
RoboCup 2002

Hans-Dieter Burkhard
Uwe Düffert

Jan Hoffmann
Matthias J̈ungel
Martin Lötzsch

Institut für Informatik,
LFG Künstliche Intelligenz,

Humboldt-Universiẗat zu Berlin,
Rudower Chaussee 25,
12489 Berlin, Germany

Nils Koschmieder
Tim Laue

Thomas R̈ofer
Kai Spiess

Center for Computing Technology,
FB 3 Informatik,

Universiẗat Bremen,
Postfach 330440,

28334 Bremen, Germany

Ronnie Brunn
Martin Kallnik
Nicolai Kuntze
Michael Kunz

Sebastian Petters
Max Risler

Oskar von Stryk

Fachgebiet Simulation und Systemoptimierung,
FB 20 Informatik,

Technische Universität Darmstadt,
Alexanderstr. 10,

64283 Darmstadt, Germany

Arthur Cesarz
Ingo Dahm

Matthias Hebbel
Walter Nowak
Jens Ziegler

Computer Engineering Institute,
Chair of Systemanalysis,
University of Dortmund,

Otto-Hahn-Strasse 4,
44221 Dortmund, Germany

Abstract

The GermanTeam is a joint project of several German universities in the Sony Legged Robot
League. This report describes the software developed for the RoboCup 2002 in Fukuoka. It
presents the software architecture of the system as well as the methods that were developed
to tackle the problems of motion, image processing, object recognition, self-localization, and
robot behavior. The approaches for both playing robot soccer and mastering the challenges are
presented. In addition to the software actually running on the robots, this document will also give
an overview of the tools the GermanTeam used to support the development process.

In an extensive appendix, several topics are described in detail, namely the installation of
the software, how it is used, the implementation of inter-process communication, streams, and
debugging mechanisms, and the approach of the GermanTeam to model the behavior of the
robots.

Contents

1 Introduction 1
1.1 History . 1
1.2 Scientific Goals. 1

1.2.1 Humboldt-Universiẗat zu Berlin . 1
1.2.2 Technische Universität Darmstadt . 2
1.2.3 Universiẗat Bremen. 3
1.2.4 Universiẗat Dortmund . 3

1.3 Contributing Team Members. 4
1.3.1 Humboldt-Universiẗat zu Berlin . 4
1.3.2 Technische Universität Darmstadt . 4
1.3.3 Universiẗat Bremen. 4
1.3.4 Universiẗat Dortmund . 5

1.4 Structure of this Document. 5

2 Architecture 6
2.1 Platform-Independence. 6

2.1.1 Motivation . 6
2.1.2 Realization. 7
2.1.3 Supported Platforms. 8
2.1.4 Math Library . 8

2.1.4.1 Class Hierarchy. 8
2.1.4.2 Provided Data Types. 10

2.2 Multi-Team Support. .10
2.2.1 Tasks .10
2.2.2 Debugging Support. .12
2.2.3 Process-Layouts. .12

2.2.3.1 Communication between Processes. 13
2.2.3.2 Different Layouts. 14

2.2.4 Make Engine. .15
2.2.4.1 Dependencies. 15
2.2.4.2 Realization. .16
2.2.4.3 Automation and Integration. 17

i

ii CONTENTS

3 Modules in GT2002 18
3.1 Body Sensor Processing. .20
3.2 Vision .21

3.2.1 Blob-Based Vision. .21
3.2.1.1 Flood-Fill RLE Blob Detector. 22
3.2.1.2 Landmarks Perceptor. 23
3.2.1.3 Ball Perceptor. 25
3.2.1.4 Players Perceptor. 27

3.2.2 Grid-Based Vision. .28
3.2.2.1 Using a Horizon-Aligned Grid. 28
3.2.2.2 Ball Specialist. 30
3.2.2.3 Flag Specialist. 31
3.2.2.4 Goal Specialist. 32
3.2.2.5 Player Specialist. 32
3.2.2.6 Lines Perceptor. 32

3.3 Self-Localization .33
3.3.1 Single Landmark Self-Locator. 34

3.3.1.1 Approach .34
3.3.1.2 Results. .37

3.3.2 Monte-Carlo Self-Locator. 37
3.3.2.1 Motion Model . 38
3.3.2.2 Observation Model. 38
3.3.2.3 Resampling. 40
3.3.2.4 Estimating the Pose of the Robot. 41
3.3.2.5 Results. .43

3.3.3 Lines Self-Locator. .43
3.3.3.1 Observation Model. 43
3.3.3.2 Optimizations. 45
3.3.3.3 Early Results. 46

3.4 Ball Modeling. .46
3.4.1 Ball Is Visible. .46
3.4.2 Ball Is Not Visible .47
3.4.3 Ball Speed .47

3.5 Player Modeling. .47
3.5.1 Determining Robot Positions from Distributions. 48
3.5.2 Integration of Team Messages. 48

3.6 Behavior Control .48
3.6.1 TUDXMLBehavior. .49

3.6.1.1 Structure of a Behavior Model Document. 49
3.6.1.2 Language .51
3.6.1.3 Documentation . 53
3.6.1.4 Conclusion. .53

3.6.2 XABSL .53

CONTENTS iii

3.6.2.1 The Behavior Architecture. 53
3.6.2.2 Formalization of Behavior - XABSL. 55
3.6.2.3 The XabslEngine. 56

3.7 Motion. .57
3.7.1 Walking. .57

3.7.1.1 Approach .58
3.7.1.2 Parameters. .58
3.7.1.3 Odometry correction values. 60
3.7.1.4 Inverse Kinematics. 60

3.7.2 Special Actions. .61
3.7.3 Head Motion Control. .62

3.7.3.1 Head Control Modes. 62
3.7.3.2 Speed Adjustment. 63
3.7.3.3 Joint Protection. 63

4 Challenges 64
4.1 Pattern Analysis Challenge. .64
4.2 Collaboration Challenge. .65
4.3 Ball Challenge .66

4.3.1 Architecture. .66
4.3.2 Modeling of the Potential Field. 66

4.3.2.1 The Different Objects. 66
4.3.3 Visualization of the Potential Field. 67
4.3.4 Path Planning. .68

4.3.4.1 Gradient Descent. 68
4.3.4.2 Local Minima . 68

4.3.5 Results .69

5 Tools 70
5.1 SimGT2002. .70

5.1.1 Simulation Kernel .71
5.1.2 User Interface. .72
5.1.3 Controller. .74

5.2 RobotControl .74
5.3 Router. .76
5.4 Motion Configuration Tool. .78

6 Conclusions and Outlook 80
6.1 The Competitions in Fukuoka. 80

6.1.1 Results .80
6.1.2 Experiences. .81

6.2 Future Work. .82
6.2.1 Humboldt-Universiẗat zu Berlin . 82

iv CONTENTS

6.2.2 Technische Universität Darmstadt . 83
6.2.3 Universiẗat Bremen. .83
6.2.4 Universiẗat Dortmund . 83

7 Acknowledgements 84

A Installation 85
A.1 Required Software .85

A.1.1 Common Requirements. 86
A.1.2 GreenHills-Based Development. 86
A.1.3 gcc-Based Development. 86

A.2 Source Code. .86
A.2.1 Robot Code. .87
A.2.2 Tools Code .88

A.3 The Developer Studio Workspace GT2002.dsw. 88

B Getting Started 90
B.1 First Steps with RobotControl. 90

B.1.1 Looking at Images. .90
B.1.2 Discover the Simulator. 91

B.2 Playing Soccer with the GermanTeam. 91
B.2.1 Preparing Memory Sticks. 91
B.2.2 Establishing a WLAN Connection. 92
B.2.3 Operate the Robots. .92

B.3 Explore the Possibilities of the Robot. 93
B.3.1 Send Images from the Robot and Create a Color Table. 93
B.3.2 Try Different Head Control Modes. 93

B.3.2.1 Search for ball with different color tables. 94
B.3.2.2 Pay Attention to the Horizon when the Robot is Lifted from

Ground and Rotated. 94
B.3.3 Watch Different Walking Styles. 94
B.3.4 Create Own Kicks .95
B.3.5 Test simple behaviors. .95

B.3.5.1 Test Skills .95
B.3.5.2 Test Options. 96

C Processes, Senders, and Receivers 97
C.1 Motivation. .97
C.2 Creating a Process. .97
C.3 Communication. .99

C.3.1 Packages. .99
C.3.2 Senders. .100
C.3.3 Receivers. .101

CONTENTS v

D Streams 103
D.1 Motivation. .103
D.2 The Classes Provided. .103
D.3 Streaming Data. .105
D.4 Making Classes Streamable. .106

D.4.1 Streaming Operators. .106
D.4.2 Streaming usingread()andwrite() .108

D.5 Implementing New Streams. .109

E Debugging Mechanisms 111
E.1 Message Queues. .111
E.2 Debug Keys. .113
E.3 Debug Macros .114
E.4 Stopwatch. .114
E.5 Debug Drawings .115
E.6 Modules and Solutions. .116

F XABSL Language Reference 117
F.1 General Structure of an XABSL Document.117
F.2 The Elementdescription .118
F.3 The Elementenvironment. .119
F.4 The Elementskills .121
F.5 The Elementoptions .122
F.6 The Elementstate .122
F.7 The Typestatement. .123
F.8 The Typeconditional-statement .124
F.9 The Groupboolean-expression. .124
F.10 The Groupdecimal-expression-inside-a-state.126
F.11 The Groupdecimal-expression. .127
F.12 Example. .128
F.13 Tools. .129

G The XabslEngine Class Library 131
G.1 Files .131
G.2 XABSL Definitions .131
G.3 System Functions. .132
G.4 Skills .133
G.5 Symbols. .134
G.6 Initializing an Engine. .135
G.7 Executing the Engine. .136
G.8 Debugging Interfaces. .136

vi CONTENTS

H XABSL in GT2002 138
H.1 XabslBehaviorControl .138
H.2 Editing Behaviors. .139

H.2.1 Files. .139
H.2.2 Coding Conventions. .139
H.2.3 Validation. .139
H.2.4 Generating Files. .140
H.2.5 Adding Symbols .140
H.2.6 Adding Skills .141

H.3 Testing and Debugging. .142

I SimGT2002 Usage 143
I.1 Getting Started .143
I.2 Scene View .144
I.3 Robot View .144
I.4 Scene Description Files. .145
I.5 Console Commands. .145

I.5.1 Global Commands. .145
I.5.2 Robot Commands. .146

I.6 Adding Views .147

J RobotControl Usage 149
J.1 Starting RobotControl. .149
J.2 Application Framework. .149

J.2.1 The Debug Keys Toolbar. .149
J.2.2 The Configuration Toolbar. .150
J.2.3 The Settings Dialog. .151
J.2.4 The Log Player Toolbar. .151
J.2.5 WLan Toolbar .152
J.2.6 Players Toolbar. .152
J.2.7 Game Toolbar. .153

J.3 Visualization .153
J.3.1 Image Viewer and Large Image Viewer.153
J.3.2 Field View and Radar Viewer. .153
J.3.3 Color Space Dialog. .154
J.3.4 Time Diagram Dialog .155

J.4 The Simulator. .156
J.5 Debug Interfaces for Modules. .157

J.5.1 Xabsl Behavior Tester. .157
J.5.2 Motion Tester Dialog. .158
J.5.3 Head Motion Tester Dialog. .159
J.5.4 Mof Tester Dialog .159
J.5.5 Joystick Motion Tester Dialog. .160

CONTENTS vii

J.6 Color Calibration. .161
J.6.1 The Color Table Dialog. .161
J.6.2 HSI Tool Dialog .162
J.6.3 Camera Toolbar. .164

J.7 Other Tools .165
J.7.1 Debug Message Generator Dialog. .165
J.7.2 Test Data Generator Dialog. .165
J.7.3 Evolver Dialog. .166

Chapter 1

Introduction

1.1 History

The GermanTeam is the successor of the Humboldt Heroes who already participated in the Sony
Legged League competitions in 1999 and 2000. Because of the strong interest of other Ger-
man universities, in March 2001, the GermanTeam was founded. It consists of students and
researchers of five universities: Humboldt-Universität zu Berlin, Universiẗat Bremen, Technis-
che Universiẗat Darmstadt, Universität Dortmund and Freie Universität Berlin. For the RoboCup
2001, the Humboldt Heroes only had reinforcements from Bremen and Darmstadt during the last
two or three month before the world championship in Seattle took place.

In 2002, only the Freie Universität Berlin provided no active team members. Therefore, the
system presented in this document is the result of the work of the team members from the other
four universities. Each of these four groups has its own team in the Sony Legged RoboCup
League, but they only participated separately in the German Open 2002 in Paderborn and formed
a single national team in Fukuoka. The four teams are theBremen Byters, theDarmstadt Drib-
bling Dackels, Humboldt 2002, and theRuhrpott Hellhounds(Dortmund).

1.2 Scientific Goals

All the universities participating have certain special research interests, which they try to carry
out in the GermanTeam’s software.

1.2.1 Humboldt-Universität zu Berlin

The main interests of Humboldt University’s researchers are robotic architectures for au-
tonomous robots based on mental models and the development of complex behavior control
architectures.

Even simple environments and tasks for autonomous robots require sophisticated robot ar-
chitectures that satisfy real-time conditions. Such designs need to manage the sensor readings,
the actuator control, the representation of internal and external objects, the planning system, and

1

2 CHAPTER 1. INTRODUCTION

the debugging and visualization. This leads to the specification and development of a robust
and extensible software model that can be applied to different robotic platforms. The software
architecture’s modularity allows for different solutions to be developed independently and in par-
allel. For a given task, e. g. image processing, modules that fulfill this task can be interchanged
at run-time (e. g. switch from “grid based image processing” to “flood fill image processing”).
This leads to the development of a wide variety of approaches within the software project and
enables us to easily benchmark and compare these solutions. For robots with complex tasks in
natural environments, it is necessary to equip them with behavior control architectures that allow
planning based on fuzzy and incomplete information about the environment, cooperation with-
out communication, and actions directed to different goals. These architectures have to integrate
both long-term plans and short-term reactive behaviors. On the one hand, they should not stick
to dead end decisions, but on the other hand, they should also not change their intentions too
frequently for a goal to be reached.

The behavior architecture first developed in 2001 was improved this year and an XML dialect
for describing behaviors was added. It will ultimately be joined with the case based reasoning
approach developed in our Simulation League team. This will give us a lot more flexibility in
testing behaviors and knowledge transfer between the different leagues.

In addition, guided means of information gathering (e. g. active vision) have been found to
be important in the context of the Sony Four Legged League. The limited resources of the robot
(small field of vision, limited computing power) make it necessary to optimize the use of these
resources and prohibit the use of brute force algorithms (especially in image processing). As a
result of this, image acquisition and image analysis need to be closely linked with information
processing and world modeling. These formerly separate, independent processes will need to
become more closely coupled.

1.2.2 Technische Universiẗat Darmstadt

The long-term goals of the team in Darmstadt are conceptual and algorithmic contributions to
all sub-problems involved for a successful autonomous team of soccer playing legged robots
(perception, localization, locomotion, behavior control).

The group in Darmstadt is developing tools for an efficient kinetic modeling and simulation of
legged robot dynamics taking into account masses and inertias of each robot link as well as motor,
gear and controller models of each controlled joint. Based on these nonlinear dynamic models
computational methods for simulation, dynamic off-line optimization and on-line stabilization
and control of dynamic walking and running gaits are developed and applied. These methods
will be applied to develop and implement new, fast, and stable locomotion for legged robots,
namely the Sony four-legged robots and a new humanoid robot under development. Until June
2002 a complete three-dimensional dynamical model of the Sony four-legged robot has been
implemented based on the kinematical and kinetical data provided by Sony. This model has
been used to optimize a fast trot gait in simulation using numerical optimal control methods.
The simulation results still must be validated through experiments as well as model uncertainties
concerning dynamic models and data of motors, gears, controllers and of the ground contact
models.

1.2. SCIENTIFIC GOALS 3

However, new methods for planning and controlling legged locomotion of anautonomous
robot cannot be investigated independently from the limited hard- and software resources which
must be shared with other modules under real-time constraints. Thus, for the competitions in
2002, a library for fast and stable evaluation of math functions, a fast, single landmark self-
location algorithm, a rapid XML/XSL state machine modeler as well as a walking engine have
been newly developed in addition to the modules contributed by the other German universities.
The new modules have been tested successfully during the RoboCup German Open in April.

1.2.3 Universiẗat Bremen

The main research interest of the group in Bremen is the automatic recognition of the strategies of
other agents, in particular, of the opposing team in RoboCup. A new challenge in the development
of autonomous physical agents is to model the environment in an adequate way. In this context,
modeling of other active entities is of crucial importance. It has to be examined, how actions of
other mobile agents can be identified and classified. Their behavior patterns and tactics should be
detected from generic actions and action sequences. From these patterns, future actions should
be predicted, and thus it is possible to select adequate reactions to the activities of the opponents.
Within this scenario, the other physical agents should not to be regarded individually. Rather it
should be assumed that they form a self-organizing group with a common goal, which contradicts
the agent’s own target. In consequence, an action of the group of other agents is also a threat
against the own plans, goals, and preferred actions, and must be considered accordingly. Acting
under the consideration of the actions of others presupposes a high degree of adaptability and the
capability to learn from previous situations. Thus these research areas will also be emphasized
in the project.

The research project focuses on strategy detection of agents in general. However, the
RoboCup is an ideal test-bed for the methods to be developed. The technology of strategy recog-
nition is of large interest in two research areas: on the one hand, the quality of forecasting the
actions of physical agents can be increased, which plays an important role in the context of con-
trolling autonomous robots, on the other hand, it can be employed to increase the robustness
and security of electronic markets. This project is also part of the priority program “Cooperating
teams of mobile robots in dynamic environments” funded by the Deutsche Forschungsgemein-
schaft (German Research Foundation).

In the Sony Legged Robot League, it is the goal of the group from Bremen to establish a
robust and stable world model that will allow techniques for opponent modeling developed in
the simulation league to be applied to a league with real robots.

1.2.4 Universiẗat Dortmund

The team of the University of Dortmund focuses its research interests on two separate fields:
The first is the combination of different sensor data information in order to build a sensor-fusion
based world model. Therefore, we develop methodologies to classify objects that consider the
specific problems of that challenge. On the other hand, we deal with the problem of developing
gait patterns for mobile robots.

4 CHAPTER 1. INTRODUCTION

Fast and robust locomotion modules are crucial for the reliable movement of biped and
quadruped robots. Developing parameter sets for gait patterns by hand is complex, time-
consuming, and therefore expensive. Thus, methods that generate gait patterns (semi-) automati-
cally by trial-and-error techniques on the robot are expected to lower the development costs. Un-
fortunately, such methods are typically characterized by a heavy wearout. Therefore, we examine
techniques that are capable of reducing the wearout by classifying the fitness of the particular gait
pattern offline.

The second research interest deals with sensor fusion. We combine the sensor information
of a set of robots in order to generate a world model that goes beyond the quality of a single-
robot world model. For that, reliability information about sensor input, classification accuracy,
and other a priory information must be extracted, exchanged between the individuals, and taken
into account when merging all additional information available.

1.3 Contributing Team Members

At the four universities providing active team members, many people contributed to the German-
Team:

1.3.1 Humboldt-Universität zu Berlin

Graduate Students. Uwe Düffert, Matthias J̈ungel, Martin L̈otzsch.

PhD Students. Joscha Bach, Jan Hoffmann.

Professor. Hans-Dieter Burkhard.

1.3.2 Technische Universiẗat Darmstadt

Graduate Students. Ronnie Brunn, Martin Kallnik, Michael Kunz, Nicolai Kuntze, Sebastian
Petters, Max Risler.

Post-Doc Researcher. Michael Hardt.

Professor. Oskar von Stryk.

1.3.3 Universiẗat Bremen

Graduate Students. Denny Koene, J̈urgen K̈ohler, Nils Koschmieder, Lang Lang, Tim Laue,
Kai Spiess, Andreas Sztybryc, Hong Xiang.

Assistant Professor. Thomas R̈ofer.

1.4. STRUCTURE OF THIS DOCUMENT 5

1.3.4 Universiẗat Dortmund

Graduate Students. Arthur Cesarz, Oliver Giese, Matthias Hebbel, Holger Hennings, Simon
Fischer, Phillip Limburg, Marc Malik, Patrick Matters, Markus Meier, Ingo Mierswa, Walter
Nowak, Christian Neumann, Denis Piepenstock, Jens Rentmeister, Lars Schley.

PhD Students. Ingo Dahm, Jens Ziegler.

1.4 Structure of this Document

This document gives a complete survey over the software of the GermanTeam, i. e. it does not
just describe the differences between last year’s version and the actual one. Thus new teams only
have to read this year’s documentation. However, people who already read the report from the
year ago will find some repetitions.

Chapter2 describes the software architecture implemented by the GermanTeam. It is moti-
vated by the special needs of a national team, i.e. a “team of teams” from different universities
in one country that compete against each other in national contests, but that will jointly line up
at the international RoboCup championship. In this architecture, the problem of a robot playing
soccer is divided in several tasks. Each task is solved by amodule. The implementations of these
modules for the soccer competition are described in chapter3. Chapter4 describes the solutions
for the three so-called challenges.

Only half of the approximately 200,000 lines of code that were written by the GermanTeam
for the RoboCup 2002 are actually running on the robots. The other half was invested in powerful
tools that provide sophisticated debugging possibilities including the first 3-D simulator for the
Sony Legged Robot League. These tools are presented in chapter5.

The main part of this report is finished by concluding the results achieved in 2002 and giving
an outlook on the future perspectives of the GermanTeam in 2003 in chapter6.

In the appendix, several issues are described in more detail. It starts with an installation guide
in appendixA. AppendixB is a quick guide how to setup the robots of the GermanTeam to play
soccer and how to use the tools. Then, the GermanTeam’s abstraction ofprocesses, senders, and
receiversis presented in appendixC, followed by appendixD onstreamsand appendixE on the
debugging support. The appendicesF, G, andH are a detailed documentation of the behavior
engine used by the GermanTeam in Fukuoka. Finally, the appendicesI andJ describe the usage
of SimGT2002 and RobotControl, the two main tools of the GermanTeam.

Chapter 2

Architecture

The GermanTeam is an example of a national team. The members participated as separate teams
in the German Open 2002, but formed a single team at Fukuoka. Obviously, the results of the
team would not have been very good if the members developed separately until the middle of
April, and then tried to integrate their code to a single team in only two months. Therefore, an
architecture for robot control programs was developed that allows implementing different solu-
tions for the tasks involved in playing robot soccer. The solutions are exchangeable, compatible
to each other, and they can even be distributed over a variable number of concurrent processes.
The approach will be described in section2.2. Before that, section2.1will motivate why the robot
control programs are implemented in a platform-independent way, and how this is achieved.

2.1 Platform-Independence

One of the basic goals of the architecture of the GermanTeam 2002 wasplatform-independence,
i. e. the code shall be able to run in different environments, e. g. on real robots, in a simulation,
or—parts of it—in different RoboCup leagues.

2.1.1 Motivation

There are several reasons to enforce this approach:

Using a Simulation. A Simulation can speed up the development of a robot team significantly.
On the one hand, it allows writing and testing code without using a real robot—at least for a
while. When developing on real robots, a lot of time is wasted with transferring updated pro-
grams to the robot via a memory stick, booting the robot, charging and replacing batteries, etc.
In addition, simulations allow a program to be tested systematically, because the robots can auto-
matically be placed at certain locations, and information that is available in the simulation, e. g.
the robot poses, can be compared to the data estimated by the robot control programs.

6

2.1. PLATFORM-INDEPENDENCE 7

Sharing Code between the Leagues.Some of the universities in the GermanTeam are also
involved in other RoboCup leagues. Therefore, it is desirable to share code between the leagues,
e. g. the behavior control architecture between the Sony Legged Robot League and the Simulation
League.

Non Disclosure Agreement. The participants in the Sony Legged Robot League got access
to internal information about the software running on the Sony AIBO robot. Therefore, the uni-
versities of all members of the league signed a non disclosure agreement to protect this secret
information. As a result and in contrast to other leagues, the code used to control the robots dur-
ing the championship is usually only made available to the other teams in the league, but not to
the public. This might change now, because Open-R is publically available, but already before
June 2002, the GermanTeam wanted to be able to publish a version of the system without violat-
ing the NDA between the universities and Sony by encapsulating the NDA-relevant code and by
the means of the simulator (cf. Sect.5.1).

2.1.2 Realization

It turned out that platform-dependent parts are only required in the following cases:

Initialization of the Robot. Most robots require a certain kind of setup, e. g., the sensors and
the motors have to be initialized. Most parameters set during this phase are not changed again
later. Therefore, these initializations can be put together in one or two functions. In a simulation,
the setup is most often performed by the simulator itself; therefore, such initialization functions
can be left empty.

Communication between Processes.As most robot control programs will employ the advan-
tages of concurrent execution, an abstract interface for concurrent processes and the communi-
cation between them has to be provided on each platform. The communication scheme used by
the GermanTeam 2002 is illustrated in section2.2.3.1and in appendixC.

Reading Sensor Data and Sending Motor Commands.During runtime, the data to be ex-
changed with the robot and the robot’s operating system is limited to sensor readings and actu-
ator commands. In case of the software developed by the GermanTeam 2002, it was possible to
encapsulate this part as a communication between processes, i. e. there is no difference between
exchanging data between individual processes of the robot control program and between parts of
the control program and the operating system of the robot.

File System Access. Typically, the robot control program will load some configuration files
during the initialization of the system. In case of the system of the GermanTeam 2002, informa-
tion as the color of robot’s team (red or blue), the robot’s initial role (e. g. the goalie), and several
tables (e. g. the mapping from camera image colors to the so-called color classes) are loaded
during startup.

8 CHAPTER 2. ARCHITECTURE

2.1.3 Supported Platforms

Currently, the architecture has been implemented on three different platforms:

Sony AIBO Robots. The specialty of the Sony Legged Robot League is that all teams use
the same robots, and it is not allowed changing them. This allows teams to run the code of other
teams, similar to the simulation league. However, this only works if one uses the complete source
code of another team. It is normally not possible to combine the code of different teams, at least
not without changing it. Therefore, to be able to share the source code in the GermanTeam, the
architecture described above was implemented on the Sony AIBO robots. The implementation
is based on the techniques provided by Open-R and Aperios that form the operation system that
natively runs on the robots.

Microsoft Windows. The platform independent environment was also implemented on Mi-
crosoft Windows as a part of a special controller inSimRobot(cf. Sect.5.1) and, sharing the
same code, in the general development support toolRobotControl(cf. Sect.5.2). Under Win-
dows, the processes are modelled as threads, i. e. all processes share the same address space.
This caused some problems with global variables, because they are not shared on the real robots,
but they are under Windows. As there is only a small amount of global variables in the code,
the problem was solved “manually” by converting them into arrays, and by maintaining unique
indices to address these arrays for all threads.

Open-R Emulator under CygWin. The environment was also implemented on the so-called
Open-R emulator that allows parts of the robot software to be compiled and run under Linux and
CygWin. Therouter (section5.3) that functions as a mediator between the robots and Robot-
Control was implemented on this platform.

2.1.4 Math Library

Although the mathematical functions provided on different platforms are the same, it turned out
that some functions are not working correctly on the AIBO robots. In addition, the runtime of
mathematical functions is more crucial on embedded systems as the AIBO robots. Therefore, a
math library was implemented that completely encapsulated the C++ math functions. This math
library is calledGTMath. The goals of the library were to be able to replace erroneous functions
by working ones and to have the ability to test alternative implementations for trigonometric
functions, which are less precise but faster. In addition,GTMathprovides some higher data types
for angles, vectors (two and three dimensional), matrices (three dimensional), rotation matrices,
and translation matrices (two and three dimensional).

2.1.4.1 Class Hierarchy

In order to be able to change the implementation of fundamental data types such asAngleand
Valueas well as the implementation of trigonometric functions without editing all files in the

2.1. PLATFORM-INDEPENDENCE 9

AngleFloat ValueFloat AngleDouble ValueDoubleGTMathInterfaceT<A, V>

GTMath

GTMathInterfaceT<AngleFloat, ValueFloat> GTMathInterfaceT<AngleDouble, ValueDouble>

GTMathApproxDouble GTMathTableDoubleGTMathTableFloatGTMathApproxFloat GTMathStandard

Figure 2.1: Class Structure of GTMath.AngleDouble, ValueDouble, AngleFloatandValueFloatare the
fundamental data types.GTMathInterfaceT<> defines the required functions.GTMathApproxFloat, GT-
MathTableFloat, GTMathApproxDouble, GTMathTableDoubleandGTMathStandardare different imple-
mentations of the math library andGTMath is the class that selects the current implementation and that
defines higher data types.

GT2002 project, a modular architecture was chosen. The design was divided in four layers (cf.
Fig. 2.1): implementations of the fundamental data types angle and value, an interface which
implements all necessary functions virtually, the different implementations of the trigonometric
functions using different data types, and the classGTMaththat simply inherits from one of the
implementations to provide a constant interface to all other modules in the code. The math library
is configurable by compiler switches that can be set in the configuration fileGTMathConfig.h1.

The interfaceGTMathInterfaceT<Angle,Value> is a template class. All functions needed in
all implementations are defined inGTMathInterfaceT<Angle,Value> virtually. The data types
AngleandValueare included by the template arguments.

Each implementation inheritsGTMathInterfaceT<Angle,Value> and implements all func-
tions. There are implementations using the standard functions provided by<math.h>, imple-
mentations using look-up-tables and implementations using polynomial approximations (taken
from [10]).

The classGTMath inherits one of these implementations. Additionally these class imple-
ments all higher data types, which useAnglesandValuesbut are independent of their implemen-
tation.GTMathprovides vectors for any data types with two or three elements (Vector2<T> and
Vector3<T>), 3×3-matrices (Matrix3x3<T>, rotation matrices and translation matrices for two
and three dimensions (Pose2DandPose3D).

1All files of the math library can be found inT:\GT2002\Src\Tools\Mathlib.

10 CHAPTER 2. ARCHITECTURE

2.1.4.2 Provided Data Types

Angle is the data type for angles. It provides member functions for converting to and from
degrees, radians and micro radians as well as the functionnormalizeto map the angle to
[−π, π[.

Value is the standard data type for all other floating point variables. Value has no special func-
tions. The data typeValueis atypedefto doubleor float.

Vector2<T> and Vector3<T> are template classes for vectors with two or three elements,
respectively. They provide operators for the inner product and the cross product (ˆ opera-
tor) of two vectors (cross product only forVector3<T>), and functions for the Euclidean
length, transposition, normalization, and the angle between the vector and the x-axis (only
Vector2<T>).

