used to compute the corrected pendulum parameters.
To control a position of the center of mass xpi, the position of the center of mass
40 ms in the future is predicted according the corrected pendulum parameters. If
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the 40 ms exceed the ending of the current single support phase, the pendulum
parameters of the next single support phase are used instead:

xpi =

{
r′ + x′(ti

′ + 40ms) if ti
′ + 40ms < te

′

s̄+ r̄ + x̄(t̄′b + ti
′ + 40ms− te′) otherwise

(21)

4 Results

To find parameters for the gait, the robot was walking in a stationary position
and some initial parameters were slightly changed to minimize the average er-
ror between expected and measured center of mass position and to result in
a preferably constant and smooth motion from side to side (see Fig. 6). Some
parameters define the stance and the motion with values such as the height of
the center of mass above the ground, the offset between both feet (normally 10
cm because of the robot’s leg design), the step height, and the magnitude of a
step-bound rotation around the x-axis to simplify the center of mass shifting to
a side. Furthermore, there are parameters that define the motion of the inverted
pendulum such as the pendulum width (x0)y, the position of the optimal pen-
dulum origin within a foot ry, and the assumed height of the pendulum h, which
can be chosen independently from the actual position of the center of mass to
adjust the inverted pendulum model to the actual dynamics of the robot. The
parameters can be chosen by hand or with an automatic method such as the
Particle Swarm Optimization [2] that uses the averaged error between the ex-
pected and the measured position of the center of mass to rate the quality of a
set of parameters.

The walking parameters used in the work presented aim at compromising
between a maximum walking speed and a minimum load on joints. Hence, the
center of mass is located quite high at 262 mm over ground, so that thigh and
lower leg stand with an obtuse angle to each other to reduce the load on the knee
joint. This can be a huge advantage when the Nao should stand or walk for a
long period of time, since the knee joint can overheat quickly at a sharper angle
due to the higher load (e. g. in less than 20 minutes, i. e. the duration of a game).
Another advantage of the high center of mass is that—compared to a lowered
stance—smaller changes in the joint angles are necessary to reach target foot
positions that are far away. But a drawback of the high center of mass is that
the maximum reachable target foot distance is more limited by the maximum
length of a leg.

Using the best performing parameters found so far, the robot reaches 31 cm/s
forwards with a step size of 7 cm, 12 cm/s sideways with a step size of 8 cm,
22 cm/s backwards, and 92◦/s when rotating on the spot. At full speed, the aver-
age error of the position of the center of mass in the y-direction is 7.76 mm. The
error is smaller with reduced walking speed (e. g. 5.88 mm at 10 cm/s forwards).
With reduced walking speed, the gait is also substantially more robust against
perturbations. The correction of the inverted pendulum parameters causes the
motion of the center of mass to adjust quickly to the expected trajectory (see
Fig. 7).
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Fig. 6. A plot showing the y-component
of the measured (red) and expected
(black) center of mass position while the
robot was walking on the spot. The mo-
tion of the robot is steady although the
average error appears to be immense
(4.26 mm).
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Fig. 7. A plot showing the y-component
of the measured (red) and expected
(black) center of mass position when the
robot was pushed from the side. The ex-
pected center of mass position chases the
measured position and the walk stabilizes
quickly.

5 Conclusions and Future Work

In this paper, we present a robust closed-loop gait for the Nao robot. The gait
uses the center of mass as simplified representation of the walking robot and a
model for the movement of this center of mass that is based on two alternating
inverted pendulums. The model allows eliminating the need of a double-support
phase by dynamically adjusting the point in time at which the support leg al-
ternates. Thus, the load on the joints for bridging over larger distances can be
reduced.

In addition, we have suggested a method for estimating the actual position
and the actual velocity of the center of mass. We have explained how the estimate
can be used for correcting the inverted pendulum model. The correction does
not only allow using the inverted pendulum model on real hardware without
perfect joint calibration, but it also adds robustness against perturbations such
as forces exerted on the robot. The maximum speed achieved could be increased
in comparison to the results of previous works.

Work that was already started for RoboCup 2010 and is still ongoing is to
add a mechanism to learn the difference between the inverted pendulum model
and the real dynamics of the robot. Furthermore, we plan to extend the walking
engine to a general motion engine that, e. g., will also integrate dynamic kicks
as presented by [10]. This will significantly improve the robot’s ability to dribble
the ball and speed up the transitions between walking and kicking.
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