Matrix3x3 <T> is a template class for3×3-matrices. It provides operators to add and multiply
two matrices and operators to multiply a matrix and a vector.

RotationMatrix is a matrix especially for rotations.RotationMatrixhas various functions: func-
tions to rotate the matrix around all axes, functions returning the actual rotation around all
axes, and a function to invert the rotation matrix.

Pose2D and Pose3Dare transformation matrices in two and three dimensions. They can be mul-
tiplied with vectors andPose2Dor Pose3D, respectively. In addition they can be rotated by
angles and translated by vectors.

2.2 Multi-Team Support

The major goal of the architecture presented in this chapter is the ability to support the collab-
oration between the university-teams in the German national team. Some tasks may be solved
only once for the whole team, so any team can use them. Others will be implemented differ-
ently by each team, e. g. the behavior control. A specific solution for a certain task is called a
module. To be able to share modules, interfaces were defined for all tasks required for playing
robot soccer in the Sony Legged League. These tasks will be summarized in the next section.
To be able to easily compare the performance of different solutions for same task, it is possible
to switch between them at runtime. The mechanisms that support this kind of development are
described in section2.2.2and in appendixE. However, a common software interface cannot hide
the fact that some implementations will need more processing time than others. To compensate
for these differences, each team can use its ownprocess layout, i. e. it can group together modules
to processes that are running concurrently (cf. Sect.2.2.3).

2.2.1 Tasks

Figure2.2 depicts the tasks that were identified by the GermanTeam for playing soccer in the
Sony Legged Robot League. They can be structured into five levels:

2.2. MULTI-TEAM SUPPORT 11
m

o
tio

n
c

o
n

tro
l

b
e

h
a

v
io

r
c

o
n

tro
l

o
b

je
c

t
m

o
d

e
lin

g
o

b
je

c
t

re
c

o
g

n
itio

n
s

e
n

s
o

r
p

ro
c

e
s

s
in

g

Image

ImageProcessor

SensorData

SensorDataProcessor

BlobCollection

BallPerceptorLandmarksPerceptorPlayersPerceptor LinesPerceptor

CameraMatrix

BallPercept

BallLocator

LandmarksPercept

SelfLocator

PlayersPercept

PlayersLocator

LinesPerceptBodyPercept

RobotStateDetector

BallPosition

BehaviorControl

HeadControl

RobotPosePlayerPoseCollectionRobotState

MotionControl

OdometryData

HeadControlModeLEDRequest

LEDControl

MotionRequest

HeadMotionRequest JointDataBufferLEDValue

Image

ImageProcessor

SensorData

SensorDataProcessor

BlobCollection

BallPerceptorLandmarksPerceptorPlayersPerceptor LinesPerceptor

CameraMatrix

BallPercept

BallLocator

LandmarksPercept

SelfLocator

PlayersPercept

PlayersLocator

LinesPerceptBodyPercept

RobotStateDetector

BallPosition

BehaviorControl

HeadControl

RobotPosePlayerPoseCollectionRobotState

MotionControl

OdometryData

HeadControlModeLEDRequest

LEDControl

MotionRequest

HeadMotionRequest JointDataBufferLEDValue

Figure 2.2: The tasks identified by the GermanTeam 2002 for playing soccer.

Sensor Data Processing. On this level, the data received from the sensors is preprocessed. For
instance, the image delivered by the camera is segmented, and then it is converted into a set of
blobs, i. e. image regions of the same color class. The current states of the joints are analyzed
to determine the point the camera is looking at. In addition, further sensors can be employed to
determine whether the robot has been picked up, or whether it felt down.

Object Recognition. On this level, the information provided by the previous level is searched
to find objects that are known to exist on the field, i. e. landmarks (goals and flags), field lines,
other players, and the ball. The sensor readings that were associated to objects are calledpercepts.

Object Modeling. Percepts immediately result from the current sensor readings. However,
most objects are not continuously visible, and noise in the sensor readings may even result in

12 CHAPTER 2. ARCHITECTURE

a misrecognition of an object. Therefore, the positions of the dynamic objects on the field have
to modeled, i. e. the location of the robot itself, the poses of the other robots, and the position of
the ball. The result of this level is the estimatedworld state.

Behavior Control. Based on the world state, the role of the robot, and the current score, the
fourth level generates the behavior of the robot. This can either be performed very reactively, or
deliberative components may be involved. The behavior level sends requests to the fifth level to
perform the selected motions.

Motion Control. The final level performs the motions requested by the behavior level. It
distinguishes between motions of the head and of the body (i. e. walking). When walking or
standing, the head is controlled autonomously, e. g., to find the ball or to look for landmarks, but
when a kick is performed, the movement of the head is part of the whole motion. The motion
module also performs dead reckoning and provides this information to many other modules.

This grouping is not strict; it is still possible to implement modules that handle more than
a single task. For instance, the grid-based vision module (cf. Sect.3.2.2) directly determines
percepts from the camera image, skipping the step of image preprocessing.

2.2.2 Debugging Support

One of the basic ideas of the architecture is that multiple solutions exist for a single task, and
that the developer can switch between them at runtime. In addition, it is also possible to include
additional switches into the code that can also be triggered at runtime. The realization is an
extension of the debugging techniques already implemented in the code of the GermanTeam
2001 [3]: debug requestsandsolution requests. The system manages two sets of information, the
current state of alldebug keys, and the currently active solutions. Debug keys work similar to C++
preprocessor symbols, but they can be toggled at runtime (cf. Sect.E.2). A special infrastructure
called message queues(cf. Sect.E.1) is employed to transmit requests to all processes on a
robot to change this information at runtime, i. e. to activate and to deactivate debug keys and to
switch between different solutions. The message queues are also used to transmit other kinds
of data between the robot(s) and the debugging tool on the PC (cf. Sect.5.2). For example,
motion requests can directly be sent to the robot, images, text messages, and even drawings (cf.
Sect.E.5) can be sent to the PC. This allows visualizing the state of a certain module, textually
and even graphically. These techniques work both on the real robots and on the simulated ones
(cf. Sect.5.1).

2.2.3 Process-Layouts

As already mentioned, each team can group its modules together to processes of their own choice.
Such an arrangement is called aprocess layout. The GermanTeam 2002 has developed its own
model for processes and the communication between them:

2.2. MULTI-TEAM SUPPORT 13

Ball

Input

SelfLoc Players

Behavior

Output

R
o

b
o

t

D
e

b
u

g

Figure 2.3: The process layout of the Bremen Byters.

2.2.3.1 Communication between Processes

In the robot control program developed by the GermanTeam 2001 for the championship in Seat-
tle, the different processes exchanged their data through a shared memory [3], i. e., a blackboard
architecture [12] was employed. This approach lacked of a simple concept how to exchange data
in a safe and coordinated way. The locking mechanism employed wasted a lot of computing
power and it only guaranteed consistence during a single access, but the entries in the shared
memory could still change from one access to another. Therefore, an additional scheme had to
be implemented, as, e. g., making copies of all entries in the shared memory at the beginning of
a certain calculation step to keep them consistent. In addition, the use of a shared memory is not
compatible to the new ability of the Sony AIBO robots to exchange data between processes via
a wireless network.

The communication scheme introduced in 2002 addresses these issues. It uses standard op-
erating system mechanisms to communicate between processes, and therefore it also works via
the wireless network. In the approach, no difference exists between inter-process communica-
tion and exchanging data with the operating system. Only three lines of code are sufficient to
establish a communication link. A predefined scheme separates the processing time into two
communication phases and a calculation phase.

The inter-object communication is performed bysendersandreceiversexchangingpackages.
A sender contains a single instance of a package. After it was instructed to send the package, it
will automatically transfer it to all receivers as soon as they have requested the package. Each
receiver also contains an instance of a package. The communication scheme is performed by
continuously repeating three phases for each process:

1. All receivers of a process receive all packages that are currently available.

2. The process performs its normal calculations, e. g. image processing, planning, etc. During
this, packages can already be sent.

14 CHAPTER 2. ARCHITECTURE

R
o

b
o

t

Cognition

Motion

D
e

b
u

g

Figure 2.4: The process layout of Humboldt 2002.

3. All senders that were directed to transmit their package and have not done it yet will send
it to the corresponding receivers if they are ready to accept it.

Note that the communication does not involve any queuing. A process can miss to receive
a certain package if it is too slow, i. e., its computation in phase 2 takes too much time. In this
aspect, the communication scheme resembles the shared memory approach. Whenever a process
enters phase 2, it is equipped with the most current data available.

Both senders and receivers can either be blocking or non-blocking objects. Blocking objects
prevent a process from entering phase 2 until they were able to send or receive their package, re-
spectively. For instance, a process performing image segmentation will have a blocking receiver
for images to avoid that it segments the same image several times. On the other hand, a process
generating actuator commands will have a blocking sender for these commands, because it is
necessary to compute new ones only if they were requested for. In that case, the ability to im-
mediately send packages in phase 2 becomes useful: the process can pre-calculate the next set of
actuator commands, and it can send them instantly after they have been asked for, and afterwards
it pre-calculates the next ones.

The whole communication is performed automatically; only the connections between senders
and receivers have to be specified. In fact, the command to send a package is the only one that
has to be called explicitly. This significantly eases the implementation of new processes.

2.2.3.2 Different Layouts

The figures2.3, 2.4, and2.5 show three different process layouts. All of them contain a debug
process that is connected to all other processes via message queues. Note that message queues
are transmitted as normal packages, i. e. a package contains a whole queue. Comparing the three
process layouts, it can be recognized that the Bremen Byters try to parallelize as much as possi-
ble2; while Humboldt 2002 focuses on using only a few processes, i. e. the first four levels of the
architecture (cf. Fig.2.4) are all integrated into the processCognition. The Darmstadt Dribbling
Dackels use a compromise between both approaches, integrating the first two levels into the pro-
cessPerception, and the levels three and four intoCognition(cf. Fig. 2.5). In the layout of the
Bremen Byters, one process is used for each of the levels one, four, and five, and three processes
implement parts of the levels two and three, i. e. the recognition and the modeling of individual

2In the code release, the processBall has been integrated into the processInput, because the ball recognition
shall run at the same speed as the image processing.

2.2. MULTI-TEAM SUPPORT 15

Perception

Cognition

Motion

R
o

b
o

t

D
e

b
u

g

Figure 2.5: The process layout of the Darmstadt Dribbling Dackels.

aspects of the world state are grouped together (cf. Fig.2.3). Odometry is used to decompose
information that is dependent: although both thePlayersprocess and theBall process require
the current pose of the robot, they can run in parallel to the self-localization process, because
the odometry can be used to estimate the spatial offset since the last absolute localization. This
allows running the ball modeling with a high priority, resulting in a fast update rate, while the
self-localization can run as a background process to perform a computationally more expensive
method.

In Fukuoka, the GermanTeam used the simple process layout that was introduced by Hum-
boldt 2002, because the more complex layout of the Bremen Byters turned out to have more
disadvantages than advantages in timing measurements. The layout of the Darmstadt Dribbling
Dackels had no advantages over the Humboldt 2002 layout, because the processesPerceptionand
Cognitionrun more or less synchronized, i.e.Cognitionalways waits forPerceptionto deliver
percepts, imitating the behavior of a single process.

2.2.4 Make Engine

Using different process layouts requires a quite sophisticated engine to compile the source code.
As it is desirable that each process only contains the code that it needs, highly complex depen-
dencies exist between compilation targets and the source files. For the code that is compiled
for Microsoft Windows, process layouts can be represented easily by different project config-
urations. In addition, it is not required to determine the source code relevant for each process,
because under Windows, processes are implemented as threads, and these threads are all part of
the same program.

However, on the AIBO, each process is a different binary file, and because memory con-
sumption is crucial, processes should be as small as possible, i. e. only the object files required
by a process should be linked together.

2.2.4.1 Dependencies

The directory structure of the source code of the GermanTeam does not reflect which source
file belongs to which binary, because the source files are grouped based on the selected process

16 CHAPTER 2. ARCHITECTURE

layout. In one layout, e. g., several files share the same process while they are distributed over
multiple processes in another layout.

Generating dependencies, creating object files, and linking them together is quite time con-
suming, especially in huge projects that require permanent modifications, expansions, testing and
fine-tuning. Therefore, one major goal of implementing amake enginewas to execute only the
steps absolutely necessary to get a complete build without missing any modifications in source
code.

Therefore, a flexible way to generate dependencies between source files and binaries was
required. Object dependencies (*.odeps) are generated by compilers such as the gcc. The object
files required for a certain binary can easily be determined if the code follows some usual con-
ventions such as the existence of header files (*.h) and implementation files (*.cpp), and if all
items declared in a header file are either implemented by an implementation file with the same
base name, or by the header file itself.

2.2.4.2 Realization

For each combination of the chosen process layout, build variant and compiler used, the make
engine uses a separate build directory ($PDIR, located inT:/GT2002/Build) to avoid conflicts
between different builds as well as the compulsion for a complete rebuild after changing the
process layout, build variant, or compiler. Each such$PDIRhas two subdirectories:bin contains
the binaries andobj contains dependencies and objects in the same subdirectory structure as the
source code. All these directories will be (re)generated on the first usage and after cleaning or
rebuilding.

The following dependencies are maintained:

File lists (*.list*) containing lists of all*.cpp files and their direct and indirect includes are
generated for each directory to detect all changes possibly influencing the dependencies as
fast as possible.

Object dependencies(*.odeps) are generated for all*.cpp files in one directory by using a
compiler (time consuming). They only have to be (re)generated if the*.list* file in that
directory has changed.

Binary dependencies(*.bindeps) only have to be (re)generated if the object dependencies have
changed. This is done by recursively adding all*.cpp files belonging to header files in-
cluded from*.cpp already determined as dependency. Binaries only have to be (re)linked
if at least one of the objects belonging to them has changed—according to the appropriate
*.bindepsfile.

To distinguish between files that changed and files that were just rebuilt without a change,
new files are generated with the extension*.new, and they will only replace the original file if
they differ to avoid uselessly executing dependency chains. For the same reason,*.listakt files
conserve the time stamp of the last modification resulting from changing dependencies in that
directory and*.listlast files store complete lists of files and their includes from the last build.

2.2. MULTI-TEAM SUPPORT 17

2.2.4.3 Automation and Integration

It is possible to update or completely rebuild a certain process layout (e. g. HU1) in a special build
variant (e. g. Debug) with a single command, either from the command line, e. g. with./GT.bash
HU1 Debug, or from the Microsoft Developer Studio, e. g. by selectingRebuildor Rebuild All.
For the latter case, the messages generated by the build process are converted to a format that is
understood by the Developer Studio. Thus, the list of errors and warnings can be browsed by the
usual commands, presenting the source files the messages refer to.

Chapter 3

Modules in GT2002

The GermanTeam has split the robot’s information processing ontomodules(cf. Sect.2.1). Each
module has a specific task and well-defined interfaces. Different exchangeablesolutionsexist for
many of the modules. This allows the four universities in the team to test different approaches
for each task. In addition, existing and working module solutions can remain in the source code
while new solutions can be developed in parallel. Only if the new version is better than the
existing ones (which can be tested at runtime), it becomes thedefault solution. Mechanisms for
declaring modules and for switching solutions at runtime are described in sectionE.6.

This chapter describes most of the modules that were implemented. For some solutions only
the chosen approach is figured out in detail. The following table lists all modules with all solu-
tions in the code release. Thedefault solutionis the solution that was used by the GermanTeam
for the RoboCup competitions in Fukuoka (marked underlined).

module / task solutions from
SensorDataProcessor:
Processing of body
sensor data.

DefaultSensorDataProcessor: Calculates the offset
and rotation of the camera relative to the ground
and detects pressed switches (cf. Sect.3.1).

Darmstadt

ImageProcessor: Per-
ceiving visual percepts
from images.

BlobImageProcessor: Generates Blobs using RLE
encoding and aFloodFill algorithm. Percepts are
calculated from the blobs. It was used by Bremen,
Darmstadt, and Dortmund at the German Open
2002 (cf. Sect.3.2.1).

Bremen

GridImageProcessor: Scans regions near the hori-
zon for interesting objects using a grid. It was
used by Berlin at the German Open 2002 (cf.
Sect.3.2.2).

Berlin

LinesPerceptor:
Recognition of field
lines in images.

DefaultLinesPerceptor: Detects lines by scanning
the image along vertical lines. Until now not used
during a game (cf. Sect.3.2.2.6).

Berlin

18

19

BallLocator: Model-
ing of ball position

DefaultBallLocator: Used for the soccer games (cf.
Sect.3.4).

Bremen

JumpingBallLocator: Adds a noise to the ball posi-
tion for testing the robustness of behaviors.

Berlin

MultipleBallLocator, SampleMultiBallLocator,
StickyBallLocator: Several approaches for the ball
challenge.

Bremen

PlayersLocator: Mod-
eling of player posi-
tions.

GT2001PlayersLocator: Player modelling using a
grid from the GermanTeam’s 2001 project. Not
used in the games (cf. Sect.3.5).

Bremen

SelfLocator: Estima-
tion of the robot’s
pose.

LinesSelfLocator: Monte-Carlo-based and uses the
field lines. Experimental and up to now only tested
in the simulator (cf. Sect.3.3.3).

Bremen

MonteCarloSelfLocator: Monte-Carlo-based and
uses flags and goal posts (cf. Sect.3.3.2).

Bremen

SingleLandmarkSelfLocator: Estimating the
robot’s pose using only single landmarks seen.
Used by Darmstadt at the German Open 2002 (cf.
Sect.3.3.1)

Darmstadt

RobotStateDetector:
Modeling of body
sensor events.

DefaultRobotStateDetector: Detects fall downs and
measures, for how long switches were pressed.

Darmstadt

BehaviorControl:
Decision making. (cf.
Sect.3.6

BallChallengeBehaviorControl: Uses potential
fields. It was developed by Bremen for the German
Open and was applied for the ball challenge (cf.
Sect.4.3).

Bremen

TUDXMLBehaviorControl: A state machine for-
malized in XML was developed by Darmstadt for
the German Open (cf. Sect.3.6.1).

Darmstadt

XabslBehaviorControl: Behavior modules that con-
tain state machines and that are organized in a tree
were formalized in the XML language XABSL (cf.
Sect.3.6.2).

Berlin

HeadControl: Control
of head movement.

GT2002HeadControl: A collection of the most
promising head control approaches (cf. Sect.3.7.3).

All

SimpleHeadControl: Works together with the
TUDXMLBehaviorControl.

Darmstadt

LEDControl: Sets the
robot’s LEDs.

DefaultLEDControl: Processes the requests from
the behavior control.

Darmstadt

SpecialActions: Kicks
and other moves.

GT2001MotionNetSpecialActions: Executes spe-
cial actions that were described in a high level mo-
tion language. (cf. Sect.3.7.2)

Berlin
Darmstadt
Dortmund

20 CHAPTER 3. MODULES IN GT2002

WalkingEngine: Walk-
ing

FixedSequenceWalkingEngine: Executes precalcu-
lated gait patterns. Experimental.

Darmstadt

FourierWalkingEngine: UsesFourier Synthesisfor
walking. Experimental.

Berlin

InvKinWalkingEngine: Uses inverse kinematics.
Based on this algorithms Darmstadt and Dort-
mund developed their walking styles for the Ger-
man Open 2002. Bremen used the walking from
CMU, Berlin from UNSW. Both are not in the
code release because of licence incompatibilities
(cf. Sect.3.7.1).

Darmstadt

MotionControl: Set-
ting of the joint values.

DefaultMotionControl: Integrates head motions,
walk motions, special actions, and LED values (cf.
Sect.3.7).

Darmstadt

DebugMotionControl: A tool for developing new
motions. Works together with theMofTester Dialog
in the RobotControl application (cf. Sect.J.5.4).

Darmstadt

SoundOutControl:
Generation and send-
ing of audio data.

DefaultSoundOutControl: Plays wave files for the
pattern challenge and for debugging purposes.

Dortmund

SoundInProcessor:
Processing of audio
data.

DefaultSoundInProcessor: Experimental acoustic
message detection. Used by Dortmund during the
German Open.

Dortmund

SensorDataToMotion-
Request: Nice demos.

Braitenberg: Implementation of aBraitenberg Ve-
hicle on the AIBO. Lets the robot walk to the
brightest spot in a room.

Berlin

WalkDemoSensorDataToMotionRequest: A demo
for the walking capabilities of the robot. Walk di-
rection and speed can be set by bending the robot’s
head.

Berlin

3.1 Body Sensor Processing

The task of theSensorDataProcessoris to take the data provided by all sensors except the cam-
era, and to store them, marked with a time stamp, in a buffer. This buffer is used to calculate
average sensor values over the lastn ticks, or to interpolate the values to get estimate sensor
values for a given point in time (usually the arrival of a new camera image).

The measurements of the acceleration sensors are used to calculate the tilt and roll of the
robot’s body. By comparing long term averages and short term averages of these measurements,
it is possible to determine whether the robot has been lifted up or whether is has fallen down.

3.2. VISION 21

a) b) c)

Figure 3.1: From an image to blobs. a) The original image, b) The segmented image, c) The detected
blobs.

For every incoming image, theSensorDataProcessorcalculates a matrix that represents the
pose of the camera relative to the robot’s body origin. This allows the coordinates of objects
detected in camera images to be transformed into the robot’s system of coordinates.

3.2 Vision

The vision module works on the images provided by the robot’s camera. The output of the vision
module fills the data structurePerceptCollection. A percept collection contains information about
the relative position of the ball, the field lines, the goals, the flags, and the other players. Positions
and angles in the percept collection are stored relative to the robot.

Goals and flags are represented by four angles. These describe the bounding rectangle of the
landmark (top, bottom, left, and right edge) with respect to the robot. When calculating these
angles, the robot’s pose (i.e. the position of the camera relative to the body) is taken into account.
If a pixel used for the bounding box was on the border of the image, this information is also
stored.

Field lines are represented by a sets of points (2-D coordinates) on a line. The ball position
and also the other players’ positions are represented in 2-D coordinates. The orientations of other
robots are not calculated.

Two different approaches for the vision of the robot were implemented, both using the high
resolution image (176×144 pixels). The blob-based vision was used by the GermanTeam during
the RoboCup 2001 competition in Seattle. This year’s code is an improved version of it. The
grid-based vision approach was first used at the RoboCup German Open 2002 by the team of the
Humboldt-Universiẗat zu Berlinand later adopted by the GermanTeam for the RoboCup 2002
competition.

3.2.1 Blob-Based Vision

The blob-based vision module consists of several submodules for special tasks. TheFlood-
FillRLEBlobDetectoris responsible for segmentation (cf. Fig.3.1b) and blob recognition (cf.

22 CHAPTER 3. MODULES IN GT2002

a) b)

...

... m

n1

1

Figure 3.2: a) A pixel with eight neighbors. b) A run with upper and lower neighbors.

Fig. 3.1c) in images. It fills the data structureBlobCollectionand passes it to the object recogni-
tion modules that generate percepts:LandmarksPerceptor, BallPerceptor, andPlayersPerceptor.

The modules for blob-based vision were used by most teams at the RoboCup German Open
2002.

3.2.1.1 Flood-Fill RLE Blob Detector

TheFloodFillRLEBlobDetectorperforms blob recognition on run length encoded images.

Segmentation and RLE Compression. The assignment of a pixel’s color class is done via a
lookup table dividing the YUV color space into cubes of4 × 4 × 4 units. This table is created
off-line by using the tools inRobotControl, described in sectionJ.6.

To decrease data and by that way achieve a better performance in finding blobs, every image
is run length encoded during segmentation. To use theFloodFill algorithm on RLE compressed
images instead of pixel images, one needs to know the neighbors of each run. In contrast to a
pixel which always has eight neighbors (cf. Fig.3.2a), a run may have1 . . . n upper and1 . . . m
lower neighbors (1 ≤ n,m ≤ number of pixels per row, cf. Fig.3.2b). Their computation dur-
ing the algorithm’s runtime may become quite expensive. Therefore, all runs are enriched with
information about their left upper and lower neighbors during their creation.

Detecting Blobs Using theFloodFill Algorithm. The FloodFill algorithm is used for blob
detection. It is a standard filling algorithm known from computer graphics, e. g. described in [8].
It is a recursive method which detects all runs of the same color belonging to an area. Starting at
one arbitrary run it compares every visited run with it’s neighbors until there is no unknown run
left in the area.

During this process statistics may be made about the shape of this area. This may be any
technique from simple bounding boxes to complex splines. As best trade-off between processing
time and the information gained about the areas, the shapes of blobs are described by convex
octagons. These octagons consist of eight points: the area (labelled by their orientation): the
highest (N), lowest (S), most right (E), most left (W), upper right (NE), upper left (NW), lower
left (SW), and lower right (SO). Thereby, the last four points are described by their Manhattan
distance to the four corners of the image.

3.2. VISION 23

a) b)

α

β

Figure 3.3: Angles to a point relative to the camera. a) Horizonal. b) Vertical.

Conversion to Angles. During area detection, only whole-numbered coordinates of pixels are
used. To determine the real positions of objects relative to the robot, position and direction of the
camera have to be considered.

To simplify object recognition in the other modules, each octagon is converted to a blob
which describes a convex polygon. Every point in such a polygon is represented by two anglesα
andβ relative to the camera position, as shown in figure3.3.

Competitiveness of this Approach. The FloodFillRLEBlobDetectorwas implemented be-
cause the implementation of [15] used a year ago showed a weak performance. A first test in
the last years debugging environment showed a 20-90% higher frame rate compared to the previ-
ous approach. Running on a Sony robot, the average processing time for a single image is about
23 ms.

3.2.1.2 Landmarks Perceptor

The recognition of the flags and the goals is required to perform the self-localization of the robots
on the field. Each flag consists of a unique combination of colors, whereas each goal has only one
color. As the goals are located on the green carpet, they can also be detected as an arrangement of
two colors. This is important, because the blob collection may contain areas with random colors
resulting from objects above the field, or from mixtures between colors of different objects on
the field. Grouping two colored areas together provides the possibility to use spatial constraints
to filter out most misreadings.

The LandmarksPerceptoris based on the approach from the previous year. The new land-
marks perceptor works on blobs with vertices in angular coordinates, whereas the previous ver-
sion performed the conversion from image coordinates to robot coordinates by itself. In addition,
the new perceptor uses more constraints to improve the recognition of landmarks.

24 CHAPTER 3. MODULES IN GT2002

a) b) c)

... ...

Figure 3.4: Constraints for the recognition of flags. a) Vertical. b) Horizontal. c) Size ratio.

Spatial Constraints. The landmarks perceptor uses the bounding rectangles of the blobs.
These rectangles are oriented in parallel to the horizontal and vertical axes. Therefore, verti-
cal and horizontal relations can be handled separately. The perceptor uses the thirteen relations
of Allen’s [2] calculus to describe the spatial constraints. To encode, e. g., that blobB is imme-
diately above blobA, it can be written:

Ay meetsBy (3.1)

The subscripty denotes that the relation is applied to the vertical ranges ofA andB. However,
the relations of the calculus are to precise to be used directly, e. g.,meetsmeans thatA exactly
ends whereB begins, and the image processing method employed cannot deliver this precision.
Therefore, one range is enlarged a little bit (cf. Fig.3.4a), so that “above” can be encoded as

enlarged(Ay) overlapsBy. (3.2)

In addition, “above” requires both blobs to overlap in horizontal direction (cf. Fig.3.4b). In
Allen’s calculus, this can be written as

¬(Ax < Bx ∨ Ax meetsBx ∨ Ax metByBx ∨ Ax > Bx). (3.3)

Combining both expressions, the final definitions of “above” and its complement “below” are

A aboveB = enlarged(Ay) overlapsBy ∧
¬(Ax < Bx ∨ Ax meetsBx ∨ Ax metByBx ∨ Ax > Bx) (3.4)

A belowB = B aboveA. (3.5)

Recognition of Flags. To find the flags, the algorithm runs through all pink blobs, sorted by
size in descending order, and tries to find an appropriate partner from the yellow, green, and sky
blue blobs. Again, larger blobs are found first. A good partner is a blob that is either above or
below the pink blob (cf. Fig.3.4b), and that has nearly the same size (cf. Fig.3.4c). However, the

3.2. VISION 25

Horizon

Figure 3.5: Recognition of a goal.

height of the upper blob can be arbitrarily small if it cuts the border of the image, i. e. it cannot
completely be seen. This can be the case if the robot is very close to a flag.

For each pink blob, the search stops when the first appropriate counterpart was found, as-
suming that the largest pair of blobs fulfilling all constraints is always the most likely one. In
addition, blobs are never assigned to more than one flag, and a blob that is part of a flag cannot
be part of a goal.

Recognition of Goals. The recognition of the goals is a little bit more complicated, because
other robots can partially hide them, and therefore split them into more than a single blob. There-
fore, the approach for detecting a goal is to search for the largest blob with the goal’s color and
an area of at least 100 pixels that is not a part of a flag (cf. the upper right blob in Fig.3.5),
then to find the largest green area below that blob (cf. the lower blob in Fig.3.5) and finally to
accumulate all blobs with the color of the goal above that green area (cf. the other upper blobs in
Fig. 3.5). Note that the lower boundary of the green blob shall also be below the horizon, i. e. 0◦

in angular coordinates, because the camera is always above the carpet.

3.2.1.3 Ball Perceptor

The ball is the most significant object in the soccer game. Therefore, it is important to recognize
it as often and as precise as possible. It is also essential to exclude wrong ball detections resulting
from misreadings in the color image.

TheBallPerceptoris mainly based on the approach from the previous year. The main differ-
ence is that the new ball perceptor—as all perceptors—works on blobs with vertices in angular
coordinates instead of blobs with vertices in pixel coordinates. Thus all angular influences of the
head position have already been integrated into the blobs.

Blob Filtering. It is assumed that the ball is either located on the carpet, or that it is so close
that the carpet cannot be seen anymore. Therefore, the ball perceptor recognizes the ball as the
largest orange blob that either extends more than half of the image width or height, or that is
neighbored by a green blob.

Center Point and Diameter. To determine the position of the ball, two features must be ex-
tracted from the blob collection: the ball’s diameter and its center point. The diameter in the

26 CHAPTER 3. MODULES IN GT2002

a) b)
NW
x

x
S

NE
x

center
x

N
x

x
S

c) d)

NE
x

x
SW

x
SE

NE
x

x
SW

x
SE

Figure 3.6: Calculating the center point. a) Intersecting the middle perpendiculars. b)S can be used for
the calculation of the center,N cannot. c)NE andSWlie on the border of the ball,SEdoes not. d) A spot
light in the corner. Although not in a corner,SEis not located on the border of the ball.

image can be related to the diameter of the ball in reality to determine its distance from the cam-
era. Together with the center point, the ball’s relative position according to the camera can be
calculated.

Although the calculation of both diameter and center seems to be straightforward, a little bit
more effort has to be spent to determine the location of the ball especially in situations when
it cannot be seen completely, i. e. only a part of the ball is shown in the camera image. In such
cases, the width and the height of a blob cannot be used to determine its diameter, because it is
partially hidden, and the center of such a blob is not the center of the ball.

Intersection of Middle Perpendiculars. Therefore, the ball perceptor uses the intersection
point of two middle perpendiculars to determine the center point of the ball (cf. Fig.3.6a). In
comparison to the usage of width and height, the advantage of this approach is that three arbitrary
points on the border of the ball are enough to calculate its center. As has been described in section
3.2.1.1, each blob consists of eight points. The major question for the approach presented here
is, which three among these eight points are used to determine the ball’s center. If the ball is
completely contained in the image, i. e. no part sticks out to the sides, all eight points lie on the
border of the ball. However, if the image does not contain the whole ball, some of the points

3.2. VISION 27

lie on the image border rather than on the border of the ball. Therefore, they cannot be used to
determine the ball’s center point.

Selecting Points. When deciding which points can be used, it must be distinguished between
points representing horizontal or vertical extrema and points that stand for diagonal extrema.
While horizontal and vertical maxima cannot be used if they are located on “their” border of the
image, e. g., if the pointN is at the upper edge of the image (cf. Fig.3.6b), diagonal extrema have
only to be excluded if they lie in an image corner (cf. Fig.3.6c).

From the points that satisfy these conditions, the two are selected that are furthest away from
each other. Then, a third point is chosen that is farthest away from the two points already selected,
and that ensures that at least one of the three points chosen is not located at any image border,
which reduces the possibility of calculating a wrong ball position from an orange blob with a
white spot light in an image corner (cf. Fig.3.6d).

After the three points were selected, the center point can be determined by intersecting the
middle perpendiculars of lines connecting these points (cf. Fig.3.6a). The largest distance of the
center to one of the points chosen specifies the radius of the ball. Using this information, the
direction and distance of the ball relative to the camera are known. As the angular coordinates
of the vertices of the blobs already contain the rotations of the head, the direction to the ball is
relative to the orientation of the robot, not of the camera. However, as the translational offset of
the camera has not been taken into account yet, the relative offset of the ball to the body center
is determined as the offset of the camera plus the offset of the ball.

3.2.1.4 Players Perceptor

To avoid collisions with other robots, it is necessary to recognize them. This is the task is of the
PlayersPerceptor.

Choice and Interpretation of Blobs. As the cotton jerseys of the robots are red and blue, the
technique implemented only uses blobs of these colors. As it is possible that several robots of the
same team are in a single image, all blobs of one color have to be clustered, whereby each cluster
is interpreted as one robot. The assignment of a blob to a cluster is done by simple heuristics,
comparing the horizontal distances of blobs. If two blobs overlap or are quite close to each other,
they are assumed to belong to the same cluster.

Computation of Distances and Angles. The distance computation for a cluster is based on its
size. In a first step, a bounding box is created around the cluster. The vertical angle between the
upper and the lower border of this box is compared to the height of a real robot’s tricot, including
all parts from the legs to the head. Because of the movements of a robot, this height varies, but the
resulting miscalculations are small and have to be tolerated. This technique was chosen because
of the difficulties in segmenting the grey and black parts of a robot. Single blobs could also not
be assigned to the according robot parts.

The angle to a robot is determined as the angle to the center of the according cluster.

28 CHAPTER 3. MODULES IN GT2002

Results. Using this approach, it is possible to determine the positions of robots being nearly
completely in an image. The results are quite exact, but there are still some remaining problems:
Because the number of recognized tricot markers per robot varies in every image due to the
robot’s direction and the lighting conditions, it is not possible to determine if parts of a robot are
masked by another robot or if the robot is at the border of the image. Two robots of the same team
standing very close to each other may be recognized as a single robot as well. These problems
may lead to large miscalculations during the computation of distances and angles.

Furthermore, it is currently not possible to recognize the orientation of a robot.

3.2.2 Grid-Based Vision

The grid-based vision is a fast image processing module. Images are processed using the high
resolution of176× 144 pixels, but looking only at a grid of less pixels.

The idea is that for feature extraction, a high resolution is only needed for small or far away
objects. In addition to being smaller, such objects are also closer to the horizon. Thus only regions
near the horizon need to be scanned at high resolution, while the rest of the image can be scanning
using a relatively wide spaced grid.

When calculating the percepts, the robot’s pose, i. e. its body tilt and head rotation at the time
the image was acquired, is taken into account.

3.2.2.1 Using a Horizon-Aligned Grid

Calculation of the Horizon. The grid-based vision first calculates the position of the horizon
in the image. The robot’s lens projects the object from the real world onto the CCD chip. This
process can be described as a projection onto a virtual projection plane arranged perpendicular
to the optical axis with the center of projectionC at the focal point of the lens. As all objects at
eye level lie at the horizon, the horizon line in the image is the line of intersection between the
projection planeP and a planeH parallel to the ground at height of the camera (cf. Fig.3.7).
The position of the horizon in the image only depends on the rotation of the camera and not on
the position of the camera on the field or the camera’s height.

For each image the rotation of the robot’s camera relative to its body is stored in a rotation
matrix. Such a matrix describes how to convert a given vector from the robot’s system of coor-
dinates to the one of the camera. Both systems of coordinates share their origin at the center of
projectionC. The system of coordinates of the robot is described by thex-axis pointing parallel
to the ground forward, they-axis pointing parallel to the ground to the left, and thez-axis point-
ing perpendicular to the ground upward. The system of coordinates of the camera is described
by thex-axis pointing along the optical axis of the lens outward, they-axis pointing parallel to
the horizontal scan lines of the image, and thez-axis pointing parallel to the vertical edges of the
image.

To calculate the position of the horizon in the image, it is sufficient to calculate the coordi-
nates of the intersection pointshl andhr of the horizon and the left and the right edge of the
image in the system of coordinates of the camera. Lets be the half of the horizontal resolution

3.2. VISION 29

C

P

H

h

h

l

r

Figure 3.7: Construction of the horizon

of the image,α be the half of the horizontal opening angle of the camera. Then

hl =

 s
tan α

s
zl

 , hr =

 s
tan α

−s
zr

 (3.6)

with only zl andzr unknown. Let

i =

x
y
0

 (3.7)

be the coordinates ofhl in the system of coordinates of the robot. Solving the equation that
describes the transformation between the two systems of coordinates

R · i = hl (3.8)

with the rotation matrix

R =

r11r12r13

r21r22r23

r31r32r33

 (3.9)

leads to

zl = −r32s + r31s · cot α

r33

. (3.10)

In the same way follows

zr = −−r32s + r31s · cot α

r33

. (3.11)

Grid Construction and Scanning. The grid is constructed based on the horizon line, to which
grid lines are perpendicular. The area near the horizon has a high density of grid lines, whereas
the grid lines are coarser in the rest of the image (cf. Fig.3.8a).

30 CHAPTER 3. MODULES IN GT2002

a) b) c)

Figure 3.8: Percepts. a) Horizon-aligned grid b) Segmented image. Objects are recognized even with a
poor color table. c) Recognition of the ball. Only the green pixels have beentouchedby the ball specialist.

Each grid line is scanned pixel by pixel from top to bottom. During the scan each pixel is
classified by color. A characteristic series of colors or a pattern of colors is an indication of an
object of interest, e. g. a sequence of two orange pixels is an indication of a ball; a sequence or
an interrupted sequence of pink pixels followed by a green, skyblue, yellow, or white pixel is an
indication of a flag; an (interrupted) sequence of skyblue or yellow pixels followed by a green
pixel is an indication of a goal, and a sequence of red or blue pixels is an indication of a player.

Each time an indication of an object of interest is found, aspecialistis started that checks
whether there is such an object. If this is the case, the specialist finds out where the object is
located precisely in the image, and it calculates the position of the object relative to the robot.
The specialists are initialized with ahot spotthat is lying inside the object with a high likelihood.
This hot spot is determined from the pattern detected during the search in the grid.

3.2.2.2 Ball Specialist

Scanning the Ball. The ball specialist tries to determine as many pixels as possible at the
border of the ball. From the initialization pixel the image is scanned for the border of the ball
to the top, right, down, and left leading to a horizontal and a verticalcut of the ball. The middle
perpendicular of the shorter of the two cuts provides a third cut. The center of this new cut is a
good estimation of the center of the ball in most of the cases. From the estimated center a new
scan for the border of the ball in the four diagonal directions is started. If one of the two first cuts
meets an edge of the image, the ball specialist scans for the border of the ball in both directions
along this edge. Each point possibly lying at the border of the ball that was found during this
process is stored in a list. (cf. the green pixels in Fig.3.8c and Fig.3.9a).

Finding the Border of the Ball. The orange of the ball and the green of the field have com-
pletely different values in the u-channel of the yuv-image of the robot’s camera. The border of
the ball is characterized by a big decrease of the u-value from one pixel in the scan line to the
next one. Unfortunately there is also a big decrease of the u-value from one to the next pixel if
the scan line runs over a highlight on the surface of the ball caused by a floodlight (cf. Fig.3.9b).
Each decrease and increase of the u-value is marked (cf. the black and white pixels in Fig.3.8c

3.2. VISION 31

a) b)

u - component

right
top

end of ball

highlight

Figure 3.9: Ball specialist. a) Horizontal scan line. b) the u-component of the image near the scan line.

and Fig.3.9a). A very big decrease or the second of two not directly subsequent decreases in the
u-channel (not separated by an increase) are assumed to be the border of the ball.

A second criterion for the border of the ball is a sequence of three pixels of one of thestop
colors: green, skyblue, yellow, red, and blue. In such a case one of the following pixels is assumed
to be on the border of the ball: The last orange pixel, the pixel with the last significant decrease
in the u-channel, or the last pixel before the first stop color.

Finding the Best Circle. As the points found on the border of the ball are measured values they
will never lie on one and the same circle. First for each triple the resulting circle is calculated. In
a second step each of the circles obtains a vote from each pixel having a distance of less than 3
pixels to the circle. The circle with most votes is assumed to be the border of the ball.

Calculating the Position of the Ball. Let vc be the vector to the center of the ball in the system
of coordinates of the camera. This vector is given by the center of the circle in the image, the
opening angle of the camera, and the resolution of the image. Letvw = R · vc be the same vector
in the system of coordinates of the world. Where the3×3 matrixR describes the transformation
between the two systems of coordinates. The intersection of the line described byvw and a plane
parallel to the ground at the level of the center of the ball is the position of the ball.

3.2.2.3 Flag Specialist

Scanning a Flag. The flag specialist measures the height and the width of a flag. From the
initialization pixel the image is scanned for the border of the flag to the top, right, down, and left
where top/down means perpendicular to the horizon and left/right means parallel to the horizon.
This leads to a first approximation of the size of the flag. Two more horizontal lines are scanned
in the pink part and if the flag has a yellow or a skyblue part, two more horizontal lines are also
scanned there. The width of the green part of the pink/green flags is not used, because it is not
always possible to distinguish it from the background. To determine the height of the flag, three
additional vertical lines are scanned. The leftmost, rightmost, topmost, and lowest point found
by these scans determine the size of the flag. The angles to the four edges of the flag are written
into thePerceptCollection.

32 CHAPTER 3. MODULES IN GT2002

a) b)

Figure 3.10: a) Recognition of the goal. Only the grey pixels have beentouchedby the goal specialist. b)
Recognition of a player.

Finding the Border of a Flag. The flag specialist searches the last pixel having one of the
colors of the current flag. Smaller gaps with no color are accepted. This requires the color table
to be very accurate for pink, yellow, and skyblue.

3.2.2.4 Goal Specialist

The goal specialist measures the height and the width of a goal. From the initialization pixel the
image is scanned for the border of the goal to the top, right, down, and left where again top/down
means perpendicular to the horizon and left/right parallel to the horizon. This leads to a first
approximation of the size of the goal. Two more horizontal lines and two more vertical lines are
scanned in the approximated goal. (cf. the gray pixels in Fig.3.10a).

To find the border of the goal the specialist searches the last pixel having the color of the goal.
Smaller gaps with unclassified color are accepted. The maximal size in each direction determines
the size of the goal. The angles to the four edges of the goal and the information whether the end
of the goal is outside the image are written to thePerceptCollection.

3.2.2.5 Player Specialist

The initialization pixel is assumed to be at the left side of the robot. The player specialist scans
lines perpendicular to the horizon beginning at the horizon until a green pixel is found. If there
is a sequence of four subsequent vertical scan lines with an occurrence of green without an
occurrence of red the process is stopped. (cf. Fig.3.10b). The center of the lines and the lowest
of the first occurrence of green determine the vector to a point at the ground below the robot.
The intersection of the line defined by this vector and the ground yields an approximation for the
position of the robot.

3.2.2.6 Lines Perceptor

The lines perceptor recognizes characteristic lines in the image. Four types of lines are distin-
guished: edges between the skyblue goal and the field, edges between the yellow goal and the

3.3. SELF-LOCALIZATION 33

a) b)

Figure 3.11: Lines perceptor. a) Three types of lines. Yellow: field/goal, green: field/border, red: field
line. b) The vertical scan lines are scanned from top to bottom. White pixels: increase in y-channel, black
pixels: decrease in y-channel.

field, edges between the border and the field, and edges between the field lines and the field (cf.
Fig. 3.11a).

Finding Pixels on Edges. The perceptor scans vertical lines in the image from top to bottom.
The lines have a distance of five pixels to one another (cf. Fig.3.11b). As the green of the field
is very dark, all edges are characterized by a big difference of the y-channel of adjacent pixels.
An increase in the y-channel followed by a decrease is an indication of an edge.

Classifying Pixels on Edges. If the color above the decrease in the y-channel is skyblue or
yellow, the pixel lies on an edge between a goal and the field. The differentiation between a field
line and the border is a bit more complicated. In most of the cases the border has a bigger size
in the image than a field line. But a far distant border might be smaller than a very close field
line. For that reason the pixel where the decrease in the y-channel was found is assumed to lie
on the ground. With the known height and rotation of the camera the distance to that point is
calculated. The distance leads to expected sizes of the border and the field line in the image. For
the classification these sizes are compared to the distance between the increase and the decrease
of the y-channel in the image. The projection of the pixels on the field plane is also used to
determine their relative position to the robot.

3.3 Self-Localization

The GermanTeam implemented three different methods to solve the problem of self-localization:
the Single Landmark Self-Locator, the Monte-Carlo Self-Locator, and theLines Self-Locator.
While the latter is still experimental, the other two approaches were used in actual RoboCup
games.

34 CHAPTER 3. MODULES IN GT2002

3.3.1 Single Landmark Self-Locator

For the Robocup 2001 in Seattle, the GermanTeam implemented a Monte-Carlo localization
method. The approach proved to be of high accuracy in computing the position of the robot on
the field. Sadly this accuracy is achieved by using a quite high amount of CPU-time because the
position of the robot is modeled as distribution of particles, and numerous operations have to be
performed for each particle (cf. Sect.3.3.2). Besides, the Monte-Carlo self-locator requires the
robot to actually look for landmarks from time to time. In a highly dynamic environment it is
possible to miss important events like a passing ball while scanning for landmarks. Therefore,
we tried to develop a localization method that is faster and that can cope with the landmarks the
robot sees in typical game situations without the need of regular scans.

3.3.1.1 Approach

To calculate the exact position of the robot on the field one needs at least two very accurate
pairs of angle and distance to different landmarks. If more measurements are available, their
accuracy can also be lower. However due to the limitations of the hardware, in most situations
it is not possible to obtain such measurements with the necessary accuracy or frequency while
maintaining the attention on the game. Normally, a single image from the robot’s camera contains
only usable measurements of at most two landmarks.

Inspired by the approach of UNSW from 2000, a method for self-localization was developed
that uses only the two landmarks recognized best within a single image, and only if they are at
least measured with a certain minimum quality. In addition to the approach of UNSW, the quality
of the measurements is incorporated in the calculation process.

The single landmarks self-locator uses information on flags, goals, and odometry to deter-
mine the location of the robot. The latter comprises the robot’s position, its orientation on the
field, and the reliability of the localization. The information on flags and goals consists of the
distance of the landmark, the reliability of the distance measurement, the bearing of the land-
mark, and the reliability of that bearing.

Basic Functionality. The self-localization is performed in an iterative process. For each new
set of percepts, the previous pair of position and orientation is updated by the odometry data
and their reliability values are decreased. If available, the two best landmark percepts and a goal
percept are selected. They will be separately used to compute the new position.

In the following, the algorithm will be described by showing how the estimation of the posi-
tion is improved with a single landmark measurement. At first the new position is estimated and
then the orientation of the robot. The newly measured distance to a landmark is used to compute
a virtual position. It is set on the straight line from the last estimated position to the landmark
at the measured distance from that landmark. According to the relation between the reliability
of the last position and the quality of the measurement, i. e. thedistanceCorrectionFactor, the
new position is interpolated between the last position and the virtual position (cf. Fig.3.12a).
The reliability of the new position depends on the quality of the measured distance. The relative
orientation to the landmark is computed in a similar fashion (cf. Fig.3.12b). The orientation

3.3. SELF-LOCALIZATION 35

a) b)

n
o d

c

real position

virtual position

old position

new position

landmark

landmark

0°

old orientation

new orientation
a

b
d

g virtual orientation

j

o distance from old estimated position to
landmark

n measured distance to landmark
d difference betweeno andn
c d multiplied by thedistanceCorrectionFactor

α old orientation
β angle between straight line from

landmark to current position andx-axis
γ measured angle to landmark
δ difference between old and virtual

orientation
ϕ new orientation

Figure 3.12: One iteration of the single landmark self-locator. a) Position update. b) Orientation update.

is interpolated between the old orientation and the newly measured orientation relative to the
landmark. The interpolation utilizes the quality of the measured angle and the reliability of the
last orientation. The reliability of the new orientation depends on the reliability of the measured
angle.

Basically the goal is treated as a landmark with its position at the center of the goal line. Since
measurements of distances to goals are usually very imprecise, these measurements have a very
low quality and therefore play a minor role in the correction of the estimated position. On the
other hand the angle to the goal is considered to be of a good quality and of a great importance.
The orientation of the robot relative to the goal is among the most important information in
RoboCup, and therefore the goal is taken into account after the landmarks. Thus possible false
orientations obtained from the landmarks are overruled by the perception of the goal.

At the end of each cycle the computed position, orientation, and reliability values are stored
for the next iteration, and the localization data is provided to other modules. This data includes
the reliability that is calculated as the product of the reliabilities of orientation and position.

36 CHAPTER 3. MODULES IN GT2002

a) b)

real position

end position

start position

landmark

1

2

3
4

5

real position

starting position

landmark 1

landmark 2

1

2

3

4

5

6

Figure 3.13: a) Problematic situation. The position can only be updated along the straight line to the seen
landmark. b) Normal situation. Different landmarks are seen interchangingly and the estimated position
settles down near the real position.

Expected Behavior. The algorithm described cannot compute an exact position and even
makes quite huge errors when the robot sees only the same landmark over a certain period of
time. As a matter of fact in such a situation the position can only be corrected along the straight
line from the landmark to the old position (cf. Fig.3.13a). On the other hand, such situations
are rare and if the robot can see different landmarks in a series of images, the position will be
corrected along changing straight lines, and it will settle down to an fair estimation of the true
position (cf. Fig.3.13b).

Optimization. To enhance the stability of the localization the parameterprogressivenesswas
introduced. It controls the rate by which the estimated position approaches the virtual position.
Depending on the value of this parameter the algorithm stalls (zero) or keeps working as before
(one). A compromise has to be found between stability and the ability to adapt to changing
positions very quickly. With values between0.10 and0.15 the localization was more stable and
according to the speed of the robot it converged near the true position or was slightly behind if the
robot was very fast. The results were further improved by changing the method of decrementing
the reliability of the old position at the beginning of each cycle. It now depends on how far the

3.3. SELF-LOCALIZATION 37

robot walked according to the odometry data. Thus the reliability of the old position is lower if
the robot walked farther and keeps higher if it stands still.

A reliability that is directly determined from the reliabilities of the input data is not really
useful to judge the quality of the current estimate of the robot’s position. Therefore, the reliability
of a new position and a new orientation integrates the difference between the old values and the
virtual values for position and orientation. Thus the reliability decreases if there is a big difference
between these values. Thus a single set of unfitting data will not significantly diminish the trust
in the localization but continuing conflicting measurements lead to a dropping reliability value
and thereby a faster re-localization. If the robot detects continuously inconsistent landmarks or
no landmarks at all, the reliability value will drop and remain low. Thus, the behavior control
can perform the actions required to improve the localization, e. g., to let the head search for
landmarks.

3.3.1.2 Results

At the Robocup German Open 2002 in Paderborn theDarmstadt Dribbling Dackelsused the
single landmark self-locator in all games, while the teams from the other universities in the
GermanTeam used the Monte-Carlo self-locator (cf. Sect.3.3.2). The robots of theDarmstadt
Dribbling Dackelsseemed always to be well-localized on the field, and in fact, the team actually
won the competition.

In comparison to the Monte-Carlo self-locator that was used in Seattle and Fukuoka, the
single landmark self-locator needs less computation time and delivers comparable results under
good lighting conditions. However if the color table is bad, the Monte-Carlo approach is better
able to model the resulting uncertainties, but that has to be paid by wasting more processor cycles.

A few weeks before the RoboCup in Fukuoka, it had to be decided which localization method
has to be used during the contest. Although the GermanTeam is even able to switch alternative
implementations at runtime, the modeling of the reliability differed between both approaches. As
the behavior control is highly dependent on this modeling, the decision had to be made before the
behavior was developed. At that moment, there was no chance to test the situation in Fukuoka.
Therefore, the more reliable but slower method was chosen. As the conditions in Fukuoka were
perfect, the single landmark self-locator would also have done.

3.3.2 Monte-Carlo Self-Locator

The Monte-Carlo Self-Locatorimplements a Markov-localization method employing the so-
called Monte-Carlo approach [9]. It is a probabilistic approach, in which the current location
of the robot is modeled as the density of a set of particles (cf. Fig.3.15a). Each particle can be
seen as the hypothesis of the robot being located at this position. Therefore, such particles mainly
consist of a robot pose, i. e. a vector representing the robot’sx/y-coordinates in millimeters and
its rotationθ in radians:

pose =

 x
y
θ

 (3.12)

38 CHAPTER 3. MODULES IN GT2002

A Markov-localization method requires both an observation model and a motion model. The
observation model describes the probability for taking certain measurements at certain locations.
The motion model expresses the probability for certain actions to move the robot to certain
relative positions.

The localization approach works as follows: first, all particles are moved according to the
motion model of the previous action of the robot. Then, the probabilities for all particles are
determined on the basis of the observation model for the current sensor readings, i. e. bearings on
landmarks calculated from the actual camera image. Based on these probabilities, the so-called
resamplingis performed, i. e. moving more particles to the locations of samples with a high
probability. Afterwards, the average of the probability distribution is determined, representing
the best estimation of the current robot pose. Finally, the process repeats from the beginning.

3.3.2.1 Motion Model

The motion model determines the odometry offset∆odometry since the last localization from the
odometry value delivered by the motion module (cf. Sect.3.7) to represent the effects of the
actions on the robot’s pose. In addition, a random error∆error is assumed, according to the
following definition:

∆error =

 0.1d× random(−1 . . . 1)
0.02d× random(−1 . . . 1)

(0.002d + 0.2α)× random(−1 . . . 1)

 (3.13)

In equation (3.13), d is the length of the odometry offset, i. e. the distance the robot walked,α is
the angle the robot turned.

For each sample, the new pose is determined as

posenew = poseold + ∆odometry + ∆error (3.14)

Note that the operation+ involves coordinate transformations based on the rotational compo-
nents of the poses.

3.3.2.2 Observation Model

The observation model relates real sensor measurements to measurements as they would be taken
if the robot were at a certain location. Instead of using the distances and directions to the land-
marks in the environment, i. e. the flags and the goals, this localization approach only uses the
directions to the vertical edges of the landmarks. The advantage of using the edges for orientation
is that one can still use the visible edge of a landmark that is partially hidden by the image border.
Therefore, more points of reference can be used per image, which can potentially improve the
self-localization.

As the utilized percepts delivered by the landmarks perceptor (cf. Sect.3.2.1.2) and the
flag/goal specialist (cf. Sect.3.2.2.3and3.2.2.4) are bearings on the edges of flags and goals,
these have to be related to the assumed bearings from hypothetical positions. To determine the

3.3. SELF-LOCALIZATION 39

bearingflag

bearingleft
rflag

distanceflag

Figure 3.14: Calculating the angle to an edge of a flag.

expected bearings, the camera position has to be determined for each particle first, because the
real measurements are not taken from the robot’s body position, but from the location of the
camera. Note that this is only required for the translational components of the camera pose,
because the rotational components were already normalized during earlier processing steps (cf.
Sect.3.2.1.1). From these hypothetical camera locations, the bearings on the edges are calculated.
It must be distinguished between the edges of flags and the edges of goals:

Flags. The calculation of the bearing on the center of a flag is straightforward. However, to
determine the angle to the left or right edge, the bearing on the centerbearingflag, the distance
between the assumed camera position and the center of the flagdistanceflag, and the radius of
the flagrflag are required (cf. Fig.3.14):

bearingleft/right = bearingflag ± arcsin(rflag/distanceflag) (3.15)

Goals. The front posts of the goals are used as points of reference. As the goals are colored on
the inside, but white on the outside, the left and right edges of a color blob representing a goal
even correlate to the posts if the goal is seen from the outside.

Probabilities. The observation model only takes into account the bearings on the edges that
are actually seen, i. e., it is ignored if the robot hasnot seen a certain edge that it should have
seen according to its hypothetical position and the camera pose. Therefore, the probabilities of
the particles are only calculated from the similarities of the measured angles to the expected
angles. Each similaritys is determined from the measured angleωmeasured and the expected
angleωexpected for a certain pose by applying a sigmoid function to the difference of both angles:

s(ωmeasured, ωexpected) =

{
e−50d2

if d < 1

e−50(2−d)2 otherwise

whered =
|ωmeasured−ωexpected|

π

(3.16)

The probabilityp of a certain particle is the product of these similarities:

p =
∏

ωmeasured

s(ωmeasured, ωexpected) (3.17)

40 CHAPTER 3. MODULES IN GT2002

3.3.2.3 Resampling

In the resampling step, the samples are moved according to their probabilities. There is a trade-off
between quickly reacting to unmodeled movements, e. g., when the referee displaces the robot,
and stability against misreadings, resulting either from image processing problems or from the
bad synchronization between receiving an image and the corresponding joint angles of the head.
Therefore, resampling must be performed carefully. One possibility would be to move only a
few samples, but this would require a large number of particles to always have a sufficiently
large population of samples at the current position of the robot. The better solution is to limit
the change of the probability of each sample to a certain maximum. Thus misreadings will not
immediately affect the probability distribution. Instead, several readings are required to lower
the probability, resulting in a higher stability of the distribution. However, if the position of the
robot was changed externally, the measurements will constantly be inconsistent with the current
distribution of the samples, and therefore the probabilities will fall rapidly, and resampling will
take place.

The filtered probabilityp′ is calculated as

p′new =

p′old + 0.1 if p > p′old + 0.1
p′old − 0.05 if p < p′old − 0.05
p otherwise.

(3.18)

Resampling is done in three steps:

Importance Resampling. First, the samples are copied from the old distribution to a new
distribution. Their frequency in the new distribution depends on the probabilityp′i of each sample,
so more probable samples are copied more often than less probable ones, and improbable samples
are removed.

Inserting Calculated Samples. In a second step, some samples are replaced by calculated
samples. This approach follows the idea of Lenser and Veloso [14]: on the RoboCup field, it is
often possible to directly determine the position of the robot from sensor measurements, i. e. the
percepts. The only problem is that these positions are not always correct, because of misreadings
and noise. However, if a calculated position is inserted into the distribution and it is correct, it will
get high probabilities during the next observation steps and the distribution will cluster around
that position. In contrast, if it is wrong, it will get low probabilities and will be removed very
soon. Therefore, calculated positions are only position hypotheses, but they have the potential to
speed up the localization of the robot.

Two methods were implemented to calculate possible robot positions. They are used to fill a
buffer ofposition templates:

1. The first one uses a short term memory for the bearings on the last three flags seen. Esti-
mated distances to these landmarks and odometry are used to update the bearings on these
memorized flags when the robot moves. Bearings on goal posts are not inserted into the
buffer, because their distance information is not reliable enough to be used to compensate

3.3. SELF-LOCALIZATION 41

for the motion of the robot. However, the calculation of the current position also integrates
the goal posts, but only the ones actually seen. So from the buffer and the bearings on
goal posts, all combinations of three bearings are used to determine robot positions by
triangulation.

2. The second method only employs the current percepts. It uses all combinations of a land-
mark with a reliable distance information, i. e. a flag, and a bearing on a goal post or a flag
to determine the current position. For each combination, one or two possible positions can
be calculated.

The samples in the distribution are replaced by positions from the template buffer with a
probability of1− p′i. Each template is only inserted once into the distribution. If more templates
are required than have been calculated, random samples are employed.

Probabilistic Search. In a third step that is in fact part of the next motion update, the particles
are moved locally according to their probability. The more probable a sample is, the less it is
moved. This can be seen as a probabilistic random search for the best position, because the
samples that are randomly moved closer to the real position of the robot will be rewarded by
better probabilities during the next observation update steps, and they will therefore be more
frequent in future distributions.

The samples are moved according to the following equation:

posenew = poseold +

 100(1− p′)× random(−1 . . . 1)
100(1− p′)× random(−1 . . . 1)
0.5(1− p′)× random(−1 . . . 1)

 (3.19)

3.3.2.4 Estimating the Pose of the Robot

The pose of the robot is calculated from the sample distribution in two steps: first, the largest clus-
ter is determined, and then the current pose is calculated as the average of all samples belonging
to that cluster.

Finding the Largest Cluster. To calculate the largest cluster, all samples are assigned to a grid
that discretizes thex-, y-, andθ-space into10×10×10 cells. Then, it is searched for the2×2×2
sub-cube that contains the maximum number of samples.

Calculating the Average. All m samples belonging to that sub-cube are used to estimate the
current pose of the robot. Whereas the meanx- andy-components can directly be determined,
averaging the angles is not straightforward, because of their circularity. Instead, the mean angle
θrobot is calculated as:

θrobot = atan2(
∑

i

sin θi,
∑

i

cos θi) (3.20)

42 CHAPTER 3. MODULES IN GT2002

a) b)

c) d)

e) f)

Figure 3.15: Distribution of the samples during the Monte-Carlo localization while turning the head. The
bright robot body marks the real position of the robot, the darker body marks the estimated location. a)
After the first image processed (40 ms). b) After eight images processed (320 ms). c) After 14 images
(560 ms). d) After 40 images (1600 ms). e) Robot manually moved to another position. f) 13 images
(520 ms) later.

Certainty. The certaintyq of the position estimate is determined by multiplying the ratio be-
tween the number of the samples in the winning sub-cubem and the overall number of samples
n by the average probability in the winning sub-cube:

q =
m

n
· 1

m

∑
i

p′i =
1

n

∑
i

p′i (3.21)

This value is interpreted by other modules to determine the appropriate behavior, e. g., to look at
landmarks to improve the certainty of the position estimate.

3.3. SELF-LOCALIZATION 43

3.3.2.5 Results

Figure3.15depicts some examples for the performance of the approach using 100 samples. The
experiments shown were conducted with SimGT2002 (cf. Sect.5.1) using thesimulation time
mode, i. e. each image taken by the simulated camera is processed. The results show how fast
the approach is able to localize and re-localize the robot. In Fukuoka, the method also proved
to work on real robots. The GermanTeam was the only team that supported all features of the
RoboCup Game Manager that allows the referee to give instructions to the robots. This includes
automatic positioning on the field, e. g. for kickoff. For instance, the robots of the GermanTeam
were just started somewhere on the field, and then—while still many people were working on
the field—they autonomously walked to their initial positions. In addition, the self-localization
worked very well on fields without an outer barrier, e. g. on the practice field.

3.3.3 Lines Self-Locator

The previous two approaches use the colored beacons and the goals for self-localization. How-
ever, there are no beacons on a real soccer field, and as it is the goal of the RoboCup initiative
to compete with the human world champion in 2050, it seems to be a natural thing to develop
techniques for self-localization that do not depend on artificial clues. Therefore, the German-
Team works on a method to use the field lines to determine the robot’s location on the field. This
approach is not finished yet, and it was not used during the RoboCup in Fukuoka, but it may be
used next year in Padova.

The lines self-locator also follows the Monte-Carlo approach, in fact, most of its code is the
same1. The main difference between the Monte-Carlo self-locator and the lines self-locator is
the observation model. In addition, the lines self-locator is not able to directly calculate posi-
tions from perceptions, i. e. it cannot perform a sensor resetting localization [14]. However, this
drawback is partially compensated by the fact that field lines are seen more often than beacons.

3.3.3.1 Observation Model

The localization is based on the lines percept as delivered by thelines perceptor (cf.
Sect.3.2.2.6). The lines percept consists of relative offsets from the body center to points on
the field. Each point is assumed to lie on a line that is belonging to one of four possible classes:

• An edge of a field line,

• an edge between the field and the border,

• an edge between the field and the yellow goal,

• or an edge between the field and the blue goal.

1If the lines self-locator leaves the experimental state, there may be a common base class for both beacon-based
and lines-based self-localization.

44 CHAPTER 3. MODULES IN GT2002

a) b)

c) d)

Figure 3.16: Distances from lines. Distance is visualized as thickness of dots. a) Field lines. b) Border. c)
One goal. d) The other goal.

Note that the calculation of the offsets to these points is prone to errors because the pose of
the camera cannot be determined precisely. In fact, the farther away a point is, the bigger the
errors will be.

The points from the lines percept are used to determine the probability of each sample in the
Monte-Carlo distribution. As the positions of the samples on the field are known, for each sample
it can be determined, where the measured points would be located on the field if the position of
the sample would be correct. For each of these points in field coordinates, it can be calculated,
how far the closest point on a real field line of the corresponding type (field, border, yellow
goal, or blue goal) is away. The smaller the deviation between a real line and the projection of
a measured point from a hypothetic position is, the more probable the robot is really located at
that position. However, the probability also depends on the distance of the measured point from
the robot, because farther points will contain larger measurement errors, i. e. deviations of farther
away points should have a smaller impact on the probability than deviations of closer ones.

3.3. SELF-LOCALIZATION 45

a) b)

c) d)

e) f)

Figure 3.17: Distribution of the samples during the Monte-Carlo localization while turning the head. The
bright robot body marks the real position of the robot, the darker body marks the estimated location.
a) After the first image processed (40 ms). b) After 16 images processed (640 ms). c) After 30 images
(1200 ms). d) After 100 images (4000 ms). e) Robot manually moved to another position. f) 40 images
(1600 ms) later.

3.3.3.2 Optimizations

Calculating the probability for all points in a lines percept for all samples in the Monte-Carlo
distribution would be a costly operation. Therefore the number of points is fixed, and these points
are selected from the lines percept according to the following criteria:

• A fixed number of ten points is chosen by random.

46 CHAPTER 3. MODULES IN GT2002

• It is tried to select the same number of points from each line class, because points belonging
to border lines and field lines are more frequent, but the points belonging to the goals
determine the orientation on the field2.

• Closer points are chosen with a higher probability than farther away points because their
measurements are more reliable.

Calculating the smallest distances of ten points to the field lines is still an expensive operation
if it has to be performed for, e. g., 200 samples. Therefore, the distances are precalculated for each
line type and stored in two-dimensional lookup tables with a resolution of 2.5 cm (cf. Fig.3.16).
That way, the distance of a point to the closest line of the corresponding type can be determined
by a simple table lookup. Therefore, the method is not slower than the beacon-based Monte-Carlo
localization.

3.3.3.3 Early Results

Experiments performed in the simulator are quite promising. Figure3.17shows an experiment
conducted with 200 samples. The method is always able to find the position of the robot, but it
takes longer that the beacon-based localization. In addition, the mirror symmetry of the field is
a problem. In figure3.17b, the method first selects the wrong side of the field. However, when a
goal comes into view, the position flips over to the correct side (cf.. Fig.3.17c), and it remains
stable. Figures3.17e and3.17f demonstrate that the approach is also capable of re-localization
after the robot was moved manually.

3.4 Ball Modeling

The ball is the most important object in a soccer game. Therefore it is crucial to keep track of its
position on the field. The ball perceptor (cf. Sect.3.2.1.3) and the ball specialist (cf. Sect.3.2.2.2)
only detect the ball if it is actually seen by the camera of the robot. As the opening angles of
the camera are quite small, the ball is missing in many images. Although the head control (cf.
Sect.3.7.3) tries to track the ball in many situations, the head has sometimes to be turned to look
at landmarks. It is the task ofball modelingto keep track of the location of the ball even if the
ball is currently not seen.

In 2002, the GermanTeam still followed a quite simple approach. It is differentiated between
two cases, namely whether the ball is currently seen or not:

3.4.1 Ball Is Visible

If the ball is seen, i. e. the percept collection contains a ball percept, the position of the ball is
directly determined from the offset stored in the percept and the actual position of the robot.

2Please note that the field is mirror symmetric without the goals.

3.5. PLAYER MODELING 47

3.4.2 Ball Is Not Visible

In that case, the position is determined, where the ball has been seen last. This is a little bit more
complex than one would expect, because it is tried to maintain the relative relationship between
the robot and the ball, i. e. if the self-localization of the robot jumps, the ball position will follow.
This is especially important if the ball is very close and the robot prepares to perform a kick.
However, the locomotion of the robot changes the relative ball position. Therefore, odometry is
used to update the relative position of the ball. In addition, the locomotion of the robot can also
move the ball if the robot touches the ball. This can be a problem, because if the calculated ball
position is inside the body of the robot, the head cannot be rotated to look at the ball. Therefore,
the ball position is moved with the robot if the ball enters the “bounding box” of the robot.

Then, it is distinguished between three different cases:

The Camera Is Looking at the Ball, i. e. at its last known position. In this case, the ball seems
to have disappeared and its position is unknown. Whether the ball should be contained in the
camera image is determined by calculating the vertical and horizontal angles under which the
last known ball position is seen. If both angles are smaller than half of the opening angle of the
camera, the ball should be seen. However, the approach does not take the fact into account that
the ball can still be at its position but is hidden by another robot.

The Camera Is Not Looking at the Ball. It that case, it is assumed that the ball is still at its
place. As the head control tries to track the ball in many situations, it will look at the position
of the ball very soon. Thus it will still be determined very quickly if the ball has moved from its
previous position.

The Ball Position Is Unknown for a Longer Period of Time. If the robot was not able to
find the ball for more than seven seconds, it will accept ball positions communicated from other
robots. The use of communicated positions is delayed because they are less precise due to the
uncertainties in the self-localization of the robot and its communication partners.

3.4.3 Ball Speed

In order to calculate the speed of the ball, previous ball positions and their time stamps are stored
in a buffer. The buffer is emptied whenever the ball position is unknown. However, if the buffer
is completely filled, the speed of the ball is calculated from the oldest and the current position of
the ball. Currently, the buffer has a size of four entries. It turned out that the results are still very
noisy, e. g., for a ball that is not moving at all, a speed of up to 5 cm/s is determined.

3.5 Player Modeling

The knowledge of other robots positions is important for avoiding collisions and for tactical plan-
ning. The locator for other players performs the calculation of these positions based on players

48 CHAPTER 3. MODULES IN GT2002

percepts. In addition, positions of teammates received via the wireless network communication
are integrated.

3.5.1 Determining Robot Positions from Distributions

The positions of percepts of other robots are relative to the position of the observing robot.
In a first step, they are converted to absolute positions on the field. In a second step, it is tested,
whether the absolute positions of the percepts are outside the field. In this case, they are projected
to the border along an imaginary line which connects the robot with the absolute position of the
player percept. The resulting positions of the percepts are stored in a list for about two seconds.

The soccer field is discretized as a grid. The positions of the percepts are converted into grid
points, and distributions inx andy directions are created. Then, the maxima in these distributions
are determined. A maximum results from a high density of perceived robots at a certain location
in the grid. The maxima are sorted by their distinctiveness in descending order. If a maximum is
above a certain threshold, a robot is assumed to be located at the corresponding point. The point
in the grid is converted to an absolute position on the soccer field. Finally, this position is added
to thePlayersCollectionthat contains the positions of all players recognized.

The process described above is done separately for the opponents and for the teammates.

3.5.2 Integration of Team Messages

This year it was possible to communicate between robots of the own team via a wireless network.
So the positions of teammates could be transmitted. In a first approach these positions are also
used for the localization of other robots. It is assumed that a position sent by a teammate is often
more precise than a position calculated from the percept showing that teammate. Therefore,
positions communicated by teammates are used by the players locator.

The positions resulting from percepts are replaced by the transmitted ones. If the robot has not
received the positions from all teammates, or if the last position received is too old, the positions
calculated from percepts are kept. To avoid representing a teammate twice, a position calculated
from percepts must have a minimum distance to all positions received from teammates.

3.6 Behavior Control

The moduleBehaviorControlis responsible for decision making based on the world state, the
game control data received from theRoboCup Game Manager, the motion request that is cur-
rently being executed by the motion modules, and the team messages from other robots. It has
no access to lower layers of information processing.

It outputs the following:

• A motion requestthat specifies the next motion of the robot,

• ahead motion requestthat specifies the mode how the robot’s head is moved,

3.6. BEHAVIOR CONTROL 49

• anLED requestthat sets the states of the LEDs,

• anacoustic messagethat selects a sound file to be played by the robot’s loudspeaker,

• a team messagethat is sent to other players by wireless communication.

For the German Open 2002, each of the four universities of the GermanTeam used a different
approach for behavior control, only two of which will be discussed in detail:

The Bremen Byters from the Universiẗat Bremen followed a potential field approach, which
was also used for the ball challenge in Fukuoka.

The Ruhrpott Hellhounds from the University of Dortmund developed a Fuzzy Logic based
approach for behavior control.

The Darmstadt Dribbling Dackels from the Technische Universität Darmstadt won the Ger-
man Open 2002 with a state machine approach that was formalized in XML. This solution
is described in the next section (cf. Sect.3.6.1).

Humboldt 2002 from the Humboldt-Universiẗat zu Berlin continued the approach that the Ger-
manTeam used for the RoboCup 2001 in Seattle. In addition, the architecture was formal-
ized in the XML language XABSL. AlthoughHumboldt 2002only reached the second
place at the German Open 2002, this solution was adopted and used in Fukuoka because it
was thought to be the most powerful approach of the four (cf. Sect.3.6.2)

3.6.1 TUDXMLBehavior

The TUDXMLBehaviorwas developed with the aim to shorten the process of programming a
state machine in C++. Modeling behavior in C++ involves two very time consuming problems.
On the one hand, for each state described, very much redundant and technical code is necessary.
Spontaneous tests require either to write large blocks of code or to copy and paste them from
another already existing state as a template. On the other hand, the code can get so complex and
confusing, which impedes the development process. During designing a behavior control, it it
often necessary to change the original approach. In plain C or C++ it is hard to see the whole
structure of a state machine. Therefore, before a modification can be integrated, a lot of effort is
required to see all the dependencies between the different states.

Visualizing the state machine can give the behavior designer better access to the information
needed. XML/XSL was chosen as the tool to solve this problems. XSL provides the ability to
generate C code without programming in C. It transforms XML to C with the help of a stylesheet.

3.6.1.1 Structure of a Behavior Model Document

The state machine is modeled in XML. So every state, the transitions between the states, and
some additional information for the generation of the C++ files has to be represented. Each XML
description of a behavior has the same structure (cf. Fig.3.18):

50 CHAPTER 3. MODULES IN GT2002

Figure 3.18: Structure of the XML behavior description

<?xml version="1.0"?>
<!DOCTYPE behavior SYSTEM "model.dtd">

<behavior name="TUDXMLBehavior">
<info>(short description)</info>
<global>

(...)
</global>
<states>

(...)
</states>

</behavior>

An XML behavior description starts with a header with XML relevant information such as
the name of the document type definition. This is followed by the tag “behavior”. The parameter
“name” specifies the name for the C++ class to be generated and shall be set to “TUDXMLBe-
havior” in order to work with theBehaviorSelectorwithout any change. With the tag “info”, it
is possible to describe the task of a behavior. The final two sections actually represent the state
machine. The first one describes the global transitions, whereas the second one defines the states.

In the section “global”, it is possible to define transitions that are valid for all states. This
means that global transitions are tested before the local transitions of a state, e. g.

<global>
<transition target="getup">

<param name="robState" value="crashed"/>
</transition>

</global>

3.6. BEHAVIOR CONTROL 51

In this example, it is always checked whether the robot felt down. If this is the case, the
transition is followed to the state “getup”. Global transitions help to minimize the complexity of
the state machine.

Each state consists of transitions and actions. A transition defines the successor of the actual
state. An action specifies what should happen if the state is selected, e. g., the state “getup” is
defined as

<state name="getup" head="lookStraightAhead">
<transition target="pos1">

<param name="robState" value="standing"/>
</transition>
<action>

<predefined name="getup"/>
</action>

</state>

It changes to state ”pos1” if the variable “robState” indicates that the robot is “standing”.
If this expression is true, the state will terminate and the next time “pos1” will be active. But
if the expression evaluates to false, the given action will be performed. In this case the robot
will perform a “getup” motion. Multiple “param” terms are linked with a logicalandoperation,
i. e. the state will only be changed if all “param” terms are true. If there exists more then one
transition, they will be tested in their order of appearance. Together, all transitions are forming a
logicalor operation.

3.6.1.2 Language

This section describes the tags that can be used to describe the behavior of the robot.

action. In an “action” section the action is specified that will be performed. Four different types
of actions are available. These are “goto”, “gobehindball”, “c-code”, and “predefined”.
“goto” and “gobehindball” are helpers to keep the tags shorter. “predefined” means that
an action is already defined in the XLS-Stylesheet, and that it is referred to by its name.
“c-code” is a more direct method. In a “c-code” part, it is possible to write C code into the
XML-document. This feature has been implemented to allow faster testing and shall only
be used for the development of new predefined actions.

<action>
<predefined name="getup"/>

</action>

gobehindball is a basic operation to let the robot walk behind the ball heading towards the given
point in the given distance.

52 CHAPTER 3. MODULES IN GT2002

<gobehindball destX="xPosOpponentGroundline" destY="0"
dist="15.0"/>

goto is a basic operation to let the robot walk to a given point oriented towards an absolute
direction.

<goto x="xPosOwnGroundline" y="yPosCenterGoal"
dir="absBallDir"/>

info offers a way to add a doxygen compatible documentation.

<info>(short description)</info>

predefined. A “predefined” operation is an operation defined in the XSL stylesheet. The aim of
this tag is to have access to a library of abilities only referenced by their names.

<predefined name="getup"/>

state. A “state” of the state machine consists of a “name” and some optional parameters followed
by the transitions and the action to be performed.

<state name="getup" head="lookStraightAhead">
<transition (...) >

(...)
</transition>
<action>

(...)
</action>

</state>

The optional parameters are:

gamestate.When entering this state, the “gamestate” variable is set to the given value.
This is useful, e. g., to remember long term plans over multiple transitions.

head sets a new head control mode.

led sets a new LED request.

clusters. Multiple states can be grouped to one or more clusters. In a transition it is possi-
ble to determine how long the current cluster is active. This feature was added during
the German Open 2002 to leave cycles after a maximum time.

3.6. BEHAVIOR CONTROL 53

transition. A transition is the change from one state to another. A transition is an tuple of a
condition and a target. If one of the conditions is true the transition is valid and will be
used.

<transition target="getup">
<param name="robState" value="crashed"/>

</transition>

3.6.1.3 Documentation

Similarly to the generation of C code, the documentation is created.

HTML. The HTML documentation is still under development. At the moment it is only a brief
overview over the states generated.

Graph. The graph generated shows the states and the transitions between them (cf. Fig.3.19).

3.6.1.4 Conclusion

During the German Open 2002 the approach enabled theDarmstadt Dribbling Dackelsto de-
velop and redesign their behavior in a very fast and comfortable way. The visualization of the
graph helped saving a lot of time finding cycles and interpreting the actions of the robots.

3.6.2 XABSL

The Extensible Agent Behavior Specification Language(XABSL) is an XML dialect used to
specify behaviors of autonomous robots. Although it was developed for the participation in the
RoboCup Sony Legged Robot League, it is also intended to be used on other platforms (e. g.
the simulation league). In this section the behavior architecture used is introduced; the language
elements, a code library calledXabslEngineand tools are described. A simple goalie behavior as
used byHumboldt 2002for the German Open 2002 is brought in as an example.

3.6.2.1 The Behavior Architecture

XABSL implements a behavior architecture that developed from the architecture the German-
Team used for the RoboCup Championship 2001 in Seattle [3]. In addition, thoughts by Burkhard
[4] influenced the approach.

The general idea is that there is a hierarchy of behavior modules called “options” that are
organized in an option tree with basic behaviors called “skills” as the leaves (cf. Fig.3.20a).
Each option can execute a specific behavior independently from its context in the option tree,
using the options and skills that are below it in the tree, e. g., the option“return-to-own-goal” is
a behavior that lets the robot walk backward to the own goal. The option executes that behavior

54 CHAPTER 3. MODULES IN GT2002

start

gamestate: pre

search

head: searchForBall
led: allOff

action: predefined
stand

global

getup

action: predefined
getup

robState == crashed

robState == standing

track

head: searchForBall
led: allOn

action: predefined
stand

ballValidity == 1.0 ballValidity<1.0

Figure 3.19: Visualization example. The behavior implements searching for the ball and following it with
the head.

by using only one skill“go-to-point” . The behavior of the option is the same regardless of the
context (e. g. whether it is called from“goalie-ready” or from “goalie-play”). This context-
independence allows the creation of more complex behaviors by combining modular options.

The option“goalie-play” makes use of that approach. This option represents the complete
behavior of a goalie during the entire game. The robot stays inside the own goal if the ball is not
seen or if it is far away, using the option“stay-in-goal” ; it goes for the ball if the ball is nearby
using the skill“go-to-ball” , kicks the ball away if the robot is at the ball using the skill“kick”
and returns to the own goal after a successful kick using the option“return-to-own-goal”.

This separation of the complete behavior of the agent into different levels in the option tree
also allows a separation of different long-term tasks. Behaviors on the lower levels are more
short-term and reactive. They are very specialized and usually execute only a very specific task.
Changes between these behaviors are not expensive. In contrast higher level behaviors are long-
term oriented. They are complex and the costs of switching between these behaviors can be very
high, e. g., the decision to wait for a pass is a long-term one, i. e., the robot needs a while for

3.6. BEHAVIOR CONTROL 55

a) b)

goalie

goalie-before-kick-off goalie-play

return-to-own-goal

stand

stay-inside-goal

go-to-ballkick go-to-point

Option goalie-play
stay

in
goal

stay-inside-goal return-to-own-goalgo-to-ballkick

get
to

ball

clear
ball

return
to

goal

Figure 3.20: a) The option tree of a simplified goalie. Boxes denote “options”, ellipses denote “skills”. b)
The internal state machine of the option “goalie-play”. The double circle denotes the initial state.

positioning and should then wait for a pass even if the ball is not seen for a short period of time.
Once such a decision is made it should be stuck to in order to avoid having the robot oscillating
between different behaviors.

The execution of the option tree always starts from the root option. From there, each option
activated determines which suboption will be executed until an option refers to a skill.

The decision which option or skill will be executed next is made using state machines. Each
option contains such an internal state machine (cf. Fig.3.20b). Each state of that state machine
stands for a skill or a suboption. Each state has a decision tree that selects between transitions to
states (cf. Fig.3.21).

If an option is executed, the state machine is carried out to determine which state is activated
next (which can also be the same option as before). Then, for the active state, the referred sub-
option or skill is executed and so on. If an option was not activated during the last execution of
the option tree, the active state is the initial state.

The use of state machines for selecting between suboptions involves the general advantages
of state machines. Decisions are not only reactively based on the environment but also on the
active state. The decision for a transition to a certain state can vary for different states. It is
possible to apply hysteresis between states, e. g. the goalie goes for the ball, when the distance
to the ball is smaller than 50 cm. It returns to the goal, when the ball is more than 70 cm away.

To sum up, the architecture introduced has to main features: The combination of modular
behaviors (options and skills) in a hierarchical way and the use of state machines for decision
making.

3.6.2.2 Formalization of Behavior - XABSL

In the code of the GermanTeam 2001, it turned out that implementing such an architecture in C++
is not very comfortable and error prone. The size of the source files of the complete implemen-
tation of the behavior exceeded 500 KB and it was complicated to add new options. Therefore,
theextensible agent behavior specification language(XABSL) was developed, an XML dialect

56 CHAPTER 3. MODULES IN GT2002

a) b)

State get-to-ball

clear
ball

return
to

goal

get
to

ball

if else

if else-if else

ball.distance
smaller than

15 cm

ball too
far away

ball seen

if

if

else if

else

else

(< 2000)
{

(< 150)
 {

transition-to-state ();
 }

(> 900)
 {

transition-to-state ();
 }

 {
transition-to-own-state ();

 }
}

{
transition-to-state ();

}

//ball seen

//ball.distance smaller than 15 cm

//ball too far away

ball.time-since-last-seen

ball.distance

clear-ball

ball.distance

return-to-goal

get-to-ball

return-to-goal

Figure 3.21: The decision tree for the state “get-to-ball”. a) The leaves of the tree are transitions to other
states. b) Pseudo code of the tree.

specified with XML Schema. The reasons to use XML technologies instead of defining a gram-
mar from scratch were the big variety and quality of existing editing tools, the possibility of easy
transformation from and to other languages as well as the general flexibility of data represented
in XML languages.

Behaviors using the architecture described in the previous chapter can be completely de-
scribed in XABSL. There exist language elements for options, their states, and their decision
trees. Boolean logic (||, && , !, == , != , <, <= , >, >=) and simple arithmetic operators (+ , -, * ,
/ and%) can be used for conditional expressions.

To be independent of specific software environments and platforms, the formalization of
the interaction with the software environment is also included in XABSL by defining symbols.
Interaction means access to input functions and variables (e. g. the world state) and to output
functions (e. g. to set requests for other parts of the information processing).

The appendixF introduces the language elements and their function in detail.
From a XABSL instance document, an intermediate code is generated. (See sectionF.13).

This was done because on many robotic platforms it would be very hard to deploy an XML parser.
In addition, debug symbols, which can be used by debugging environments for visualization and
control, e. g. by theXabsl Behavior Testerin the RobotControl application (cf. Sect.J.5.1), and
a detailed documentation can be generated from the XML documents.

3.6.2.3 The XabslEngine

For running the formalized behavior on a target platform, the code libraryXabslEnginewas
developed (described in detail in appendixG). The engine was intended to be platform and
application independent and can easily be adapted to other robotic platforms.

3.7. MOTION 57

The XabslEngineparses the intermediate code and links the formalized symbols that were
used in the options and states with the variables and functions of the software environment.

In the GT2002 project, the moduleXabslBehaviorControluses aXabslEngineto run XML-
formalized behaviors. This is described in detail in appendixH.

3.7 Motion

The moduleMotionControlgenerates the joint positions sent to the motors and therefore is re-
sponsible for controlling the movements of the robot.

It receives a motion request fromBehaviorControlwhich is of one of four types (walk, stand,
perform special actionor getup). In addition, if walking is requested it contains a vector de-
scribing the speed, the direction, and the type of the walk as there are several different types of
walking, such as dribbling the ball, the behavior can choose from. In case of a special action
request it contains an identifier defining the requested action.

FurthermoreMotionControlreceives head joint values from the moduleHeadControlwhich
is described below (cf. Sect.3.7.3). These values are inherited byMotionControlbut may be
overridden if the current motion also requires controlling the head, e. g., for a kick with the head
or dribbling the ball while holding it with the head.

Finally MotionControlgets current sensor data, because for some motions, sensor input is
required, e. g., standing up uses acceleration sensors to detect how to stand up.

From these inputs the module produces a buffer containing joint positions and odometry
data, i. e., a vector describing locomotion speed and direction, which, e. g., serves as input for
self-localization.

In respect to the system’s modular approach,MotionControluses different modules for each
of its tasks as well. There is a walking engine module for each possible walking type. Therefore
each walking type can be performed by completely different walking engines as well as instances
of the same engine with different sets of parameters. How the walking engine works is described
below (cf. Sect.3.7.1). The module executing special actions is described below as well (cf.
Sect.3.7.2). A getup engine module brings the robot to a standing position from everywhere as
fast as possible. For standing, the walking engine for the normal walk type is executed with a
speed set to zero. Thus changing from standing to walking is possible immediately as the stand
position is automatically adjusted to the current walking style.

When the currently used motion module does not reflect the requested motion, the module is
changed after it signals that the current motion is finished. Therefore the modules are responsible
for correct transitions to other motion types, e. g., a walking engine will signal that a change to
a different motion type is only possible after the current step is finished, i. e., all feet are on the
ground.

3.7.1 Walking

A walking engine is a module generating joint angles in order to let the robot walk with the
speed and the direction requested from behavior control. The implementation described here is

58 CHAPTER 3. MODULES IN GT2002

Figure 3.22: Walking by moving feet in rectangles

called InvKinWalkingEngineand is a new development from 2002. Although it is mainly a re-
implementation applying the same general approach as last year’s version, it has some major
improvements. A main feature is that the engine and the parameters it uses are separated. The
engine offers a huge set of parameters. This allows creating completely different walks with the
same engine by having different parameter values. A class containing the set of parameter values
is given to the constructor of the engine. Therefore it is possible to have different instances with
different parameter sets. It is even possible to transmit new parameters via the wireless network
from RobotControl to test them at runtime (cf. Sect.J.7.1).

3.7.1.1 Approach

The general idea is to calculate the position of the feet relative to the body while they move in
rectangles around the center position (cf. Fig.3.22). The joint angles needed to reach the foot
position are then calculated with inverse kinematics.

For the direction of walking the four legs are more or less treated as wheels. Seen from above
the rectangles are rotated to the desired walking direction (cf. Fig.3.23a, b). Turning is done by
moving each leg in a different diagonal direction (cf. Fig.3.23c). Walking and turning can also
be combined resulting in curved walking. This is done by simple vector addition for each leg (cf.
Fig. 3.23d).

The walking speed is defined by the size of the rectangles. The time for one step is constant
but when walking faster the step length is greater.

The position and size of these rectangles is defined by the current parameter set. One thing
that is fixed for all parameter sets is the walking gait. The engine uses a trot gait, i. e., two
diagonally opposite legs perform the same movement, while the other two legs move with a half
gait phase offset.

3.7.1.2 Parameters

As mentioned before the actual walking style the engine generates is mainly defined by the set
of parameters applied. The parameters are the following:

3.7. MOTION 59

a) b) c) d)

Figure 3.23: Principle of treating legs as wheels. Walking a) forwards, b) sideways. c) Turning. d) Turning
while walking forward.

footMode. This parameter selects how the feet will be moved while in the air. Besides the rect-
angular shape mentioned above it is also possible to have the feet move in a half circle like
it was the case in our last year‘s walking engine. This parameter was not used much since
the rectangles seemed to provide a better general performance. It was mainly included for
a greater flexibility.

foreHeight, foreWidth, foreCenterX. These values describe the center foot position of the
forelegs relative to the body of the robot.

hindHeight, hindWidth, hindCenterX. The same values for the hind legs describing center
foot positions.

foreFootTilt, hindFootTilt. The foot rectangles are rotated by these angles to compensate for
different fore and hind walking heights.

foreFootLift, hindFootLift define the feet lifting, i. e. the height of the rectangles.

legSpeedFactorX, legSpeedFactorY, legSpeedFactorR.These values are factors between the
speed of the fore and the hind legs. With these parameters it is possible to have different
speeds for the fore and the hind legs. This can be useful when, e. g., the forelegs are limited
to very small steps due to their position but the hind legs may still do greater steps.

maxStepSizeX, maxStepSizeY.These are the maximum step sizes that are applied when walk-
ing with full speed. They are the radii of the ellipses shown in figures3.24and3.23. The
rectangles are clipped to these ellipses.

maxSpeedXChange, maxSpeedYChange, maxRotationChange.By these values the acceler-
ation of the robot is limited. A rapid change of the walking request from behavior control
is applied gradually according to these limits. This prevents stumbling or even falling over
when the request is changed.

60 CHAPTER 3. MODULES IN GT2002

maxStepSizeY

maxStepSizeX

x

y

Figure 3.24: Ellipse describing possible foot target positions seen from above

counterRotation. When walking sideways the robot sometimes tends to walk a circle instead
due to different contact situations or different step lengths of fore and hind legs. With
this value a rotation is generated while walking sideways that compensates this unwanted
effect.

stepLen. This is the time for one complete step cycle (cf. Fig.3.25).

groundPhase, liftPhase.These values define the timing of the step cycle (cf. Fig.3.25). ground-
Phasedefines how much time of the step cycle the foot will be on the ground.liftPhase
defines how fast the foot will be lifted or lowered.

headTilt, headPan, headRoll, mouth.If these values are given they are used as angles for the
head joints and the mouth. Setting these values disables the normal head motion control
but can be useful, e. g. for a special walking type that holds the ball with the head.

3.7.1.3 Odometry correction values

Due to slippage the effective speed a walk produces differs from the calculated speed the feet
have on ground and it depends quite heavily on the current underground. Therefore the maximum
speed of a walk has to be measured manually. The measured speeds are stored in a file on the
robot’s memory stick and, they are used to correct the leg speeds so that the resulting speed of a
certain gait matches the motion request.

3.7.1.4 Inverse Kinematics

After the desired leg position is calculated, it is necessary to calculate the required leg joint angles
to reach that position. First, the knee joint angle is calculated as it is determined by the distance
from shoulder joint to the paw. Next, the angle of the shoulder joint that rotates the leg to the side
is calculated from the side distance between the paw and the shoulder. Finally, the distance from
the shoulder to the paw in robot body direction defines the other shoulder joint angle.

3.7. MOTION 61

groundPhase

liftPhase
liftPhase

z

t/stepLen

groundPhase liftPhase liftPhase

airPhase = 1 - groundPhase - 2 liftPhase

airPhase

1

footLift

Figure 3.25: Timing of one step cycle

3.7.2 Special Actions

Special actions are all motions of the robot that are not generated by their own algorithms but
merely consist of a sequence of fixed joint positions. Currently this includes a wide variety of
kicks with which it is possible to play the ball from different positions relative to the robot to
various directions. The behavior is responsible for choosing the correct kick according to the
position of the ball and the game situation.

The moduleSpecialActionsis responsible for performing these motions. It receives the cur-
rently requested motion and produces joint angles as well as the odometry vector of the resulting
movement.

The module implements a chain of nodes which is traversed every time the module is exe-
cuted. These nodes either contain joint data, transitions, or jump labels.

Joint data nodes contain angles for all joints which are sent to the robot as well as timing
information that state for how long these values will be sent.

Transition nodes contain a destination node and an identifier for the target special action. If
the currently requested motion matches the target, the transition is followed. By this mechanism
the nodes will be traversed. This ensures that the requested special action as well as the transitions
from the current motion get executed. With transitions it is possible to define that another action
has to be executed before the requested action, e. g. grabbing the ball before kicking.

The nodes for each special action are specified in a special description language which is
compiled into C code with its own compiler which is described in section5.4. The generated code
is part of the special action module. For each special action there is one file in the description
language which contains all the necessary joint data and transition statements.

In addition, there is one special file calledexternwhich serves as entry point to the module.
It contains transitions to all special actions of which the correct one will be executed when the
module is entered from other motion types.externalso serves as special transition target for
leaving the special action module. If another motion type is requested, the special action module
continues until a transition toexternis reached. By this the current special action will always be
finished, avoiding, e. g., starting to walk while standing on the head.

62 CHAPTER 3. MODULES IN GT2002

The odometry data is calculated from the current movement speed and direction that are taken
from a table containing values for all special actions. This table can contain information about
the result of completely executing a special action once, e. g. that the bicycle kick turns the robot
by 180 degrees. In addition the table may contain entries giving a constant speed for a special
action.

3.7.3 Head Motion Control

The moduleHeadControldetermines where the robot is looking at. It receiveshead control
modesfrom the behavior control and generates the requiredhead motion requestswhich contain
the angles of the three head joints. These requests are sent to the moduleMotionControl that
forwards them directly to the motors (cf. Sect.3.7). Furthermore,HeadControlreceives sensor
data and the internal world model.

3.7.3.1 Head Control Modes

Since the robot can only see a small portion of its environment, it is necessary to have its head
(and thus its camera) point in certain directions depending on the situation the robot is facing.
A number of such situations have been identified and suitable head motions where developed,
calledhead control modes. Some modes are more elemental, such as thelook-at-pointmode,
whereas others utilize the basic modes (or the concepts of these modes) to achieve more complex
solutions such as tracking the ball. The most interesting modes are:

Look at point. If this mode is selected, the robot will look at a certain position in 3-D space
specified in its own system of coordinates. It compares the current rotation angles of the
head with the desired angles (calculated from the line pointing from the camera to the point
in 3-D space). The difference between the two is used to turn the head.

Search for Landmarks. In this mode the robot searches for landmarks, i. e. flags and goals. The
head moves in an ellipse motion scanning the area in front of the robot. No knowledge of
the world is used to guide the scanning motion.

Track the ball. This mode was developed to allow the robot to track the ball successfully while
maintaining its bearing on the field. To achieve this, a robust ball tracking had to be es-
tablished that allows the robot to look up at landmarks occasionally. To minimize the time
needed for the latter, world model information is used to predict where landmarks should
be. The robot looks up in the direction of the landmarks every two seconds and then quickly
returns its gaze to the ball (this motion takes less than a second). The visual information
gained is used to improve the localization. For obvious reasons this method does not work
well if the robot’s localization is very bad. However, looking up and away from the ball in
most cases yields information about the robot’s whereabouts even if the intended landmark
cannot be seen. Only those landmarks that can actually be looked at are used. Landmarks
that are close to the robot are preferred. To improve ball tracking, the ball’s speed is used

3.7. MOTION 63

to predict where the ball will appear next. The quality of the localization is not taken into
account.

3.7.3.2 Speed Adjustment

It is possible to adjust the speed of all head motions. A low speed leads to smooth head motions
which prevent fuzzy pictures.

3.7.3.3 Joint Protection

After destination joint angles and the speed to reach them have been calculated the actual joint
angle values are determined. This is done by setting positions between the starting and desti-
nation position. This position is calculated not only respecting the selected speed to reach the
destination but also by limiting maximum speed and acceleration. Therefore, the head performs
very smooth motions, accelerating and decelerating softly. Extreme accelerations occurring on
rapidly changing destination angles are prevented. As a result, the wear and tear of the joints is
reduced.

Chapter 4

Challenges

In addition to the normal robot soccer contest, there is a so-called challenge in the Sony Legged
Robot League comprising three different tasks to be solved by the teams. In 2002, there were
the pattern analysis challenge, the collaboration challenge, and theball challenge. Although
nothing worked as expected, the GermanTeam still reached the sixth place during this contest.

4.1 Pattern Analysis Challenge

The task of the pattern analysis challenge was to recognize three different patterns chosen from
a set of five. The patterns were placed over two flags and a goal and could be rotated arbitrarily
around their surface normal.

The robots behavior for this challenge was written in XABSL. A special perceptor is started
when the robot stands in front of a pattern. The perceptor marks the centers of black or white
rectangles. This is done by finding large differences in the y-channel of the image while scanning
horizontally and vertically (cf. Fig.4.1).

Then, all center points of the black or white rectangles are clustered, connecting all points
that are close together (cf. the thin vertical and horizontal lines in Fig.4.1). It is assumed that the
pattern is in the center of the image. Therefore, the cluster closest to center is selected.

For shape recognition, an approach was implemented that calculates the convex hull of the
points in the selected cluster. Then, it is checked whether there are holes in the shape of the
pattern, i. e., whether points on the convex hull exist, that are far away from any point in the
pattern. For this, the center points of the lines of the convex hull are used, not the vertices. Then,
the following rules are applied:

• If there is more than one hole in the shape of the pattern, it is assumed to be a “T”.

• If there is exactly one hole, the pattern is an “L”.

• If there are no holes, the pattern has a convex shape, i. e., it is either a triangle, a square. or
a rectangle.

64

4.2. COLLABORATION CHALLENGE 65

Figure 4.1: Recognized centers of checkers

In the latter case, a quadrilateral is calculated containing the leftmost, rightmost, upmost, and
lowest point of the convex hull.

• If two of these points are close together, the pattern is a “triangle”.

• If the distances between the four vertices differ more than a certain threshold, the pattern
is a “rectangle”. Note that the width to height ratio of the image is corrected before based
on the tilt of the head.

• Otherwise, the pattern is a “square”.

During the competition the robot saidT for all three patterns. It seems that the pattern was
merged with the background, resulting in a shape with several holes in it. However, as one of the
patterns really was a “T”, one answer was correct.

4.2 Collaboration Challenge

The task of the second challenge was to rotate a bar 180 degrees and to carry it from the middle
of the field to the penalty area. The bar was 90 centimeters long and had blue and red markers at
the ends. As the bar was to large to be moved by one robot alone the task had to be accomplished
by two robots in collaboration.

The original approach was to write a special bar perceptor to recognize the markers as well
as the white in the middle of the bar and thereby calculating position and direction of the bar.
Although the perceptor showed some very good results, there was not enough time to achieve
the necessary reliability and stability in localizing the bar.

Therefore a simpler approach was implemented that made use of the fact that the starting
position of the bar was known. Both robots walked to the ends oriented along the bar only relying

66 CHAPTER 4. CHALLENGES

on normal localization. A simplified bar perceptor was implemented that only detected the white
ends of the bar and used them to correct the relative position to the bar as the self-localization
was not precise enough to position exactly in front of the bar. The next step was to walk with both
robots onto the bar. A special walking style was used for this task as the normal walking was too
low to walk on the bar. Once on the bar the robots could very hardly lose the bar. It was therefore
easy rotating it until localization indicated a 180 degrees turn and then pushing it to the penalty
area. Synchronization of both robots could easily be acquired using wireless communication.
After each step the robot waited until the other signaled it has finished that step, too.

While this approach worked quite good in several tests unfortunately in the competition the
robots failed to get onto the bar correctly and therefore did not succeed in rotating the bar. Re-
grettably there was not enough time to test the simplified perceptor especially under the lighting
conditions on the competition field.

4.3 Ball Challenge

The strategy for this challenge was kept as simple as possible: Find a ball, walk to an appropriate
kicking position and finally kick the ball into the goal. Meanwhile try to avoid obstacles.

4.3.1 Architecture

This challenge has been used as a testbed for a different approach of behavior control. Instead of
modeling the complete behavior as a large state machine, only a small state machine with eight
different states was implemented. It simply consists of a few states representing essential tasks
like Search ball, Kick forwardor Go to Ball. These states use a potential field to navigate on the
field.

4.3.2 Modeling of the Potential Field

The entire potential field consists of different single potential fields. There are several objects
with individual influences. The potential influence is similar to the electrical charge in an electri-
cal field. The potential fields of all objects are added and the value at a specified position indicates
the influence at this point. The combined potential field is used to determine the next position
where the robot should move to. For the potential field approach in RoboCup see also [18].

4.3.2.1 The Different Objects

The potential field of an object is characterized by three basic parameters. These are the influence
radius for the area of potential influence, the maximum potential and the minimum potential. For
some objects, e. g. for the robots, an additional parameter is needed.

The parameters are read from a configuration file. This makes it possible to test different sets
of parameters without recompiling the code.

4.3. BALL CHALLENGE 67

a) b)

distance from

object center
influence

radius

minimum

maximum

potential

influence

distance from

object center
influence

radius

minimum

maximum

potential

influence

object

radius

Figure 4.2: Graphs of potential field object functions. a) Ball b) Robot

For each object the value of the potential can be computed at a given position. To reduce
calculation time, a linear function is used for this. The values are depending on the distance from
the center of the object and the maximum and minimum value of their potential influence (cf.
Fig. 4.2).

To get the value of the potential at a particular position the influences of all objects have to
be added. The following part describes the potential field and additional parameters of all objects
used.

Ball. For the ball object no additional parameters are needed. There is no peculiarity in calcula-
tion.

Robots. An additional parameter for the radius of the object is used. As there is no direction
calculated by the perception of other robots, half of the robots length is taken. If the po-
sition, where the potential influence should be calculated for, lies inside the object radius,
the maximum value is returned. Otherwise the value is calculated by the linear function.

Border. For the border of the game field the width of the border is needed. If the requested
position lies on the border, the maximum value for this object is returned, otherwise it is
calculated. Additionally it is tested if the destination is in the goal area. In this case, the
goal is also interpreted as a border.

Game field. For the potential field of this object a target position is needed. This position is
the point of interest, where the robot is heading for. So the potential field descends to this
point. The influence radius must be big enough to cover the whole game field.

4.3.3 Visualization of the Potential Field

In RobotControl it is possible to activate a visualization of the potential field for the field view.
The game field is divided into rectangles. For the middle of each rectangle, the potential value is
calculated and interpreted as a gray scale value. Values under 0 or above 255 are cut off. Areas of

68 CHAPTER 4. CHALLENGES

Figure 4.3: Visualization of the potential field. A robot getting stuck in a local minimum.

high potential values are displayed from light gray to white and areas with low potential values
from dark gray to black (cf. Fig.4.3).

4.3.4 Path Planning

Having modeled the field, an algorithm is needed to find the next position to walk to.

4.3.4.1 Gradient Descent

To move the robot to a target position having the lowest potential on the field, the gradient descent
approach tries to find a position in the robot’s near environment, which has a lower potential than
the current position. This is done by computing a number of positions on a circumference around
the robot. For each position the potential is calculated. After selecting the position with the lowest
potential, a motion request leading to this position is generated. This process is iterated until the
robot is near the target.

4.3.4.2 Local Minima

One problem using the gradient descent approach are local minima. As only the near environment
is considered, there are several possible constellations, e. g. two robots standing close to each
other, causing the robot to choose a position which is suboptimal and does not lead to the target.
One example is shown in Fig.4.3.

To avoid such situations, the A* algorithm [11] may be used to find a path to the target. An
implementation has begun but due to the lack of time it was not finished in time.

4.3. BALL CHALLENGE 69

4.3.5 Results

After a lot of successful tests with at least six goals in three minutes, the robots failed during
competition. Unfortunately they obstructed each other and did some kicks to the goalposts. After
three minutes only two goals had been scored, worse than during any test.

In spite of this disappointment, the potential field approach seemed to work well. It was
capable of making the robot move to a target with adequate speed and precision and without any
major mistake.

Chapter 5

Tools

The GermanTeam spent a lot of time on programming the tools that do not run on the AIBO
platform but that helped very much in the development of the soccer software.

In section5.1and5.2 two very similar programs are described: SimGT2002 and RobotCon-
trol. They both have in common:

• The complete source code that was developed for the robot is also compiled and linked
into these applications. That allows algorithms to be tested and debugged very easily. New
source code can be tested with the tools before compiling it for the robot and testing it on
the field.

• As the interfaces of the source code to the physical robot are very narrow, the robot could
be easily replaced by a simulator.

• They provide a lot of debugging and visualization tools.

Section5.3 describes a router software for the wireless network that dispatches messages
between the robot and SimGT2002/RobotControl.

The Motion Configuration Tool(cf. Sect.5.4) was used by the GermanTeam for the easy
development of special actions, e. g. the kicks.

5.1 SimGT2002

SimRobot is a kinematic robotics simulator that was developed at the Universität Bremen [16].
It is written in C++ and is distributed as public domain [1]. It consists of a portable simulation
kernel and platform specific graphical user interfaces. Implementations exist for theX Window
System, Microsoft Windows 3.1/95/98/ME/NT/2000/XP, andIBM OS/2. Currently, only the de-
velopment for the 32 bit versions of Microsoft Windows is continued, and a Java version is under
development.

SimRobot consists of three parts: thesimulation kernel, thegraphical user interface, and a
controller that is provided by the user. The GermanTeam 2002 has implemented the whole sim-
ulation of up to eight robots including the inter-process communication described in appendixC

70

5.1. SIMGT2002 71

as such a controller, providing the same environment to robot control programs as they will find
on the real robots. In addition, an object calledthe oracleprovides information to the robot con-
trol programs that is not available on the real robots, i. e. the robots’ own location on the field,
the poses of the teammates and the opponents, and the position of the ball. On the one hand,
this allows implementing functionality that relies on such information before the corresponding
modules that determine it are completely implemented. On the other hand, it can be used by the
implementators of such modules to compare their results with the correct ones.

SimRobot, linked with the special controller that provides the interface to the robots and
linked with the robot code is calledSimGT2002. The following sections will give a brief overview
over SimRobot, and how it is used to simulate a team of robots.

5.1.1 Simulation Kernel

The kernel of SimRobot models the environment, simulates sensor readings, and executes com-
mands given by the controller. A simulation scene is described textually as a hierarchy of objects.
Objects are bodies, emitters, sensors, and actuators. Some objects can contain other objects, e. g.
the base joint of a robot arm contains the objects that make up the arm.

Emitters. SimRobot uses a very abstract model of measurable quantities. Instead of defining
objects as lamps or color cameras that emit and measure light, it uses objects that emit intensities
of particular radiation classes(emitters) and objects that measure these intensities (sensors).
Hence, it is up to the user to define some of these abstract classes to represent real phenomena.
In case of the Sony AIBO robots, the radiation classes 0, 1, and 2 represent the three channels of
the YUV color model.

There are only two types of emitters in SimRobot:radial emitterssend their radiation to all
directions, whereasspot emittershave a certain opening cone. In addition, an ambient intensity
can be specified for each radiation class that defines the base intensity for all surfaces in a simu-
lation scene. Hence, the surfaces that are not reached by any of the emitters in a scene still have
a sensible radiation signature. In the RoboCup simulation, only a high degree of ambient white
light is used and no emitters.

Bodies. Currently, bodies can only be modeled as a collection of polygons. Each polygon has
a radiation vector that defines its appearance—together with the radiation of the emitters that
reaches the surface. The GermanTeam uses color tables to map the colors measured by the robot’s
camera ontocolor classes. To avoid to have two different color tables, one for the real robot and
one for the simulation, the simulation scene is automatically colored according to the actual
color table. This is also the reason why no additional emitters are employed for illumination.
Their influence may have changed the colors of the surfaces, resulting in a wrong mapping from
colors to color classes in the image processing modules of the simulated robots.

Actuators allow the user or thecontroller to actively influence the simulation. They can be used,
e. g., to move a robot or to open doors. Each actuator can contain other objects, i. e. the objects

72 CHAPTER 5. TOOLS

that it moves. SimRobot provides four types of actuators: rotational joints, translational joints,
objects moving in space in six degrees of freedom, and vehicles with typical car kinematics, i. e.
with a driving axle and a steering axle. SimRobot is only a kinematic simulator; thus it cannot
directly simulate walking machines. Therefore, the motion of the simulated AIBOs is generated
by a trick: the GermanTeam 2002 robot control program has its own model of which kind of walk
will generate a certain motion of the robot. This model is also employed for the simulation. Thus,
the simulated robots will always behave as expected by their control programs—in contrast to the
real robots, of course. In addition, the body tilt is simulated. This is performed on the assumption
that the body roll is always zero. In each simulation step, the distance of the four feet to the
ground is determined. Then the robot body is moved and rotated around the tilt axis in a way that
at least one foreleg and one hind leg touches the ground. This approach only fails if the feet are
not the lowest parts of the robot’s body, e. g. when it performs the “getup” action.

Sensors. SimRobot provides a wide variety of sensors. However, only three types of informa-
tion can be sensed:

Intensities of Radiation. There are two types of cameras that allow measuring two-dimensional
arrays of intensities of radiation. Thecameraobject imitates normal pinhole cameras, and
is used to simulate AIBO’s color camera. Thefacettesimulates cameras with a spherical
geometry, i. e. the angle between all adjacent pixels is constant. The sensor readings can
be calculated usingflat shading, i. e. each surface has a single combination of intensities,
or with different intensity signatures for each pixel. In addition, it is possible to determine
shadows.

Distances.There are several sensors that measure distances. Awhiskercan imitate the behavior
of an infrared sensor. On the one hand, it is used to simulate the PSD sensor in AIBO’s
head. On the other hand, whiskers could be employed to implement the ground contact
sensors in the feet of the robots. As these sensors are not used by the GermanTeam, this
has not been implemented yet.

Collision detection. For every actuator, it can be detected whether a collision-free execution of
the last command was possible. This information is not available in reality, but it is required
for the simulator to suppress motions that result in collisions. However, as each robot has
20 degrees of freedom, this costly calculation is even too slow for a single robot, but it
surely is for eight. Therefore, the current simulation does without a collision detection.

Apart from the latter, all sensor readings can be disturbed by a selectable amount of white
noise.

5.1.2 User Interface

The user interface of SimRobot includes an editor for writing the required scene definition files
(cf. Fig.5.1, upper left window). If such a file has been written and has been compiled error-free,

5.1. SIMGT2002 73

Figure 5.1: SimRobot simulating the GermanTeam 2002.

the scene can be displayed as a tree of objects (cf. Fig.5.1, upper middle window). This tree is
the starting point for opening further views. SimRobot can visualize any object and the readings
of any sensor that are defined in a scene. Objects are displayed as wire-frames with or without
hidden line removal (cf. Fig.5.1, lower left and upper right window) and parts of the scene can
be hidden. In case of the lower left window, the flags, the goals, and the field border are not
displayed.

Sensor data can be depicted as line graphs, column graphs, monochrome images, and color
images (cf. Fig.5.1, middle right window). In addition, depth images can be visualized as single
image random dots stereograms. Any of these views and a numerical representation of the sen-
sory data can be copied to the system’s clipboard for further processing, e. g., in a spreadsheet
application or a word processor. The whole window layout is stored when a scene is closed and
restored when SimRobot is started again with the same scene.

SimRobot also has a console window that can be used to enter text and to print some data on
the screen. SimGT2002 uses this window to print text messages sent by the robot processes, and
it allows the user to enter a large variety of commands. These are documented in appendixI.

74 CHAPTER 5. TOOLS

5.1.3 Controller

The controller implements the sense-think-act cycle; it reads the available sensors, plans the
next action, and sets the actuators to the desired states. Then, SimRobot performs a simulation
step and calls the controller again. Controllers are C++ classes derived from a predefined class
CONTROLLER. Only a single function must be defined in such a controller class that is called
before each simulation step. In addition, the controller can recognize keyboard and mouse events.
Thereby, the simulation supports to move around the robots and the ball.

A very powerful function is the ability to insertviewsinto the scene. These are similar to
sensors but in contrast to them, their value is not determined by the simulation but instead by
the controller. This allows the controller to visualize, e. g., intermediate data. In fact, the middle
right window in figure5.1 is a view that contains a camera image overlaid by the so-called blob
collection, i. e., colored octagonal areas detected by the robot control program’s image processor.
The lower right window is completely drawn by the controller: a field with the visualization of
the estimations of a robot’s own pose (in this case the right goalie), the locations of some other
robots, and the position of the ball.

The whole environment that the processes of a robot control program will find on a real robot
has been resembled as such a controller. It supports multiple robots, each robot can run multi-
ple processes, these processes can communicate with each other, and also the communication
between different robots is supported. Thus the code of a whole team of four communicating
robots runs in the simulator.

5.2 RobotControl

In contrast to SimGT2002 that evolved from a pure simulator, RobotControl (cf. Fig.5.2) was
initially intended to be a general support tool that should help to increase the speed and comfort
of the software development process.

First, it functions as a debugging interface to the robot. Via the wireless network or a memory
stick, messages can be exchanged with the robot. Almost all internal representations of the robot
(images, body sensor data, percepts, world states, sent joint data) and even internal states of
modules can be visualized.

In the other direction, many intermediate representations of the robot can be set from Robot-
Control. For instance, one can send motion requests that are normally set by the behavior control
module of the robot to test the motion modules separately.

Second, as in SimGT2002, the complete source code for the robots is compiled into Robot-
Control and encapsulated in “simulated robots”. The debugging interfaces of RobotControl func-
tion both for the simulated and the physical robots. So it is possible to test source code without
switching to a robot. The virtual robots can receive their data from a simulator (which was
adapted from SimGT2002), a real robot, or a log file. The GermanTeam could develop its vi-
sion modules long before they had a wireless network connection to the robot by testing the
algorithms on log files.

5.2. ROBOTCONTROL 75

Figure 5.2: The RobotControl application

In addition, a variety of other helper tools is integrated into the application, e. g. for color
calibration or for copying data to the memory sticks.

Almost all of RobotControl’s functionality was programmed into toolbars and dialogs. There
are simple interfaces to create and embed them in the application, so that many team members
could easily program graphical user interfaces for their debugging needs. AppendixJ describes
that in detail.

This is also one of the two main differences between RobotControl and SimGT2002: In
SimGT2002 most of the interaction with the program is done using a text console whereas in
RobotControl many graphical user interfaces exist. As many tasks require a graphical user inter-
face, e. g. creating color tables, SimGT2002 provides only a small portion of the functionality of
RobotControl.

The second difference is that RobotControl can only communicate with exactly one simulated
or physical robot at the same time. Although it can simulate up to 4 robots simultaneously, only
one of them can be “connected” to the application.

RobotControl has a very modular structure (cf. Fig.5.3): it almost only consists of the sim-
ulated robots, a simulator, the tool bars, the dialogs, an interface to the Wireless network, and

76 CHAPTER 5. TOOLS

queueToRobot queueFromRobot

queueToLocalProcesses queueFromLocalProcesses

queueToGUI

simulated
robot 1

simulated
robot 2

simulated
robot 3

simulated
robot 4

only 1 connected simulated robot

dialogs toolbars

log player

physical

robot

WLAN Memory Stick

RobotControl

Figure 5.3: Data flow in the RobotControl application

message queues (cf. Sect.E.1) between these units. Dialogs and toolbars only communicate via
the queues.

To send data to the robot or to the simulated robot, messages are put into thequeue-
ToRobot/queueToLocalProcesses. The queueToRobotcan be sent to the robot via the wireless
network or by writing the queue onto a memory stick. ThequeueToLocalProcessesis sent to the
simulated robot that is currently connected to the application. One can change, which of the 4
robots shall be connected. Messages from the robot can be received over the wireless network
or from a log file that was written from the robot onto the memory stick. They arrive in the
queueFromRobot. From there, some of the messages are first sent to the simulated robotqueue-
ToLocalProcesses, some directly to thequeueToGUI. All messages from the currently connected
simulated robot arrive in thequeueFromLocalProccessesand later in thequeueToGUI. At last,
the messages in thequeueToGUIare distributed among the dialogs and toolbars. Thelog player
records messages from thequeueFromRobotand stores them there again when playing a log file.

5.3 Router

It is desirable to exchange data between the tools running on the PC and the robots. This year,
a wireless network was introduced into the Sony Legged Robot League. On the side of the PC,
only Linux and CygWin are supported platforms for the wireless communication. However, the

5.3. ROUTER 77

GermanTeam uses tools running natively under Microsoft Windows. Therefore, they have no
direct access to the new wireless communication capabilities of the robots.

That is the point where theRoutercomes into play. It functions as a mediator between the
physical robots and the native Windows tools. On the one hand, it communicates with up to eight
robots using thetcpGateway. On the other hand, it exchanges data with the Windows tools via
a different IP-port for each robot. The data transferred aremessage queues, one from the PC to
each robot, and a second back from each robot to the PC.

That way, RobotControl can send a message queue to the robot by sending it to the appro-
priate IP-port (by convention the least significant byte of the robot’s IP-address plus 15000). The
Router will receive the queue and forward it to thetcpGatewayon the PC. Then the gateway will
send the queue to thetcpGatewayon the robot via the wireless network. The latter will again
forward the message queue to theDebugprocess on the robot. The other way round, the robot
can send a message queue to RobotControl.

start.bash. The router needs a couple of configuration files to work properly, namelycon-
nect.cfg, object.cfg, andport.cfg. These files are small and quiet easy to edit manually as long
as one only wants to communicate with one robot using thetcpGateway. But they are hard to
read and maintain for multiple robots, e. g. for two robot teams of four players each, complete
point-to-point connections between all robots of the same team,roboCupGameManagercontrol
for these eight robots, and debug connections to the PC.

Because these configuration files have to be changed to adapt to different condi-
tions (smaller number of robots, only one team, noroboCupGameManager), the script
T:\GT2002\Bin\start.bashautomates that work. The following message is generated by the
script after its first execution, i. e. whenconnect.cfg, object.cfg, andport.cfgdo not exist. It ex-
plains the usage of the script:

usage: start.bash [-gm] [IP | (subnet [auto |
(A1 [A2 [A3 [A4 [B1 [B2 [B3 [B4]]]]]]])])]

where -gm starts the RoboCup Game Manager
subnet is equal for all robots followed by .Ai or .Bi
A1 is the robot to be controlled by RobotControl
Ai are own robot IP adresses
Bi are opponent robot IP adresses

example1: start.bash # uses old *.cfg
example2: start.bash -gm 10.0.1.100
example2: start.bash 10.0.1 100 101
example3: start.bash 10.0.1 auto
example4: start.bash 10.0.1 100 101 102 103 110 101 102 103

If the script is parameterized correctly, it performs all tasks required to start the router:

• Stop previous instances of theipc-daemonand theoobjectManagerwith stop.bash,

• start a new instance of theipc-daemon,

78 CHAPTER 5. TOOLS

• start theoobjectManagerwhich will start the router, and, if desired, theroboCupGameM-
anager,

• and kill theipc-daemonafter the termination of theoobjectManager.

stop.bash. As already mentioned above, there is second script calledstop.bashin the same
directory that removes all processes started bystart.bash, including theipc-daemonand its tem-
porary files.

5.4 Motion Configuration Tool

TheMotion Configuration Toolwas developed by the team of the Humboldt-Universität zu Berlin
for RoboCup 2000, and it was modified to fit into the new modular architecture in 2002. It com-
piles a set of motion specifications described in a special language into C code with a Flex/Bison-
based parser. The parser checks the motion set defined for consistency, i. e., it checks for missing
transitions from one motion to another and for transitions to unknown motions.

With this tool it is possible to generate motions that consist only of fixed sequences of joint
positions quickly and easily. This is the case for all kicks implemented by the GermanTeam as
well as some other motions including, e. g., head stand and ball holding. The resulting C code is
integrated into theSpecialActionsmodule (cf. Sect.3.7.2).

For interactively testing motions and their transitions, RobotControl provides a dialog to
request specific motions. The requested motion and the transition from the current one will be
executed immediately (cf. Sect.J.5.2). Furthermore, a second dialog is provided to transmit new
motion descriptions to the robot and execute them without the need to recompile anything (cf.
Sect.J.5.4).

Motion Description Language. The specification for a single motion consists of the descrip-
tion of the desired action and the definition of a set of transitions to all other motions. This is
simplified by using groups of motions, e. g., it is possible to define that the transition from motion
X to any other motion always goes via the motionY .

As most simple motions (such as kicking or standing up) can be defined by sequences of
joint data vectors, a special motion description language was developed, in which all motions
are defined. Programs in this language consist of transition definitions, jump labels, and lines
defining motor data. A typical data line looks like this:

˜ ˜ ˜ ˜ ˜ ˜ -350 -190 1750 -350 -190 1750 -1840 -40 2500 -1840 -40 2500 1 25

The first three values represent the three head joint angles, the next three values describe the
mouth and the tail angles, followed by the twelve leg joint angles, three for each leg, all angles
given in milliradians. The last but one value decides whether specified joint angles will either be
repeated or interpolated from the current joints angles to the given angles. The last value defines
how often the values will be repeated or over how many frames the values will be interpolated,

5.4. MOTION CONFIGURATION TOOL 79

respectively. The tilde character in the first six columns means that no specific value is given,
i. e. “don’t care”. This has special importance for the head joint angles as it allows head motion
requests to be executed.

Chapter 6

Conclusions and Outlook

The GermanTeam was founded a few months before the RoboCup 2001 in Seattle. The new
team members had only little time to get into the source code previously developed by the team
from the Humboldt-Universiẗat zu Berlin. This lead to a certain dissatisfaction with the achieved
results in 2001.

But in this year, as there were was almost 10 months of time, the team had the chance to
rewrite the whole programs nearly from scratch. The software architecture, debugging mecha-
nisms, and support tools were completely renewed. Although this consumed a lot of time, we
think that this paid out.

Despite all the problems that arise when software is developed by a group of persons dis-
tributed over different towns, we recommend to build up national teams as the GermanTeam is
one. Having enough participating team members, different solutions for single tasks can be em-
ployed and compared to each other. The different scientific backgrounds of the members from
different universities enriched the project very much. At last, the rivalry between the single teams
results in better solutions for single tasks.

Altogether we were quite satisfied with the results we achieved, and we are continuing that
work. We hope to reach even better results in the competitions next year in Padova.

6.1 The Competitions in Fukuoka

6.1.1 Results

When the GermanTeam travelled to Fukuoka, the code (especially the behavior) was far from
being finished. But from game to game a lot of improvements were made. All in all, we finished
the round robin being second in the group (cf. Tab.6.1). In the quarter final, we had to compete
against last year’s world champion UNSW and lost.

Although we only reached the quarter final, we were satisfied with the results. There were
only two other teams that scored a goal against CMU, this year’s world champion, i. e. Tokyo
in the round robin and UNSW in the final. Only one other team could score against UNSW, i. e.
CMU in the final.

80

6.1. THE COMPETITIONS IN FUKUOKA 81

Round Robin
GermanTeam – Rome 5:0
GermanTeam – Tokyo 4:0
GermanTeam – CMU 1:3
GermanTeam – GeorgiaTech4:1
Quarter Final
GermanTeam – UNSW 1:6

Table 6.1: The results of the GermanTeam in Fukuoka

6.1.2 Experiences

Kicking the Ball. Except from being at the border of the field, the robots of the GermanTeam
never tried to get behind the ball to reach a good kick position. Instead of this they always
walked directly to the ball, and only when they reached it they chose one out of ten possible
kicks dependent on the desired kick direction. To get the ball behind them, they chose thebicycle
kick. It proved to be a very good strategy because they never lost time for getting behind the ball.
Other robots that also tried to get for the ball did not prevent them from kicking.

Communication. Another important issue is that it is mostly fatal when two robots of the own
team try to kick the ball at the same time. Therefore a big variety of approaches to prevent the
robots from getting stuck together was implemented and tested. Using the wireless network, two
robots that were close to the ball tried to negotiate which of them will kick the ball. The other
robot then followed the ball in a safe distance. Although it sometimes happened that the robot
closer to the ball recoiled from it, in general it was a very successful approach. Finally, the robots
of the GermanTeam played better with wireless communication than without.

Position-Dependent Behavior. A good localization allows implementing completely new be-
haviors. As the GermanTeam had one this year, the position of the robots could be used for very
many decisions. Each robot had its own “area of responsibility”, which prevented the robots from
being all in the proximity of the ball. Besides that some “emergent” passes were possible. Very
rarely, our robots walked into their own penalty area.

The RoboCup Game Managerby Sony makes the games look much more natural for the
audience. As the robots of the GermanTeam walked on their own to their kickoff positions, it
was almost never needed to get on the field for carrying the robots around. The current score that
is transmitted by the program allows performing some dances after the game depending on if the
game was lost or won. Next year, the robots may even change their behavior depending on the
score.

Speed and Precision. Although the basic behaviors of the GermanTeam improved very much
from the last year, they are still too slow and too imprecise. To win a RoboCup competition in

82 CHAPTER 6. CONCLUSIONS AND OUTLOOK

the Sony Four Legged League, one has to have the fastest and most precise motions, which we
had not.

6.2 Future Work

The GermanTeam now owns a powerful code basis for the next year’s work. So less time needs
to be spent on the software architecture and more new approaches can be examined. For the
RoboCup German Open in April 2003, each of the four universities will set up its own team based
on the shared code basis with own solutions for different tasks. From their different research
interests, the teams will also focus on different topics next year.

6.2.1 Humboldt-Universität zu Berlin

An important aspect of our future work will be the application of case based reasoning to robot
control architectures and machine learning. The efforts will be pursued not only in the Sony
Legged League but also in the Simulation League.

A behavior architecture called the “Double Pass Architecture” [5] has already been imple-
mented in the Simulation League and will be applied to the Sony Legged League. It provides
for long term “deliberator” planning and short time “executor” reactions. The executor allows
quick reactions even for the options on the higher levels in the option hierarchy. This is made
possible by using the reduced search space defined prior by the deliberator. It implements a kind
of bounded rationality. Therefore, the state machine concept has to be extended for the two sep-
arate passes of the deliberator and the executor (the name “Double Pass Architecture” refers to
these two passes). Many useful behaviors have been developed. Selecting the appropriate one
becomes an increasingly difficult task. It becomes even more difficult if behaviors are combined
to more complex ones, such as they can be described in the option hierarchy. TheExtensible
Agent Behavior Specification Language(XABSL) will be extended and adopted to that.

Another prerequisite of useful decisions is a reliable world model. In case of the Sony AIBO,
knowledge about the environment is exclusively derived from the camera image. With this lim-
ited field of view, information gathering has to be optimized. First steps in this direction have
been taken by actively scanning for landmarks using world model information (i. e. pointing the
camera in a direction where a landmark should be according to the world model). A tighter cou-
pling of information gathering and information processing turned out to be desirable rather then
having the two run as separate processes. Active vision and attention based vision approaches
will be examined. World and object modeling will be extended to make use of negative infor-
mation (e. g. the ball was not seen) and to actively search for information that is needed (e. g.
have the robot look for a specific landmark that is needed to clarify the robot’s position on the
field). Having both, complex behavior and reliable world model, the correspondence of situa-
tions and most appropriate actions have to be resolved. This will be done by methods of case
based reasoning. Cases describe typical behavior in typical situations (e. g. standard situations).
The recent situation is matched against the case base, and the most similar cases are analyzed for
proposals of behaviors. The behaviors are adapted according to the recent situations. Problems to

6.2. FUTURE WORK 83

be solved in the next steps include description of cases, definition of useful similarity measures
and adaptation methods.

6.2.2 Technische Universiẗat Darmstadt

The team in Darmstadt will continue their efforts towards a complete, efficient, and validated
simulation of the four-legged robot’s dynamics and its use for dynamic off-line optimization,
on-line stabilization, and control of dynamic walking and running gaits. For the behavior control
of cooperating robots as well as for object recognition it is planned to investigate alternative
approaches to the already existing ones.

In 2001, the GermanTeam was able to measure the true positions of the robots on the field
with a camera mounted at the ceiling. We propose to reintegrate such a mechanism in GT2003
at least for one half of the field. By this different localization methods can be compared on
an empiric level. Besides with the exact data not only the self-localization but also a number of
other algorithms can be tested and even automatically learned. This includes localization of other
robots, the ball, odometry, and others.

6.2.3 Universiẗat Bremen

First of all, the work on theLinesSelfLocator(cf. Sect.3.3.3) will continue, enabling the robots
to self-localize without the colored beacons.

As the use of the Markov-localization was quite successful in the GermanTeam 2002, proba-
bilistic approaches will also be introduced to model the location of the ball and of the opponents.
In contrast to the field of self-localization, in which the sensor resetting approach by [14] can
only be used if an estimation of a global pose can directly be derived from the sensor readings,
the sensor resetting method seems to be a promising approach for the probabilistic modeling of
the locations of the opponents and the ball in a robot-centric system of coordinates. In addition,
work that was done on tracking people [17] can be integrated in such an approach. The modeling
of the world state will also exploit the ability of the robots to communicate.

After such a probabilistic world model has been realized, it will be investigated, how the
uncertainties can influence the behavior, or whether even a probabilistic behavior control can be
implemented. The German Open 2003 will be the testbed for such an approach.

6.2.4 Universiẗat Dortmund

We will continue in developing a robust and detailed distributed world model. We will implement
methods that consider the reliability of the particular percepts and classifications. For that, we
will implement and evaluate a novel classification method that implies confidence information
for every classification. Furthermore we are planning to develop a world-model interchange pro-
tocol (WIP), that allows including and excluding single robots from the world-model interchange
transparently.

Chapter 7

Acknowledgements

The GermanTeam and its members from Berlin, Bremen, Darmstadt, and Dortmund gratefully
acknowledge the continuous support given by the Sony Corporation and its Open-R Support
Team. The GermanTeam thanks the organizers of RoboCup 2002 for travel support. The team
members from Berlin and Bremen thank the Deutsche Forschungsgemeinschaft (DFG) for fund-
ing parts of their respective projects. In addition, the team members from Bremen thank the
Deutscher Akademischer Austauschdienst (DAAD), the American Association for Artificial In-
telligence (AAAI), and the Fachbereich 3 of the Universität Bremen for travel support. The
team members from Dortmund thank the Deutsche Arbeitsschutz Ausstellung (DASA) and the
Thyssen Krupp AG for their effective cooperation. Further, we thank the Deutscher Akade-
mischer Austauschdienst (DAAD), Lachmann & Rink GmbH, the Dortmund Project, the Freun-
degesellschaft der Universität Dortmund e.V., and the Faculty of Information Science for travel
support.

The GermanTeam uses a variety of code libraries and tools and also likes to thank the authors
of them:

• This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

• A code library called “Sizing Control Bars” from Cristi Posea.
(http://www.datamekanix.com) is used for the dialogs in RobotControl.

• A code library for “Internet Explorer-like toolbars” from Nikolay Denisov (nick@actor.ru)
is used.

• The code library “Grid Control” from Chris Maunder (cmaunder@mail.com) is used for
the “Settings” dialog.

• The “dot” tool from the GraphViz collection (http://www.graphviz.org) is used for behav-
ior documentation purposes.

84

Appendix A

Installation

The GermanTeam uses Microsoft Windows as development platform. The package provided was
used under Windows 2000 and Windows XP. It may also run under Windows 98/ME, but that
has not been tested. The center of the development process is Microsoft Visual C++; all parts of
the system are edited and built with this software.

A.1 Required Software

As there are quite a large number of developers in the GermanTeam, the software installation
must be flexible, because they use computers with different configurations. The GermanTeam
uses two virtual drive letters for the installation, i. e. drive letters created with the shell command
subst:

U: contains most of the software packages that are required for the development.

T: contains the source code of the GermanTeam.

The two drives have to be assigned before the installation of the software, and the assignment
has to be repeated after each reboot. So this will normally take place in a batch file that is called
during start-up, e. g.

subst t: "C:\Documents and Settings\%USERNAME%\
My Documents\RoboCup"

subst u: "C:\Program Files\RoboCup"

Of course, the two folders have to be created before the virtual drives can be assigned to
them.

There are two possible configurations: on the one hand, the GreenHills C++ compiler can
be used for the development, on the other hand, the gcc can be employed together with the new
Open-R SDK. There are tools that have to be installed for both possibilities and others that are

85

86 APPENDIX A. INSTALLATION

only required for one case. The following three sections list the software packages together with
their necessary installation paths. In addition, the version numbers of the tools used are specified.
That does not mean that other versions will not work, but only the given versions were tested.

A.1.1 Common Requirements

• Microsoft Windows 2000/XP

• Microsoft Visual C++ 6.0 SP5 (can be installed anywhere)

• CygWin 1.3.10 (u:\cygwin)

• CygIPC 1.10-1 (unpack it to CygWin-Path/). Do not install it as a service!

• gtk+ 1.3 (unpack it to CygWin-Path/)

• Open-R for CygWin 1.1.27 (asu:\OPENR WIN)

• Doxygen (http://www.doxygen.org). The three binariesdoxygen.exe, doxysearch.exe, and
doxytag.exehave to be copied to the directoryt:\GT2002\Tools\Doxygen\. This has to be
done after the source code of the GermanTeam has been installed.

A.1.2 GreenHills-Based Development

• Aperios 1.3.2 (u:\aperios)

• GreenHills C++ (u:\green)

• Open-R for Aperios R008 (asu:\OPENR SYS), only works with RoboCup memory sticks

A.1.3 gcc-Based Development

• Open-R SDK and MIPS developer tools (CygWin-Path/usr/local/OPENR SDK)

A.2 Source Code

The source code has to be unpacked toT:\ generating a directory tree starting withT:\GT2002.
There are several subdirectories under this root:

Bin contains the binaries of the programs running on the PC after they have been compiled.

Build contains all intermediate files during compiling.

A.2. SOURCE CODE 87

Config contains the configuration files. Most of them will also be copied toOPEN-R/APP/CONF
on the memory stick.

Doccontains this document1 and the documentation generated byDoxygenfrom the source files.

Make contains makefiles, batch files, and Visual C++ project files. TheGT2002.dswis located
here, i. e. the file that has to be launched to open Visual C++. In addition, there are some registry
files (.reg) that can be added to the registry by starting them. For instance, the fileSimGT2002.reg
contains the window layouts of several SimRobot scenes in theT:\GT2002\Config\Scenespath.

Src contains all source files of the GermanTeam.

Toolscontains additional tools, e. g.Doxygen.

The directorySrccontains subdirectories that can be grouped in two categories: on the one
hand, some directories contain code that runs on the robots, on the other hand, other subdirecto-
ries hold the code of the tools running on the PC.

A.2.1 Robot Code

DataTypes contains source files implementing classes the main purpose of which is to store
information rather than to process it. Objects of classes defined here are often communicated
between different processes or even different robots.

Modulescontains source files implementing the modules of the robot control program. For each
module there exist an abstract base class, one or more different implementations, and, at least if
there are multiple implementations, a module selector that allows switching between the different
implementations.

Platform contains the platform dependent part of the robot code. There exist three subdirecto-
ries containing the platform specific implementations forAperios, Win32, andLinux (CygWin).
A fourth directoryWin32Linuxcontains implementations that are shared between CygWin and
Windows.Platform itself contains some header files that automatically include the code for the
right platform.

Processescontains one subdirectory for each process layout, and each of these subdirectories
contains one directory for each process, theobject.cfg, the connect.cfg, and the.mcf/.ocf-file
required for the process layout.

1Or at least it is a good idea to place it there.

88 APPENDIX A. INSTALLATION

Tools contains all that does not fit into the other categories. The mathematical library (cf.
Sect.2.1.4) can be found here, the implementation of streams (cf. App.D) and message queues.
However, the code of the Windows tools such as RobotControl cannot be found here.

A.2.2 Tools Code

MotionConfigToolConsolecontains the code of the tool (cf. Sect.5.4) to create new motions,
i. e. special actions (cf. Sect.3.7.2).

RobotControl contains the code of the tools with the same name (cf. Sect.5.2).

Router contains the code of the mediator between the robots and the Windows-based tools such
as RobotControl (cf. Sect.5.3).

SimRob95 contains SimRobot, a kinematic robotics simulator. It is the framework for
SimGT2002 (cf. Sect.5.1) and the simulation integrated into RobotControl (cf. Sect.5.2).

A.3 The Developer Studio Workspace GT2002.dsw

The Developer Studio Workspace GT2002.dsw contains several projects, most of them in differ-
ent configurations:

Documentation. This project creates the documentation of the code usingDoxygen. The
project the documentation of which will be generated can be selected betweenGT2002, Robot-
Control, andSimGT2002. Please note that legacy code such asSimRobotdoes not supportDoxy-
genand generates no proper help files. In addition, the description of the robot behavior modeled
with XABSLcan be created.

GT2002 creates the code for the robots. It can be selected betweenRelease(no debugging in-
formation and support),Debug (debugging information and support, but not via the wireless
network), andDebugWLan(debugging information and support via the wireless network). In
addition, one of the four process layoutsHU1, HU2, TUD1, andUB1 can be selected. When
GT2002 is built, the batch fileGT.batis called. It selects whetherGT.bash(employing the Green-
Hills compiler) orGT.bash.gcc(using the gcc) is executed. ThereforeGT.bathas to be edited to
switch between the two compilers.

The result of the build process can be copied to a memory stick by callingcopyfiles.bash.
Please note that this file assumes that the memory stick can be found in driveE:. If this is not the
case, the shell script must be adjusted appropriately. Trycopyfiles.bash - -helpto see all options.

A.3. THE DEVELOPER STUDIO WORKSPACE GT2002.DSW 89

MotionConfigToolConsolecreates the tool with the same name (cf. Sect.5.4). It can only be
selected between a release version with optimized code and without debugging information and
a debug version. The executable will be copied toT:\GT2002\Bin.

RobotControl can be built for the four different process layouts. The executable will be copied
to T:\GT2002\Bin.

Router. The router (cf. Sect.5.3) can only be built as a debug or a release version. The re-
sult will be copied toT:\GT2002\Bin, together with several executables from the Open-R for
Linux/CygWin release. Note that only the debug version checks for errors during the initializa-
tion of the program.

SimGT2002 can be built for the four different process layouts (as RobotControl). The exe-
cutable, together with the help file, will be copied toT:\GT2002\Bin.

The other projects generate libraries required by one of the projects named above. There is
no need to build them directly because they will be built on demand.

Appendix B

Getting Started

If you have installed the required software and the source code we suggest you to follow the
introduction to GermanTeam’s code given in this section. Step by step it is explained how to use
the debug tool on the PC, how to play with the robots and how to let the robots play.

B.1 First Steps with RobotControl

The debug tool of the GermanTeam provides a lot of possibilities. In this section the most use-
ful features and some impressive effects are presented. For a more detailed description see ap-
pendixJ.

B.1.1 Looking at Images

Image and Segmented image. Open the Image Viewer Dialog, the Color Table Di-
alog and the Color Space Dialog. In the Log Player Toolbar, open a logfile, e. g.
Config\logfiles\againstcmu1.log and click theStep Forwardbutton several times. In the bot-
tom right corner of RobotControl the name of the current log file and the current number of the
message are displayed.

All images contained in the logfile are displayed in theImage Viewerand in theColor Table
Dialog. Both dialogs also show the segmented image. TheColor Table Dialogand theColor
Space Dialogshow the colors of the YUV-cube used by the current image.

With clicks with the left and the right mouse buttons into one of the images in theColor Table
Dialog, you can modify the color table. Clicking and dragging with the left mouse button in the
Color Space Dialogchanges the point of view. With the context menu you can select to show
height maps of single channels of the image. The image viewer has two more areas to display an
image. In the context menu of these areas you can choose the images to be shown there, e. g. the
raw image and the segmented image again.

Results of the Image Processing. All images from the logfiles are not only displayed by the
dialogs, but also put into the image processor, too. Each image contains position and rotation of

90

B.2. PLAYING SOCCER WITH THE GERMANTEAM 91

the camera relative to the body. This information was calculated by theSensorDataProcessoron
the robot. Therefore theSensorDataProcessoron the PC has to be switched off for the image
processor to work properly: in theSettings Dialogchange to the settingimages from robot. If
that setting does not exist, create a new one by pressing the new button while the default set-
ting is selected. Then change the local solution for theSensorDataProcessorfrom “Default” to
“disabled”.

Several debug drawings illustrate how the image processor works. With the context menu
the drawings can be selected. Select “perceptCollection”, “ball” and “horizon” to see the hori-
zon line in the image and how the flags, the goals, and the ball are recognized. The color table
T:\GT2002\Config\fukuoka.c64is adapted to the logfiles from Fukuoka. If you change some-
thing in the color table, you can see the effect on the percepts immediately. To see recognized
lines, select the debug drawing “lines” and change the local solution for theLinesPerceptorfrom
“disabled” to “Default”.

B.1.2 Discover the Simulator

The simulator provides the same data as a real robot would do. To see this, open theSimulator
Toolbar, theObject Viewer(i. e. press the button on theSimulator Toolbar) and theLarge Image
Viewer. In the Simulator Toolbarpress thestart button. In theImage Vieweryou can see the
images the simulator provides.

With theJoint viewer Dialog, you can visualize the joint and sensor data provided by the sim-
ulated robot. In the debug keys toolbar selectEdit table for local processes. Select the debug key
“sendJointData” and chooseAlways. Then select the debug key “sendSensorData” and choose
Always. With the context menu in the joint viewer select “Sensors: head” and “Joints: Head”.
The line graphs show the values of the joints and the sensors while the robot looks to the left and
to the right alternately. Then select “Actorics: legFR” and deselect the values for the head. In the
Simulator Toolbarpress theback switchof the robot two times for the duration of a second to
start the robot. Now you can see the joint data of the front right leg while the robot moves.

B.2 Playing Soccer with the GermanTeam

B.2.1 Preparing Memory Sticks

First of all you need a complete build of GT2002, a gcc build for the use of theProgramming
Memory Stick(PMS) or a GreenHills build for the use of theRoboCup Memory Stick. You can
change between these two possibilities by editingT:\GT2002\Make\GT.bat. The result of the
build process will be inT:\GT2002\Build\MS. This directory contains all binaries and system
configuration files, but not our own configuration files.

Then you may want to change the player role, the team color or the IP address, e. g. to prepare
memory sticks for two different robots. You can useRobotControlfor that: first configure you
wireless network with theWLan Toolbar(cf. Sect.J.2.5), even if you do not plan to use it. After

92 APPENDIX B. GETTING STARTED

that use thePlayers Toolbar(cf. Sect.J.2.6) to change the player role and the team color, and
save these settings toT:.

Finally you will have to copy all binaries and configuration files to a memory stick. We wrote
T:\GT2002\Make\copyfiles.bashfor that reason. You may have to edit that file, because drive
E: is assumed to be the memory stick by default1. If it is adapted to your needs you may call it by
pressing thecopyfilesbutton inPlayers Toolbar(cf. Sect.J.2.6). Then you get information about
the configuration on the stick (team color, player role, WLan settings) to check whether writing
was successful.

B.2.2 Establishing a WLAN Connection

After inserting a WLAN card into an AIBO, creating a memory stick as explained in sec-
tion B.2.1, inserting it into an AIBO and starting that robot, you should be able to ping the
robot. Its IP address was shown as the result of executingt:/GT2002/Make/copyfiles.bash. The
IP addresses of the robot and the computer trying to ping it have to be in the same subnet, the
ESSID has to be the same as well as the (usage of) encryption. Furthermore you should use AP-
Mode 0 for adhoc connections and APMode 2 when using an access point or a computer with
Windows XP for pinging the robot.

If ping works for all robots you want to use, you should start the router (cf. Sect.5.3) by
executingT:\GT2002\Bin\start.bashwith the IP addresses of the robots as parameters. This will
enable you to establish a debug connection to one robot as well as the opportunity for all robots
of the same team to communicate with each other. The robots use point-to-point connections for
that. Each connection is visualized by a green or yellow LED, so if you want to start a complete
team of four robots, each should have 3 yellow and green LEDs switched on.

In some cases the Linux inter process communication (IPC) for Cygwin is not very stable,
so if you recognize strange error messages when trying to start the router, abort it. Executing
start.bashagain might help. Due to restrictions of Cygwin you will not be able to establish
all connections for two complete teams including intra team communication,RoboCup Game
Managercontrol and debug channels, but one and a half team should work fine.

B.2.3 Operate the Robots

Once all the robots are started, they are in the state “initial”. The red LEDs show the role of the
player:

1 red LED: Goalie

2 red LEDs: Defender

3 red LEDs: Striker 1

4 red LEDs: Striker 2
1If you use the option–forceyou should beabsolutely surethatcopyfiles.bashwill use the proper drive, because

it will format it without any question!

B.3. EXPLORE THE POSSIBILITIES OF THE ROBOT 93

Now you can start the router on the remote computer. If all the green LEDs are on, then
the robot has connections to all other robots. If not, then there are problems with the wireless
network.

Then you can use theRoboCup Game Managerby Sony or touch the back switches of the
robots to set them into the “ready” state. Both top LEDs of the robot blink alternating. Note that
the robots walk to their start positions on their own. If they walk around without arriving there,
you can press one of the pressure sensors on the head to stop them. If the robots arrived at their
start position, both top red LEDs blink synchronously. For thestriker1, you can set whether the
own team does the kickoff by using theRoboCup Game Manageror pressing one of the head
switches for more than one second.

The game can be started with theRoboCup Game Manageror by touching the back switches
of the robots. Both red top LEDs are on during the whole game.

The robots can be stopped again with theRoboCup Game Manageror by pressing their back
switch for more than 1 second. They are in the “ready” state again then.

B.3 Explore the Possibilities of the Robot

In this section some nice “experiments” are described that demonstrate the possibilities of the
robot. To have a more relaxed robot for these tests the we do not use the “play soccer” behavior
but a more leisurely one.

First compile the robot’s source code (projectGT2002) with configurationHU1 DebugWLan.
Then create the behavior withmake-with-another-temporary-initial-option.batin the folder
T:\GT2002\Src\Modules\BehaviorControl\XabslBehaviorControl. Select the option “head-
control-mode-switcher” as initial option. UseT:\GT2002\Make\copyfiles.bashto copy the re-
sult of the build process to a memory stick. You may want to establish a WLAN connection to
the robot. Refer to sectionB.2.2for this issue.

B.3.1 Send Images from the Robot and Create a Color Table

In the Debug Keys Toolbartype “1” in the edit box and select the buttonn times. Each time
you pressSendan image is sent from the robot. Now you can do with “real” images everything
described in sectionB.1.1with images from log files.

You can create a color table based on these images. Have a look at the segmented images
from the logfiles from Fukuoka iffukuoka.c64is used. The segmented images from your field
should look the same way with the color table for your field for the image processor to work
correctly.

B.3.2 Try Different Head Control Modes

In the initial behavior pressing the back button of the robot switches between different head
control modes:

94 APPENDIX B. GETTING STARTED

Follow tail. If the tail is moved the head follows its motion. The joint angles of the tail are used
to set the tilt and pan joints of the head. The roll joint of the head can be rotated and will
stay as forced.

Stay as forced.The head can be rotated to any position and will stay as forced. The tail follows
the motion of the head.

Look parallel to ground. The tilt and roll joint of the head are set such that the head always
looks parallel to ground, even if the robot’s body is rotated.

Search for landmarks. The robot looks to the left and to the right alternately. The tilt joint
corrects a possible inclination of the body of the robot.

Search for ball. The robot scans for the ball at the top, right, bottom and left. If the ball is found
it will be tracked.

B.3.2.1 Search for ball with different color tables

The robot can receive a new color table during runtime. This can be tested in the following way:
Switch to the mode “search for ball” so that the robot tracks the ball. In theColor Table Dialog,
clear the orange channel and use thesendbutton to send the new color table to the robot. Then
the robot can not see the ball anymore and starts looking around to find it. Pressundoandsend
to send the old color table—the robot finds the ball again and keeps looking at it.

B.3.2.2 Pay Attention to the Horizon when the Robot is Lifted from Ground and Rotated

The position of the horizon in the image depends on the rotation of the robot and the rotation
of the head. Request images from the robot every 500 ms with theDebug Keys Toolbarto see
this. The images can be shown with theLarge Image Viewer Dialog. Select the debug drawing
“horizon” in the context menu. In theSettings Dialog, change the local solution of theSensor-
DataProcessorfrom “Default” to “disabled”.

Now look at the images and the horizon when rotating the robot and the head. Attention!
When you rotate the robot it might execute a getup motion. To avoid this you can disable the
BehaviorControlon the robot with theSettings Dialog. You can not switch between different
head control modes until the solution for the behavior is switched to “XabslBehaviorControl”
again.

B.3.3 Watch Different Walking Styles

With the Settings dialog you can switch between different walking engines during runtime. To
compare the walking styles you can produce motion requests with theMotion Tester Dialogor
with theJoystick Motion Tester Dialog. As the BehaviorControl also produces motion requests
you have to disable it, i. e. select the setting “motion tester”.

You can also create motion requests using the head of the robot as an input device. If you
select the setting “walk demo” the tilt angle of the robot’s head controls the forward/backward

B.3. EXPLORE THE POSSIBILITIES OF THE ROBOT 95

speed, the roll angle the left/right speed and the pan angle the rotation speed. If you press the
back button, the robot looks straight ahead and stands still.

B.3.4 Create Own Kicks

To create your own kicks use theMof Tester Dialogand the “create kicks” setting which activates
the “Debug” solution of theMotionControl. Now you can move the legs of the robot to a desired
position and they will stay as forced. If you pressReadthe sensor data of each joint is read and
transmitted to the dialog. Now move the legs to the next position and pressReadagain. In this
way you can record the whole kick or an other motion step by step. WithExecuteyou can execute
the motion. For more details study sectionJ.5.4.

B.3.5 Test simple behaviors

To test some simple behaviors, all modules have to work with the default solution. If you did
some experiments before, change to the “default” setting in theSettings Dialog.

Open theXabsl Behavior Tester Dialogand select “Test on robot”. Now you can see the
option activation path, the current skill with its parameters, the current motion request and the
current values of the selected input symbols. If you move the ball in front of the robot you can
see how the value for “ball.distance” changes.

B.3.5.1 Test Skills

Skills are the basic components of the behavior, here is a closer look at two of them. With the
Xabsl Behavior Tester Dialog, you can test a skill with the desired parameters. Select the check
box “Test a skill” in the lower part of the dialog. In the edit boxes you can type in the parameters
for the skill.

To test the skill that goes to the ball select “go-to-ball” in the combo box. In the edit box for
the first parameter type for example “300” and press the buttonSend request. If the robot can see
the ball it goes there and stops at a distance of 300 mm (center of ball to point beneath the pan
joint of the head). Now try different distances and see how the robot reacts. You can also try to
change the third parameter of this skill - the maximal speed when going to the ball (mm/s).

With the skill “go-to-point” you can see if the self-localization works. The first to parameters
specify thex and they position of the robot on the field. The unit of measurement is millimeter,
the origin of the system of coordinates is the center of the field. Thex-axis points to the opponent
goal. The third parameter specifies the desired angle of the robot at the destination point. With
the other combo boxes in theXabsl Behavior Tester Dialogyou can set the output symbol for the
“head-control-mode” to different values, for example “search-for-landmarks”, search for ball or
“look-at-visible-landmarks” and study the effect to the accuracy of the localization.

96 APPENDIX B. GETTING STARTED

B.3.5.2 Test Options

Options represent the higher level of the behavior. They do not have parameters. You can select
different options with the combo box at the top of theXabsl Behavior Tester Dialog. Be sure that
the check box “Test a skill” is not selected.

The option “go-to-ball-and-kick” is one of the most important options in the play-soccer
behavior. If you select this option you can perform the following tests. Place the ball behind
the robot. The robot will turn until it sees the ball then go there and kick to the direction of the
opponent goal. Put the ball somewhere on the field. The robot will go to the ball. When it has
almost reached the ball hold a hind leg of the robot to simulate a blocking robot. After a few
seconds the robot will rotate its legs to free from the obstacle. It is your choice if you release the
robot as a consequence of this motion.

If you select the option “striker2-search-for-ball” the robot will visit a left and a right point at
the center line alternately. This behavior is used during a game by the second striker to find the
ball.

Appendix C

Processes, Senders, and Receivers

C.1 Motivation

In GT2001, there exist two kinds of communication between processes: on the one hand, Aperios
queues are used to communicate with the operating system, on the other hand, a shared memory
is employed to exchange data between the processes of the control program. In addition, Aperios
messages are used to distribute the address of the shared memory. All processes use a structure
that is predefined by Sony’s stub generator. This approach lacks of a simple concept how to
exchange data in a safe and coordinated way. The resulting code is confusing and much more
complicated then it should be.

However, the internal communication using a shared memory also has its drawbacks. First of
all, it is not compatible with the new ability of Aperios to exchange data between processes via
a wireless network. In addition, the locking mechanism employed may waste a lot of computing
power. However, the locking approach only guarantees consistence during a single access, the
entries in the shared memory can change from one access to another. Therefore, an additional
scheme has to be implemented, as, e. g., making copies of all entries in the shared memory at the
beginning of a certain calculation step to keep them consistent.

The communication scheme introduced in GT2002 addresses these issues. It uses Aperios
queues to communicate between processes, and therefore it also works via the wireless network.
In the approach, no difference exists between inter-process communication and exchanging data
with the operating system. Three lines of code are sufficient to establish a communication link.
A predefined scheme separates the processing time into two communication phases and a calcu-
lation phase.

C.2 Creating a Process

Any new process has to be part of a specialprocess layout. Process layouts group together differ-
ent processes that make up a robot control program, and they are stored in subdirectories under
T:\GT2002\Src\Processes. Currently, process layouts are named after the universities who used
them, e. g.HU1 for the first layout of the Humboldt-Universität zu Berlin. An Aperios process

97

98 APPENDIX C. PROCESSES, SENDERS, AND RECEIVERS

is allowed to have a name with a maximum length of eight characters. To create a new process,
one has to think such a name up and

• insert a new line intoT:\GT2002\Src\Processes\ProcessLayout\object.cfg, following the
format/MS/OPEN-R/APP/OBJS/name.bin,

• for the GreenHills environment, create newobjectanddownloadlines in
T:\GT2002\Src\Processes\ProcessLayout\ProcessLayout.mcf,

• for the Open-R SDK environment, create a newobjectline in
T:\GT2002\Src\Processes\ProcessLayout\ProcessLayout.ocf,

• create a new subdirectory underT:\GT2002\Src\Processes\ProcessLayout,

• create a.cppfile in this new directory with the same name,

• and, although not required, create two new folders in the
GT2002 project both under GT2002\Processes\ProcessLayout and
RobotControl\SharedCode\Processes\ProcessLayout in the Microsoft Developer
Studio, inserting the new source file there. Note that all folders must be named differently
in the Developer Studio, so you may have to extend the process layout name at the end of
your new folder name.

The new source file must include “Tools/Process.h”, derive a new class fromclass Process,
implement at least the functionProcess::main(), and must instantiate the new class with the
macroMAKE PROCESS. As an example, look at this little process1:

#include "Tools/Process.h"

class Example : public Process
{

public:
virtual int main()
{

printf("Hello World!\n");
return 0;

}
};

MAKE_PROCESS(Example);

The process will print “Hello World” once. If the functionmain()should be recalled after a
certain period of time, it must return the number of milliseconds to wait, e. g.

1Note that the examples given here will not compile, because the debugging support required byclass Process
is missing. One can derive fromclass PlatformProcessinstead, naming themain-functionprocessMain.

C.3. COMMUNICATION 99

return 500;

to restartmain()after 500 ms. However, ifmain() itself requires 100 ms of processing time,
and then pauses for 500 ms before it is recalled, it will in fact be called every 600 ms. If this is
not desired,main()must return a negative number. For instance,

return -500;

will ensure a cycle time of 500 ms, as long asmain() itself does not require more than this
amount of time.

Note that if main returns 0, it will only be recalled if there is at least one blocking receiver
or at least one active blocking receiver (cf. next section). Otherwise, the process will be inactive
until the robot will be rebooted.

C.3 Communication

The inter-object communication is performed bysenders andreceivers exchangingpackages.
Packages are normal C++ classes that must bestreamable(cf. the technical note on streams in
appendixD). A sender contains one instance of a package and will automatically transfer it to a
receiver after the receiver requested it and the sender’s member functionsend()was called. The
receiver also contains an instance of a package. Each data exchange will be performed after the
functionmain()of a process has terminated, or immediately when the functionsend()is called. A
receiver obtains a package before the functionmain()starts and will request for the next package
after main() was finished. Both senders and receivers can either be blocking or non-blocking
objects. The functionmain() will wait for all blocking objects before it starts, i. e. it waits for
blocking receivers to acquire new packages, and for blocking senders to be asked to send new
packages.2 main()will not wait for non-blocking objects, so it is possible that a receiver contains
the same package for more then one call ofmain().

C.3.1 Packages

A package is an instance of a class that is streamable, i. e. that implements the<< and>>
operators for the classesOut andIn, respectively. So, an example of a package is

class NumberPackage
{

public:
int number;
NumberPackage() {number = 0;}

};

2Note that under RobotControl, a process will be continued when a single blocking event occurs. This is currently
required to support debug queues.

100 APPENDIX C. PROCESSES, SENDERS, AND RECEIVERS

Out& operator<<(Out& stream,const NumberPackage& package)
{

return stream << package.number;
}

In& operator>>(In& stream, NumberPackage& package)
{

return stream >> package.number;
}

Note also that it is a good idea to provide a public default constructor.
A special case of packages are Open-R packages:

• Packages that are received from the operating system must provide a streaming opera-
tor that reads exactly the format as provided by Open-R. The packages are all defined in
<OPENR/ODataFormats.h>. However, the data types provided there do not reflect the
real size of the objects, they are only headers. Therefore, new types must be declared that
have the real size of the Open-R packages. This size can be determined from theirvector-
Info.totalSizemember variable. The size is constant for each type, but it may vary between
different versions of Open-R. Such data types are only required to implement the streaming
operators, they are not needed elsewhere.

• Packages that are sent to the operating system require special allocation operators. There-
fore, special senders (cf. next section) were implemented that allocate memory using the
appropriate methods, and then use these memory blocks for the communication with the
operating system.

C.3.2 Senders

Senders send packages to other processes. A process containing a sender forNumberPackage
could look like this:

#include "Tools/Process.h"

class Example1 : public Process
{

private:
SENDER(NumberPackage);

public:
Example1() :

INIT_SENDER(NumberPackage,false) {}

virtual int main()
{

C.3. COMMUNICATION 101

++theNumberPackageSender.number;
theNumberPackageSender.send();
return 100;

}
};

MAKE_PROCESS(Example1);

The macroSENDERdefines a sender for a package of typeNumberPackage. As the second
argument is false, it is a non-blocking sender. Macros asSENDERandRECEIVERwill always
create a variable that is derived from the provided type (in this caseNumberPackage) and that
has a name of the formtheTypeSenderor theTypeReceiver, respectively (e. g.theNumberPack-
ageSender).

Packages must always explicitly be sent by calling the member functionsend(). send()marks
the package as to be sent and will immediately send it to all receivers that have requested a
package. However, each time the functionmain()has terminated, the package will be sent to all
receivers that have requested it later and have not got it yet. Note that the package that will be
sent has not necessarily the state it had when callingsend(). As packages are not buffered, always
the actual content of a package will be transmitted, even if it changed since the last call tosend().

As the communication follows a real-time approach, it is possible that a receiver misses a
package if a new package is sent before the receiver has requested the previous one. The ap-
proach follows the idea that all receivers usually want to receive the most actual packages. The
only possibility to ensure that a receiver will get a package is to only send it, when it already has
been requested. This can be realized by either using a blocking sender, or by checking whether
the sender has been requested to send a new package:theNumberPackageSender.requestedNew()
provides this information. Note: a sender can provide a package to more than one receiver.re-
questedNew()returns true if at least one receiver requested a new package. This is different from
a blocking sender: a blocking sender will wait forall receivers to request a new package!

C.3.3 Receivers

Receivers receive packages sent by senders. A process that reads the package provided byEx-
ample1could look like this:

#include "Tools/Process.h"

class Example2 : public Process
{

private:
RECEIVER(NumberPackage);

public:
Example2() :

INIT_RECEIVER(NumberPackage,true) {}

102 APPENDIX C. PROCESSES, SENDERS, AND RECEIVERS

virtual int main()
{

printf("Number %d\n",theNumberPackageReceiver.number);
return 0;

}
};

MAKE_PROCESS(Example2);

Here, the functionmain()will wait for the RECEIVER(i. e. the second parameter istrue), so
it will always print out a new number.

However, one thing is missing: Aperios has to know which process wants to transfer packages
to which other process. Therefore, the fileconnect.cfghas to be extended by the following line:

Example1.Sender.NumberPackage.S Example2.Receiver.NumberPackage.O

If more than one receiver is used in a process, the non-blocking receivers shall be defined
first. Otherwise, the packages of the non-blocking receivers may be older than the packages of
the blocking receivers. To determine whether a non-blocking receiver got a new package, call its
member functionreceivedNew().

Appendix D

Streams

D.1 Motivation

In most applications, it is necessary that data can be serialized, i. e. transformed into a sequence
of bytes. While this is straightforward for data structures that already consist of a single block
of memory, it is a more complex task for dynamic structures, as e. g. lists, trees, or graphs. The
implementation presented in this document follows the ideas introduced by the C++ iostreams
library, i. e., the operators<< and>> are used to implement the process of serialization.

There are two reasons not to use the C++ iostreams library for this purpose: on the one hand,
it does not guarantee that the data is streamed in a way that it can be read back without any special
handling, especially when streaming into and from text files. On the other hand, the iostreams
library is not fully implemented on all platforms, namely not on Aperios.

Therefore, theStreamslibrary was implemented. As a convention, all classes that write data
into a stream have a name starting with “Out”, while classes that read data from a stream start
with “In”. In fact, all writing classes are derived from classOut, and all reading classes are
derivations of classIn.

All stream classes derived fromIn andOut are composed of two components: One for read-
ing/writing the data from/to a physical medium and one for formatting the data from/to a specific
format. Classes writing to physical media derive fromPhysicalOutStream, classes for reading
derive fromPhysicalInStream. Classes for formatted writing of data derive fromStreamWriter,
classes for reading derive fromStreamReader. The composition is done by theOutStreamand
InStreamclass templates.

D.2 The Classes Provided

Currently, the following classes are implemented:

PhysicalOutStream. Abstract class

OutFile. Writing into files

103

104 APPENDIX D. STREAMS

OutMemory. Writing into memory

OutSize. Determine memory size for storage

StreamWriter. Abstract class

OutBinary. Formats data binary

OutText. Formats data as text

Out. Abstract class

OutStream<PhysicalOutStream,StreamWriter>. Abstract template class

OutBinaryFile. Writing into binary files

OutTextFile. Writing into text files

OutBinaryMemory. Writing binary into memory

OutTextMemory. Writing into memory as text

OutBinarySize. Determine memory size for binary storage

OutTextSize. Determine memory size for text storage

PhysicalInStream. Abstract class

InFile. Reading from files

InMemory. Reading from memory

StreamReader. Abstract class

InBinary. Binary reading

InText. Reading data as text

InConfig. Reading configuration file data from streams

In. Abstract class

InStream<PhysicalInStream,StreamReader>. Abstract class template

InBinaryFile. Reading from binary files

InTextFile. Reading from text files

InConfigFile. Reading from configuration files

InBinaryMemory. Reading binary data from memory

InTextMemory. Reading text data from memory

InConfigMemory. Reading config-file-style text data from memory

D.3. STREAMING DATA 105

D.3 Streaming Data

To write data into a stream,Tools/Streams/OutStreams.hmust be included, a stream must be
constructed, and the data must be written into the stream. For example, to write data into a text
file, the following code would be appropriate:

#include "Tools/Streams/OutStreams.h"
// ...
OutTextFile stream("MyFile.txt");
stream << 1 << 3.14 << "Hello Dolly" << endl << 42;

The file will be written into the configuration directory, e. g.T:\GT2002\Config\MyFile.txt
on the PC. It will look like this:

1 3.14000 Hello\ Dolly
42

As spaces are used to separate entries in text files, the space in the string “Hello Dolly” is
escaped. The data can be read back using the following code:

#include "Tools/Streams/InStreams.h"
// ...
InTextFile stream("MyFile.txt");
int a,d;
double b;
char c[12];
stream >> a >> b >> c >> d;

It is not necessary to read the symbolendlhere, although it would also work.
To make the streaming independent of the kind of the stream used, it could be encapsulated

in functions. In this case, only the abstract base classesIn andOutshould be used to pass streams
as parameters, because this generates the independence from the type of the streams:

#include "Tools/Streams/InOut.h"

void write(Out& stream)
{

stream << 1 << 3.14 << "Hello Dolly" << endl << 42;
}

void read(In& stream)
{

int a,d;
double b;
char c[12];

106 APPENDIX D. STREAMS

stream >> a >> b >> c >> d;
}
// ...
OutTextFile stream("MyFile.txt");
write(stream);
// ...
InTextFile stream("MyFile.txt");
read(stream);

D.4 Making Classes Streamable

Streaming is only useful if as many classes as possible are streamable, i. e. they implement the
streaming operators<< and>>. The purpose of these operators is to write the current state of
an object into a stream, or to reconstruct an object from a stream. As the current state of an object
is stored in its member variables, these have to be written and restored, respectively. This task is
simple if the member variables themselves are already streamable.

D.4.1 Streaming Operators

As the operators<< and>> cannot be members of the class that shall be streamed (because
their first parameter must be a stream), it must be distinguished between two different cases:
In the first case, all relevant member variables of the class are public. Then, implementing the
streaming operators is straightforward:

#include "Tools/Streams/InOut.h"

class Sample
{

public:
int a,b,c,d;

};

Out& operator<<(Out& stream,const Sample& sample)
{

return stream << sample.a << sample.b
<< sample.c << sample.d;

}

In& operator>>(In& stream,Sample& sample)
{

return stream >> sample.a >> sample.b
>> sample.c >> sample.d;

}

D.4. MAKING CLASSES STREAMABLE 107

However, if the member variables are private, the streaming operators must be friends of the
class. This can be a little bit complicated, because some compilers require the function prototypes
to be already declared when they parse thefriend declarations:

class Sample;
Out& operator<<(Out&,const Sample&);
In& operator>>(In&,Sample&);

class Sample
{

private:
int a,b,c,d;

friend Out& operator<<(Out&,const Sample&);
friend In& operator>>(In&,Sample&);

};
// ...

Another possibility to avoid these additional declarations would be to define public member
functions that perform the streaming and that are called from the streaming operators. However,
this would not be shorter.

If dynamic data should be streamed, the implementation of the operator>> requires a little
bit more attention, because it always has to replace the data already stored in an object, and thus
if this is dynamic, it has to be freed to avoid memory leaks.

class Sample
{

public:
char* string;
Sample() {string = 0;}

};

Out& operator<<(Out& stream,const Sample& sample)
{

if(sample.string)
return stream << strlen(sample.string) << sample.string;

else
return stream << 0;

}

In& operator>>(In& stream,Sample& sample)
{

if(sample.string)
delete[] sample.string;

int len;

108 APPENDIX D. STREAMS

stream >> len;
if(len)
{

sample.string = new char[len+1];
return stream >> sample.string;

}
else
{

sample.string = 0;
return stream;

}
}

D.4.2 Streaming usingread()and write()

There also is a second possibility to stream an object, i. e. using the functions Out::write() and
In::read() that write a memory block into, or extract one from a stream, respectively:

class Sample
{

public:
int a,b,c,d;

};

Out& operator<<(Out& stream,const Sample& sample)
{

stream.write(sample,sizeof(Sample));
return stream;

}

In& operator>>(In& stream,Sample& sample)
{

stream.read(sample,sizeof(Sample));
return stream;

}

This approach has its pros and cons. On the one hand, the implementations of the streaming
operators need not to be changed if member variables in the streamed class are added or removed.
On the other hand, this approach does not work for dynamic members. It will corrupt pointers to
virtual method tables if classes or their base classes contain virtual functions. Last but not least,
the structure of an object is lost (not the data) when it is streamed to a text file, because in the
file, it will look like a memory dump, which is not well readable for humans.

D.5. IMPLEMENTING NEW STREAMS 109

D.5 Implementing New Streams

Implementing a new stream is simple. If needed, a new medium can be defined by deriving
new classes fromPhysicalInStreamandPhysicalOutStream. A new format can be introduced by
deriving fromStreamWriterandStreamReader. Streams that store data must be derived from
classOutStream, giving aPhysicalOutStreamand aStreamWriterderivate as template parame-
ters, reading streams have to be derived from classInStream, giving aPhysicalInStreamand a
StreamReaderderivate as template parameters.

As a simple example, the implementation ofOutBinarySizeis given here. The purpose of this
stream is to determine the number of bytes that would be necessary to store the data inserted
in binary format, instead of actually writing the data somewhere. For the sake of shortness, the
comments are removed here.

class OutSize : public PhysicalOutStream
{

private:
unsigned size;

public:
void reset() {size = 0;}
OutSize() {reset();}
unsigned getSize() const {return size;}

protected:
virtual void writeToStream(const void*,int s) {size += s;}

};

class OutBinary : public StreamWriter
{

protected:
virtual void writeChar(char d,PhysicalOutStream& stream)

{stream.writeToStream(&d,sizeof(d));}

virtual void writeUChar(unsigned char d,
PhysicalOutStream& stream)

{stream.writeToStream(&d,sizeof(d));}

virtual void writeShort(short d,PhysicalOutStream& stream)
{stream.writeToStream(&d,sizeof(d));}

virtual void writeUShort(unsigned short d,
PhysicalOutStream& stream)

{stream.writeToStream(&d,sizeof(d));}

virtual void writeInt(int d,PhysicalOutStream& stream)
{stream.writeToStream(&d,sizeof(d));}

110 APPENDIX D. STREAMS

virtual void writeUInt(unsigned int d,
PhysicalOutStream& stream)

{stream.writeToStream(&d,sizeof(d));}

virtual void writeLong(long d,PhysicalOutStream& stream)
{stream.writeToStream(&d,sizeof(d));}

virtual void writeULong(unsigned long d,
PhysicalOutStream& stream)

{stream.writeToStream(&d,sizeof(d));}

virtual void writeFloat(float d,PhysicalOutStream& stream)
{stream.writeToStream(&d,sizeof(d));}

virtual void writeDouble(double d,
PhysicalOutStream& stream)

{stream.writeToStream(&d,sizeof(d));}

virtual void writeString(const char *d,
PhysicalOutStream& stream)

{
int size = strlen(d);
stream.writeToStream(&size,sizeof(size));
stream.writeToStream(d,size);

}

virtual void writeEndL(PhysicalOutStream& stream) {};

virtual void writeData(const void* p,int size,
PhysicalOutStream& stream)

{stream.writeToStream(p,size);}
};

class OutBinarySize : public OutStream<OutSize,OutBinary>
{

public:
OutBinarySize() {}

};

Appendix E

Debugging Mechanisms

The software architecture of the programs and tools developed contains a rich variety of debug-
ging mechanisms, which are described in detail in the following sections.

E.1 Message Queues

Besides the package-oriented inter-object communication with senders and receivers (cf.
Sect.C.3), message queuesare used for the transport of debug messages between processes,
platforms, and applications. They consist of a list ofmessages, which are stored and read using
streams (cf. App.D).

Writing data to Message Queues. As almost all data types have streaming operators, it is very
easy to store them in message queues. When a message is written to a queue, amessage idis
added to identify the type of the data. In addition, a time stamp is stored for every new message.
A typical piece of code looks like this:

#include "Tools/MessageQueue/MessageQueue.h"
// ...
Image myImage;
myMessageQueue.out.bin << myImage;
myMessageQueue.out.finishMessage(idImage);

int numOfBalls = 3;
myMessageQueue.out.text << "found " << numOfBalls << " balls."
MyMessageQueue.out.finishMessage(idText);

int a, b, c, d;

myMessageQueue.out.bin << a << b;
myMessageQueue.out.bin << c << d;
myMessageQueue.out.bin.finishMessage(id4FunnyNumbers);

111

112 APPENDIX E. DEBUGGING MECHANISMS

First an image is written in binary format to the queue. The type of the message isidImage.
Then the text”found 3 balls” is written in text format to the queue. The ididText marks the
message as unstructured text. At last, four integer values are written to the queue as a message
of the typeid4FunnyNumbers.

Transmitting Message Queues. Message queues are exchanged between processes such as
all other packages. They are also used for the transmission of debug messages via the wireless
network. They can be written to and read from logfiles. Messages can be moved to other queues
using

myQueue.copyAllMessages(otherQueue);
myQueue.moveAllMessages(otherQueue);

message >> otherQueue;

copyAllMessagescopies andmoveAllMessagesmoves all messages to another queue. The
third statement shows how a single message can be copied.

Distribution of Debug Messages. As all messages can be written in any order into a queue,
a special mechanism for distributing the message is needed. Amessage handlerdoes this job,
e. g.:

class MyMessageHandler : public MessageHandler
{

virtual bool handleMessage(InMessage& message);
};
// ...
bool MyMessageHandler::handleMessage(InMessage& message)
{

switch (message.getMessageID()
{
case idImage:

message.bin >> myImage;
return true;

case idText:
message >> otherQueue;
return true;

case id4FunnyNumbers;
message.bin >> a >> b >> c >> d;
return true;

default:
return false;

}

E.2. DEBUG KEYS 113

}
// ...
MyMessageHandler handler;
myQueue.handleAllMessages(handler);

The classMyMessageHandleris derived fromMessageHandler. In the implementation, for
everymessage idthe data is read differently from a queue. Whereas the image is just streamed
to a local member variable, the text message is copied to another queue.

Instantiating Message Queues. The classMessageQueuehas two different mechanisms to
store the data into memory. On Windows and Linux platforms, a dynamic list is used. But on
the Open-R platform, dynamic memory allocations are expensive. Therefore on that platform the
messages are stored in a static memory buffer.

If the code containing aMessageQueueshall run on the Open-R platform, the size of the
queue in bytes has to be set using

MessageQueue queue;
queue.setSize(1000000); // ignored on Win32 and Linux

Message Queues and Processes.The classProcess, which is the base class for all processes,
already has the membersdebugInfor incoming anddebugOutfor outgoing debug messages. In
addition,Processis derived fromMessageHandlerso that every process can distribute debug
messages.

E.2 Debug Keys

The tools RobotControl and SimGT2002 (cf. Sect.5) can process a wide range of messages from
physical or simulated robots. As it is not possible to send all the messages at once,debug keysare
used to toggle the output of these messages. They are also transmitted to the robot using message
queues. InT:\GT2002\Src\Tools\Debugging\DebugKeyTable.ha variety of keys is declared.

Each key can have one of these states:

Disabled. No output is sent for the key.

Send always.The output is sent always.

Send n times.The output is sent n times.

Send every n times.The output is sent every n times.

Send every n ms.The output is sent every n milliseconds.

The classDebugKeyTablehas a memberisDebugKeyActive()that determines if the message
shall be sent dependent on the state of a given key, e. g.:

114 APPENDIX E. DEBUGGING MECHANISMS

if (myDebugKeyTable.isDebugKeyActive(sendImages))
{

myQueue.out.bin << image;
myQueue.out.finishMessage(idImage);

}

E.3 Debug Macros

To simplify the access to outgoing message queues and to the right debug key table, in
T:\GT2002\Src\Tools\Debugging\Debugging.htwo macros are defined:

OUTPUT(type, format, data) storesdata with format and message typetype in the outgoing
queue of the process.

INFO(key, type, format, data) works similar toOUTPUT, but only, when the debug keykeyis
active.

Example:

OUTPUT(idText,text,"Hello World");
OUTPUT(idText,text,"Found " << numberOfBalls << " balls.");
OUTPUT(idSensorData,bin,mySensorData);
INFO(sendImage,idImage,bin,myImage);

Both macros are not expanded inReleaseconfigurations to save processing time.

E.4 Stopwatch

To track down waste of time in the code, inT:\GT2002\Src\Tools\Stopwatch.htwo macros are
defined:

STOP TIME(expression) measures the system time before and after the execution ofexpres-
sionand outputs the difference as a text.

STOP TIME ON REQUEST(eventID, expression).If the time keeping is requested for the
eventID, the time is measured before and after the execution ofexpressionand sent as an
debug message with the ididStopwatch. With the time diagram dialog (cf. Sect.J.3.4) the
requests can be generated and the results of the measurements are displayed.

Example:

E.5. DEBUG DRAWINGS 115

STOP_TIME_ON_REQUEST(imageProcessor,
pImageProcessor->execute(theImageReceiver, blobCollection);

);

STOP_TIME(
for(int i = 0; i < 1000000; i++)
{

double x = sqrt(i);
x *= x;

}
);

E.5 Debug Drawings

At each place in the code a debug drawing can be drawn and sent. There exist two types of
drawings:imageDrawingsare in pixel coordinates and will be displayed in the image viewer
(cf. Sect.J.3.1), whereasfieldDrawingsare in the system of coordinates of the field and will be
shown in the field view and the radar viewer (cf. Sect.J.3.2). To generate aDebugDrawingthe
following has to be done:

• Tools/Debugging/DebugDrawing.hhas to be included in the file from which it will be
drawn.

• In T:\GT2002\Src\Tools\Debugging\DebugDrawing.ha new drawingID has to be added
to one of the enumeration typesFieldDrawingor ImageDrawing. In the methodgetDraw-
ingName(), a string representation for the new drawingID has to be given. In the method
getDebugKeyID(), a debug key for requesting the drawing has to be added. This debug key
has to be defined inT:\GT2002\Src\Tools\Debugging\DebugKeyTable.h.

• In the file that should draw, the following has to be added, e. g. to create a drawing called
“sketch”:

// create the drawing
CREATE_DEBUGDRAWING(sketch);

// ...

// paint to the drawing
PAINT_TO_DEBUGDRAWING(sketch,

sketchDrawing.line(
(int)low.x, (int)low.y,
(int)high.x, (int)high.y,
DebugDrawing::ps_solid, 0,

116 APPENDIX E. DEBUGGING MECHANISMS

DebugDrawing::Color(127,127,127)
);

sketchDrawing.dot((int)low.x, (int)low.y,
DebugDrawing::Color(255,255,255),
DebugDrawing::Color(0,0,0));
sketchDrawing.dot((int)high.x, (int)high.y,
DebugDrawing::Color(0,0,0),
DebugDrawing::Color(255,255,255)

);
);

// ...

// send the debug drawing
SEND_DEBUGDRAWING(sketch);

If the code runs on the PC, all debug drawings are created automatically. If the code runs on
the robot, a debug drawing is only painted if the corresponding request is sent.

E.6 Modules and Solutions

To obtain solutions for the modules that can be exchanged during runtime, there is a base class
for each module, e. g. the classImageProcessor. All solutions for this module (e. g.BlobImage-
ProcessorandGridImageProcessor) are derived from this base class. Each module has its own
ModuleSelectorclass, e. g. theImageProcessorSelector. An instance of the selector class is cre-
ated in the process the module is part of. The selector class creates instances of all solutions of
the module during construction, but executes only one of the solutions during runtime.

The data structureSolutionRequeststores what the current solution for each module is. This
data structure can be modified on the PC and sent to the robot (cf. Sect.J.2.3). Each process
contains aSolutionHandlerwhich receives the solution requests. Each module selector class
has a reference to the solution handler, and thus it can decide, which of the solution has to be
executed.

To add a new module, the base class, the selector class based on the templateTModuleSelec-
tor, and the different classes for the solutions that derive from the base class have to be created.
In the selector class all solutions have to be added. InT:\GT2002\Src\Tools\SolutionRequest.h
the new module and the solutions have to be added to the enum data types and to the functions
providing names for the modules and solutions. In one of the available processes, an instance of
the selector class has to be instantiated, and itsexecute()method has to be called.

Appendix F

XABSL Language Reference

This chapter describes the syntax and semantics of theextensible agent behavior specification
language(XABSL). For an introduction to XABSL see section3.6.2, in which a simplified goalie
behavior is used that was developed byHumboldt 2002for the German Open 2002.

F.1 General Structure of an XABSL Document

As already mentioned, the syntax of the XABSL Language is specified in XML schema (In a the
code release of the GermanTeam file/Src/Modules/XabslBehaviorControl/xabsl/xabsl-1.0.xsd
contains this definition.). The Schema exports the namespacexabsl(http://www.ki.informatik.hu-
berlin.de/XABSL). As the existing XSL stylesheets are not independent of the name space used
in instance documents up to now, no name space prefix should be used for elements in instance
documents. The root element of a document isagent. Documents have the following code struc-
ture:

<?xml version="1.0" encoding="UTF-8"?>
<xabsl:agent xmlns ="http://www.ki.informatik.hu-berlin.de/XABSL"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="xabsl/xabsl-1.0.xsd">
<description>

...
</description>
<environment>

...
</environment>
<options initial-option="...">

...
</options>
<skills>

...
</skills>

</agent>

117

118 APPENDIX F. XABSL LANGUAGE REFERENCE

Figure F.1: The Syntax of the Root Elementagent.

The root elementagenthas four required elements:description, environment, options, and
skills. (cf. Fig.F.1). They will be described in the following sections.

Note that not all attributes and identity constraints will be mentioned (please refer to the
schema file for additional information).

F.2 The Elementdescription

That elementdescriptioncontains very general information about the agent (cf. Fig.F.2). It is
only used for the documentation that can be generated from a XABSL document.

title contains a general project name. This is used for the headline of the generated documenta-
tion.

application is a verbal description of the application that the agent was designed for.

platform describes the robot or the computer system the agent runs on.

software-environment contains a description or name of the software system, project or envi-
ronment, in that the formalized behavior is embedded.

author names one author of the agent. Several author elements can be used.

F.3. THE ELEMENT ENVIRONMENT 119

Figure F.2: The elementdescription.

F.3 The Elementenvironment

To be independent of specific software environments and platforms, the formalization of the
interaction with the software environment is also included in XABSL by defining symbols. In-
teraction means access to input functions and variables (as, e. g., of the world state), to output
functions (e.g. to set requests for other parts of the information processing).

The decisions that are made in the decision trees of the state machines depend almost exclu-
sively oninput symbols. For every single part of represented knowledge about the world, every
advanced analysis function, and every single state of the agent that is used for decision making,
an input symbol has to be defined. From the robot soccer example:

<decimal-input-symbol name="ball.x"
description="absolute x position of the ball" measure="mm"/>

<decimal-input-symbol name="ball.distance"
description="distance to ball" measure="mm"/>

<boolean-input-symbol name="dribble-is-useful"
description="Determines if the dribble skill can be applied."/>

The symbol “ball.x” stands for a variable that contains the absolutex coordinate of the ball
position in the world state. “ball.distance” stands for a simple function that calculates the distance
to the ball from the absolute ball coordinates. “dribble-is-useful” stands for a complex analysis
function that determines if a single skill can be applied.

Although all these symbols stand for very different structural entities, they are all treated
alike. In XABSL it is not specified whether a symbol stands for a function or a simple variable.

There are three different types of input symbols:

decimal-input-symbol. Symbols for floating point or integer input functions and variables.

120 APPENDIX F. XABSL LANGUAGE REFERENCE

Figure F.3: The elementenvironment

boolean-input-symbol. Symbols for boolean input functions and variables.

enumerated-input-symbol. Symbols for enumerated input functions and variables (as enums
in C++).

All the input symbols have the required attribute “name” as a name of the symbol and “de-
scription” that contains a verbal description of the symbol. Decimal input symbols have the
required attributes “range” for the range that values can reach and “measure” for the measure of
the symbol. Enumerated input symbols contain “enum-element” elements for every enumeration
element.

As already mentioned, there are also output symbols. These symbols are not used for decision
making but for setting states in the remaining information processing. Output symbols are set
from states inside options. Strictly speaking, if a state sets an output symbol to a specific value,
then the symbol is always set to the value when the state is active.

Up to now, there is only an enumerated version of output symbols: “enumerated-output-
symbol” stands for an enumerated output function or variable. It has the same attributes as
“enumerated-input-symbol”. From the robot soccer example:

F.4. THE ELEMENT SKILLS 121

Figure F.4: The element skills

<enumerated-output-symbol name="head-control-mode"
description="a mode for the head control."
required="true" allow-overwrite="true">

<enum-element name="search-for-ball"/>
<enum-element name="search-for-landmarks"/>
<enum-element name="look-left"/>
<enum-element name="look-right"/>

</enumerated-output-symbol>

The symbol “head-control-mode” stands for a request, where the Sony robot shall direct the
head (that contains the camera of the robot) to. In options/states, in which it is necessary only
to look at the ball, the symbol is set to “search-for-ball”. When good localization is necessary,
“search-for-landmarks” is set. The attributes “required” and “allow-overwrite” are ignored up to
now.

”constant” defines a constant decimal value. This is useful for often used parameters of con-
ditions or skills. Again in the robot soccer example the constant

<constant name="goalie.home-position.x"
description="The x home position of the goalie"
measure="mm" value="-2000"/>

is used as the x position of the center of the own goal. If such values are defined only once
and referenced from other parts of the document, these values can be changed very easily.

At last, in “environment”, “ condition” elements can be inserted. These are predefined con-
ditions that can be referenced from decision trees inside states. It is useful to define conditions
used often here to keep the document short. For a detailed description see sectionF.8.

All the elements of “environment” can appear in any number and order.

F.4 The Elementskills

Skills are the basic abilities of the agent. Programmers may want to use advanced algorithms or
programming language concepts so that skills are not specified in XABSL but written in C++.
Therefore, there an interface has to be defined to be used by the options in XABSL. That is done
by the element “skills” (cf. Fig. F.4)

“skills” can contain any number of the element “skill”, which defines a representation of
a skill. “skill” has the required attributes “name” for the name and “description” as an verbal

122 APPENDIX F. XABSL LANGUAGE REFERENCE

Figure F.5: The elementoptions

description of what the skill does. In addition, any number of “skill-parameter” child elements
can be inserted for the numeric parameters the skill has. They require the same attributes as
“decimal-input-symbol”.

F.5 The Elementoptions

After having defined the interfaces to the software environment, the behavior itself can be spec-
ified. “options” (cf. Fig. F.5) contains all the options of the agent. The attribute “initial-option”
indicates which option is the root option, i. e. the execution of the option tree starts there.

As the previously introduced elements, each option has the required attributes “name” and
“description”. “ initial-state” refers to the initial state of the state machine. Then for each state of
the state machine a child element “state” is inserted.

F.6 The Elementstate

The element “state” represents a single state of an option’s internal state machine. “name” is a
required attribute. Then each state must have a “following-option” or a “following-skill” child
element. Both have the required attribute “ref” that must be the name of an existing option or
skill. If the state is active, the referred option or skill is executed after that option.

If a skill shall be executed when the state is active (“following-skill”), “ set-skill-parameter”
child elements can be inserted. The attribute “name” has to be the name of an existing parameter
of the skill. The value of the parameter itself is a decimal expression (cf. Sect.F.11).

With the optional child element “set-output-symbol” output symbols can be set. The attribute
“ ref” has to be the name of an existing enumerated output symbol. “value” is the value the
symbol is set to. If the state is active, then the value of the function or variable that the symbol is
referring to is set to the given value.

Then each state must have the element “decision-tree”. That is a recursive tree withif / else-if
/ elsenodes and transitions to other states as leaves. When an option is executed, the active state’s
decision tree is carried out to determine the next active state. “decision-tree” is a “statement”,
which is a recursive data type, too (cf. next section).

F.7. THE TYPE STATEMENT 123

Figure F.6: The elementstate

Figure F.7: The typestatement

F.7 The Typestatement

Statements are nodes of a decision tree. Either they are a leaf of the tree (“transition-to-state”) or
an if / else-if / elseblock. The “transition-to-state” element has the required attribute “ref” that
has to be the name of an existing state in the option.

If the statement is not a transition to a state, than it has to contain exactly one “if ”, any number
of “else-if” and exactly one “else” elements. The “else” element is of the type “statement” again.
“ if ” and “else-if” are of the type “conditional-statement” (cf. next section).

124 APPENDIX F. XABSL LANGUAGE REFERENCE

Figure F.8: The typeconditional-statement

The execution of the statement starts with the “if ” case of the statement. If the condition
for the “if ” case fails, all “else-if” conditions are checked. If no condition becomes true, the
statement in the “else” statement will be executed.

F.8 The Typeconditional-statement

Both “if ” and “else-if” are of type “conditional-statement” (cf. Fig. F.8). Such an element con-
tains a condition and a statement that is executed if the condition becomes true. The condition
is either a “condition” element that contains the group “boolean-expression” (cf. next section)
or a “condition-ref” element that refers to a predefined condition that was declared in the “envi-
ronment” element. “condition-ref” has the required attribute “ref” that has to be the name of an
existing predefined condition. There is no difference in the execution of the conditional statement
whether “condition” or “ condition-ref” is used. The predefined conditions were only introduced
to increase the editing comfort. The conditional statement has to contain one “then” element that
is of type “statement” again. That statement is executed if the condition or the referred condition
becomes true.

F.9 The Group boolean-expression

“condition” elements refer to the group “boolean-expression” (cf. Fig. F.9). “boolean-
expression” has to contain one of the following child elements:

boolean-input-symbol-ref. A reference to a boolean input symbol. The expression results in
true if the variable that the symbol stands for is true or if the function the symbol stands for
returns true. The required attribute “ref” has to be the name of an existing boolean input
symbol.

F.9. THE GROUP BOOLEAN-EXPRESSION 125

Figure F.9: The groupboolean-expression

enumerated-input-symbol-comparison.Returns true if an enumerated input symbol has a
given value. An example from robot soccer:

<enumerated-input-symbol-comparison
ref="self.switches" enum-element="back-pressed"/>

That expression becomes true, if the symbol “self.switches” has the value “back-pressed”.
In the example that means that the back switch of the Sony robot was pressed. The required

126 APPENDIX F. XABSL LANGUAGE REFERENCE

Figure F.10: The groupdecimal-expression-inside-a-state

attribute “ref” has to be the name of an existing enumerated input symbol, “enum-element”
has to be the name of an enumeration element of that symbol.

and / or. The logical && / || operator. Both have two “boolean-expression” child elements. If
the expression is executed, first the two boolean operand expressions are evaluated. After
that, the operator is applied and the result will be returned.

not. The logical ! operator. It has a single “boolean-expression” child element.

equal-to / not-equal-to / less-than / less-than-or-equal-to / greater-than / greater-than-or-
equal-to. The == / != / < / <= / > / >= operator. All of them have two “decimal-
expression-inside-a-state” (cf. next section) child elements. If these expressions are exe-
cuted, the decimal values of the operands are determined. Then the operator is applied and
the result will be returned.

That possibly looks quite complicated, but the example in sectionF.12might help to under-
stand how to notate such expressions.

F.10 The Groupdecimal-expression-inside-a-state

In contrast to boolean expressions decimal expressions return a decimal value when they are exe-
cuted. The group “decimal-expression-inside-a-state” is either of the group “decimal-expression”
(cf. next section) or of one of the following two elements:

time-of-state-execution is a built-in decimal symbol that determines how long the current state
is already active (in milliseconds).

time-of-option-execution is a built-in decimal symbol that determines how long the current
option is already activated (in milliseconds).

F.11. THE GROUP DECIMAL-EXPRESSION 127

Figure F.11: The groupdecimal-expression

F.11 The Groupdecimal-expression

The group “decimal-expression” (cf. Fig.F.11) has one of the following child elements:

decimal-input-symbol-ref. A reference to a decimal input symbol. If that expression is exe-
cuted, the value of the variable that the symbol stands for is returned, if the symbol stands
for a function, then the function is executed its result will be returned. An example:

<decimal-input-symbol-ref ref="ball.distance"/>

That expression returns the value of the distance to the ball.

decimal-value. A decimal value. Example:

<decimal-value value="150"/>

That expression returns the value150.0.

constant-ref. A reference to a decimal constant. Example:

128 APPENDIX F. XABSL LANGUAGE REFERENCE

<constant-ref ref="goalie.home-position.x"/>

If, e. g., the constant was declared as-2000, the expression returns-2000.

plus / minus / multiply / divide / mod. The numeric+ / - / * / / / % operators. Each of these
elements contains two “decimal-expression” child elements. If the expression is executed,
first both operand expressions are executed and then the operator is applied and the result
will be returned.

F.12 Example

From the robot soccer example, a state “get-to-ball” of the option “goalie-play” (cf. Fig. 3.21) is
shown below:

<option name="goalie-play" initial-state="stay-in-goal"
description="Goalie when not waiting for a kick off">

...
<state name="get-to-ball">

<following-skill ref="go-to-ball"/>
<set-output-symbol ref="head-control-mode"

value="search-for-ball"/>
<decision-tree>

<if>
<condition description="ball seen">

<less-than>
<decimal-input-symbol-ref ref="ball.time-since-last-seen"/>
<decimal-value value="2000"/>

</less-than>
</condition>
<then>

<if>
<condition description="ball.distance smaller than 15 cm">

<less-than>
<decimal-input-symbol-ref ref="ball.distance"/>
<decimal-value value="150"/>

</less-than>
</condition>
<then>

<transition-to-state state="clear-ball"/>
</then>

</if>
<else-if>

<condition description="ball too far away">
<greater-than>

F.13. TOOLS 129

<decimal-input-symbol-ref ref="ball.distance"/>
<decimal-value value="900">

</greater-than>
</condition>
<then>

<transition-to-state state="return-to-goal"/>
</then>

</else-if>
<else>

<transition-to-state state="get-to-ball"/>
</else>

</then>
</if>
<else>

<transition-to-state state="return-to-goal"/>
</else>

</decision-tree>
</state>
..

</option>

If the state “get-to-ball” of the option “goalie-play” is active, the skill “go-to-ball” is executed
after that option. If that state is active, the output symbol “head-control-mode” is set to the value
“search-for-ball”.

F.13 Tools

From an XABSL instance file, three different documents can be generated using XSL style
sheets:

Intermediate Code. As it is often hard to deploy XML software on robotic platforms, the
XABSL files are not parsed directly on the robot. Instead an intermediate code is generated and
later parsed on the agent’s system by theXabslEngine(cf. App. G) The code generated has a
very easy context free grammar consisting only of numbers and a few strings for symbols.

Debugging symbols. The engine internally references all symbols, options, or states only by
numbers. For debugging tools and mechanisms, the document provides a mapping of the numbers
the engine uses to names of the entities.

Documentation. A detailed documentation can be generated from the formalized behavior (the
images in Fig.3.20and Fig.3.21are taken from that documentation). After making changes in
the behavior it is recommended to have a look at the documentation generated first before testing
the behavior. Many possible errors can be seen there very quickly.

130 APPENDIX F. XABSL LANGUAGE REFERENCE

A XABSL distribution contains amongst other things the following six files:

xabsl/generate-debugging-symbols.xsl
xabsl/generate-documentation.xsl
xabsl/generate-intermediate-code.xsl

xabsl/make-debugging-symbols.bash
xabsl/make-documentation.bash
xabsl/make-intermediate-code.bash

Although the three style sheets do the transformations, it is useful to invoke them by using
the threebashscripts.

They require a path to an executable XSTL processor (the GermanTeam uses Xalan). The
scripts provided require abashshell. In addition, the generation of the documentation requires
an installed DOT tool (included in Graphviz) for the image generation.

Appendix G

The XabslEngine Class Library

The XabslEngineis a C++ code library that is needed to run a behavior that is formalized in
XABSL on the desired platform. The engine was intended to be platform and application inde-
pendent. This results in a variety of abstract helper classes that have to be adapted to the current
software environment. The following sections describe how to embed the engine into a software
project.

G.1 Files

The following files are needed for the Engine:

XabslEngine/XabslDefinitions.h
XabslEngine/XabslEngine.cpp
XabslEngine/XabslEngine.h
XabslEngine/XabslOption.cpp
XabslEngine/XabslOption.h
XabslEngine/XabslSkill.h
XabslEngine/XabslSymbols.cpp
XabslEngine/XabslSymbols.h
XabslEngine/XabslTools.h

The dependencies between these files are shown in figureG.1. To use the engine “Xab-
slEngine/XabslEngine.h” needs to be included.

G.2 XABSL Definitions

In “XabslEngine/XabslDefinitions.h” the data type of decimal symbols and skill parameters has
to be defined with atypedef. This can be any floating point type that has the<, <= , >, >= , == ,
!= , + , -, * , /, and% operators. For instance

typedef double DECIMAL;

131

132 APPENDIX G. THE XABSLENGINE CLASS LIBRARY

Figure G.1: Include dependencies of the fileXabslEngine.h

sets the type of decimal entities todouble.
If the preprocessor directiveXABSLDEBUG INIT is defined, a lot of debug messages will

be displayed during the initialization of the engine.

G.3 System Functions

In “XabslEngine/XabslTools.h” two abstract helper classes that establish a link to the target plat-
form are defined.

XabslErrorHandler is used by the engine for displaying errors and debug messages:

class XabslErrorHandler
{
public:

XabslErrorHandler() : errorsOccured(false) {};
virtual void printError(const char* text) = 0;
virtual void printMessage(const char* text) = 0;
bool errorsOccured;
...

};

One has to derive a class (e. g. “MyErrorHandler”) from that class, and theprintError(..),
and theprintMessage(..)functions have to be implemented.

XabslInputFile gives the engine access to a file containing the intermediate code:

G.4. SKILLS 133

class XabslInputFile
{
public:

virtual bool open() = 0;
virtual void close() = 0;
virtual DECIMAL readValue() = 0;
virtual bool readString(char*destination, int maxLength)=0;

};

Also from that class a custom class (e. g. “MyInputFile”) has to be derived, and the pure
virtual functions have to be implemented:

open() opens the file containing the intermediate code. Note that the code does not have to be
read from a file. It is also possible to read it from a memory region or any other type of
stream.

close() is called by the engine after having read the data.

readValue() reads a numeric value from the file.

readString() reads a string from the file.

Please note that the file contains comments (//...) that have to be skipped by the read functions:

// divide (7)
7
// multiply (6)
6
// decimal value (0): 52.5
0 52.5
// reference to decimal symbol (1) ball.y:
1 13

The comments have to be treated as in C++ files, i. e., a comment ends with the end of a line.
In the example only7 6 0 52.5 1 13should be read from the file.

G.4 Skills

In “XabslEngine/XabslSkill.h” a base class for skills is defined. All skills have to be derived from
that class:

class XabslSkill
{
public:

virtual void execute(XabslSkillParameters& parameters) = 0;

134 APPENDIX G. THE XABSLENGINE CLASS LIBRARY

};

To give the engine access to these custom skills, a class, e. g. “MySkillCreator”, has to be
derived fromXabslSkillCreator:

class XabslSkillCreator
{
public:

virtual XabslSkill* createSkill(const char* name) = 0;
};

Then, the functioncreateSkill()has to create a skill, and it has to return a pointer to the skill
for the given name of the skill. Example:

XabslSkill* MySkillCreator::createSkill(const char* name)
{

if (strcmp(name,"skill-foo")==0)
return new SkillFoo();

else
return 0;

};

G.5 Symbols

As the formalization of the behavior uses symbols that stand for the entities in the software
environment, the mapping from these symbols to real variables and functions has to be done.
For that one has to derive a class (e. g. “MySymbolProvider”) from XabslSymbolProvider(“Xab-
slEngine/XabslSymbols.h”):

class XabslSymbolProvider
{
public:

virtual void getDecimalInputSymbol(const char* stringID,
XabslDecimalInputSymbol& symbol) = 0;

virtual void getBooleanInputSymbol(const char* stringID,
XabslBooleanInputSymbol& symbol) = 0;

virtual void getEnumeratedInputSymbol(const char* stringID,
XabslEnumeratedInputSymbol& symbol) = 0;

virtual void getEnumeratedOutputSymbol(
const char* stringID,

G.6. INITIALIZING AN ENGINE 135

XabslEnumeratedOutputSymbol& symbol) = 0;

virtual bool getValueOfEnumElement(const char* stringID,
const char* enumElement,
int& value) = 0;

};

On initialization the engine asks the symbol provider to return the address of a variable or a
function for every symbol. An example from the GT2002 project:

void MySymbolProvider::getDecimalInputSymbol(
const char* stringID,
XabslDecimalInputSymbol& symbol)

{
if (strcmp(stringID,"ball.x")==0)

symbol.pVariable =
(DECIMAL*)&(worldState.pBallPosition->getPosition().x);

else if (strcmp(stringID,"ball.angle")==0)
symbol.pFunction = &getBallAngle;

}

When the engine finds the decimal input symbol “ball.x” in the intermediate code, it executes
thegetDecimalInputSymbol()function that sets the symbol to a pointer to the variable for thex
position in the world state. For the symbol “ball.angle” the symbol is set to a pointer to the
function “getBallAngle()”.

Refer to the source code in “XabslEngine/XabslSymbols.h” for more details.

G.6 Initializing an Engine

Once all the helper classes have been derived, the engine can be initialized. The constructor of
the engine takes the following parameters:

XabslEngine(XabslInputFile& inputFile,
XabslErrorHandler& errorHandler,
XabslSkillCreator& skillCreator,
XabslSymbolProvider& symbolProvider,
TimeFunction timeFunction);

Besides references to instances ofXabslInputFile, XabslErrorHandler, XabslSkillCreator,
andXabslSymbolProvidera TimeFunctionhas to be given as a parameter. “TimeFunction” is a
pointer to a function that returns the current system time in milliseconds, and that is defined as
follows:

136 APPENDIX G. THE XABSLENGINE CLASS LIBRARY

typedef unsigned long (*TimeFunction)();

The intermediate code is already parsed in the constructor, and the behavior, all symbols,
options, and states with their decision trees are created. When the initialization fails, the engine
displays detailed error messages using theerrorHandler.

The programmer can check whether the creation of the engine was successful by testing the
variableerrorsOccuredinside theerrorHandler.

G.7 Executing the Engine

Only if the engine was created successfully, it can be executed. The execution is done with the
parameterless functionexecute:

pMyEngine->execute()

G.8 Debugging Interfaces

TheXabslEngineprovides a variety of debugging functions:

void executeFromOption(int option);

executes the option tree not from the specified root option but from the option given as pa-
rameter.

The debugging environment should use the generated debug symbols for the mapping from
option names to numbers. This is the same with all the other debug interface functions.

void setSkillParameter(int skill, int param, DECIMAL value);

sets a parameter of a skill.

DECIMAL getSkillParameter(int skill, int param) const;

returns the value of a parameter of a skill.

int getNumberOfSkillParameters(int skill) const;

returns the number of parameters of a skill.

void executeSkill(int skill);

prevents the execution of the option tree and executes only a specified skill.

G.8. DEBUGGING INTERFACES 137

int getSelectedSkill();

returns the selected skill.

DECIMAL getDecimalInputSymbol(int symbol) const;

returns the value of a decimal input symbol.

bool getBooleanInputSymbol(int symbol) const;

returns the value of a boolean input symbol.

int getEnumeratedInputSymbol(int symbol) const;

returns the value of an enumerated input symbol.

int getEnumeratedOutputSymbol(int symbol) const;

returns the value of an enumerated output symbol.

int setEnumeratedOutputSymbol(int symbol, int value);

sets the value of an enumerated output symbol.

int getInitialOption() const;

returns the initial option.

int getFollowingSubOption(int option) const;

returns the option that is the current successor of an option.

int getActiveState(int option) const;

returns the active state of an option.

unsigned long getTimeSinceOptionStart(int option) const;

returns how long an option has already been activated.

unsigned long getTimeSinceActiveStateStart(int option) const;

returns how long a state of an option has already been activated.

Appendix H

XABSL in GT2002

In GT2002 a variety of solutions for behavior control modules exist. One of them is theXab-
slBehaviorControlwhich makes use of a formalization of robot behavior in an XML language
called XABSL. This chapter describes how XABSL is integrated in the GT2002 project and how
to develop behaviors using it.

H.1 XabslBehaviorControl

The class XabslBehaviorControl is a BehaviorControl solution that embeds
the XabslEngine into the GT2002 environment. It consists of the following
C++ files that are, as nearly all files mentioned in this appendix, located in
T:\GT2002\Src\Modules\BehaviorControl\XabslBehaviorControl.

XabslBehaviorControl.cpp
XabslBehaviorControl.h
XabslGT2002SymbolProvider.cpp
XabslGT2002SymbolProvider.h
XabslSkills.cpp
XabslSkills.h

To develop behaviors only the files XabslGT2002SymbolProvider.h, Xab-
slGT2002SymbolProvider.cpp(cf. Sect. H.2.5), XabslSkills.h, and XabslSkills.cpp (cf.
Sect.H.2.6) need to be edited.

XabslBehaviorControlderives from three classes (cf.H.1): BehaviorControlis the base class
of all behavior control modules.XabslErrorHandlerandXabslSkillCreatorare helper classes for
theXabslEngine.

The XabslBehaviorControlhas a memberpEngine, which is a pointer to anXabslEngine.
The creation of the engine on the robot takes a few seconds because of the slow file access to the
intermediate code.

If the creation of the engine fails, an error messages is generated andXabslBehaviorControl
sends the motion request “scratchHead” that causes the robot to scratch its head and do nothing

138

H.2. EDITING BEHAVIORS 139

Figure H.1: Inheritance graph of classXabslBehaviorControl

else. In most cases, the creation of the engine fails due to a missing skill or symbol that was
added to the XML file but not to theXabslBehaviorControl.

H.2 Editing Behaviors

H.2.1 Files

The entire formalized behavior is contained in the fileBehavior-for-Fukuoka.xml. Al-
though it can be edited using any text editor, it is highly recommended to useXML Spy
(http://www.xmlspy.com, version 4.3 or better). Up to now this is the only XML editor known
to the authors that can completely validate identity constraints in XML schemas.

When usingXML Spy, it is recommended to open the workspace filexmlspy-workspace.spp
instead of opening the XML file directly. This workspace contains all the XABSL related files
includingBehavior-for-Fukuoka.xml.

H.2.2 Coding Conventions

The standard XML coding conventions should be applied (XML Spy does a lot of
this automatically). Attributes should be of the style “funny-nice-behavior” and “very-
important-symbol” (not “ funnyNiceBehavior”, “ VeryImportantSymbol”, “ funnynice behavior”,
“very important symbol”. The “description” attributes should carefully be set to help other de-
velopers to understand what the behavior does.

H.2.3 Validation

It is required to validate the XML file with “xabsl/xabsl-1.0.xsd” before applying the style sheets
if the XSLT processor does not already do this (e. g. xalan, which is used in GT2002, produces
only cryptic error messages and does not check all constraints correctly.). Invalid XML files
produce unpredictable results since theXabslEnginedoesn’t perform a validity check.

XML Spyautomatically validates the file while saving. If an identity constraint is not met,
XML Spyshows the name of the constraint, which often tells what to do. When using another
validation method, make sure that the program can validate identity constraints.

140 APPENDIX H. XABSL IN GT2002

H.2.4 Generating Files

There are fourbashscripts in theXabslBehaviorControldirectory:

make-code.bashgenerates the intermediate code (T:\GT2002\Config\xabsl-intermediate-
code.dat) and the debugging symbols (T:\GT2002\Config\xabsl-debugging-symbols.dat).
As the biggest part ofxabsl-intermediate-code.datconsists of whitespace and comments,
a cleaned version is written toT:\GT2002\Config\xabsl-ic.datfrom that file that will later
be copied to the memory stick.

make-documentation generates a detailed HTML documentation of the behavior
(T:\GT2002\Doc\XabslAgentBehaviorDocumentation\index.html).

make-all.bash executes both of the previous two scripts.

make-all-without-documentation calls onlymake-code.bashand marks the previously gener-
ated documentation files as obsolete so that no misunderstandings about differences be-
tween the robot’s behavior and the documentation can arise.

In the GT2002 projectsGT2002, RobotControl and SimGT2002 make-all-without-
documentation.bashis automatically executed during a build when the XML file has changed.
The documentation needs to be generated manually: By building theDocumentationproject with
the configurationXabsl Behavioror by runningmake-documentation.bashdirectly.

H.2.5 Adding Symbols

After adding a new input or output symbol to the XML file, the fileXabslGT2002SymbolProvider
has to be updated accordingly. Depending on the type of the symbol that was added, thegetDec-
imalInputSymbol, getBooleanInputSymbol, getEnumeratedInputSymbolor getEnumeratedOut-
putSymbolfunction must be extended.

The name of the symbol is always given with the parameterstringID. The result has to be
filled into the variablesymbolthat is always the second parameter. If the symbol stands for
a variable in the software environment,symbol.pVariablehas to be set to the address of that
variable. If the symbol stands for a function,symbol.pFunctionhas to be set to the address of
that function. Add the function to theXabslGT2002SymbolProvider. Example:

void XabslGT2002SymbolProvider::getDecimalInputSymbol(
const char* stringID,
XabslDecimalInputSymbol& symbol)

{
if (strcmp(stringID,"ball.x")==0)

symbol.pVariable =
(DECIMAL*)&(worldState.pBallPosition->getPosition().x);

else if (strcmp(stringID,"ball.angle")==0)

H.2. EDITING BEHAVIORS 141

symbol.pFunction = &getBallAngle;
...

}

For the symbol “ball.x” a pointer to the variable in the world state is returned. For “ball.angle”
a pointer to the member functiongetBallAngle()is returned.

Note that the function referenced has to be defined as static. If the functions are mem-
bers ofXabslGT2002SymbolProvider, a work-around is used to give the static functions access
to the member variables of the class:getInstance()returns a pointer to the instance ofXab-
slGT2002SymbolProvider. Example (definition and implementation):

static DECIMAL getBallAngle();

DECIMAL XabslGT2002SymbolProvider::getBallAngle() {
return (Geometry::angleTo(

getInstance()->worldState.pRobotPose->getPose(),
getInstance()->worldState.pBallPosition

->getPosition())).toDegrees();
}

H.2.6 Adding Skills

After adding a new skill to the XML file a class has to be added toXabslSkills.hand Xab-
slSkills.cpp, e. g.:

class XabslSkillStand : public XabslGT2002Skill
{
public:

XabslSkillStand(const WorldState& worldState,
const XabslGT2002SymbolProvider& symbolProvider,
MotionRequest& motionRequest)
: XabslGT2002Skill(worldState, symbolProvider,motionRequest) {};

virtual void execute(XabslSkillParameters& parameters);
};

and

void XabslSkillStand::execute(
XabslSkillParameters& parameters)

{
motionRequest.motionType = MotionRequest::stand;

}

At last, the string id of the skill as used in XML has to be connected to the class, e. g.,
XabslBehaviorControl::createSkillhas to extended like this:

142 APPENDIX H. XABSL IN GT2002

XabslSkill* XabslBehaviorControl::createSkill(
const char* name)

{
if (strcmp(name,"stand")==0)

return new XabslSkillStand(
*worldState, *pSymbolProvider, *motionRequest);

else if (strcmp(name,"turn")==0)
return new XabslSkillTurn(

*worldState, *pSymbolProvider, *motionRequest);
...

H.3 Testing and Debugging

An extensive debugging interface is included intoXabslBehaviorControl. Almost all internal
states of the engine can be monitored and changed. The data typeXabslDebugRequestcan be
sent to the module. It contains a request which state parameters and states to be monitored and
allows to influence the execution of the engine. The module sendsXabslDebugMessages.

In the RobotControl application theXabsl Behavior Tester Dialog(cf. Sect.J.5.1) provides a
user interface to access these debugging mechanisms.

Appendix I

SimGT2002 Usage

SimGT2002 is based on SimRobot [1], a kinematic robotics simulator. In fact, only a so-called
controller has been added to SimRobot, that provides the same environment to robot control
code that it will also find on the real robots. Therefore, SimGT2002 shares the user interface with
SimRobot. This user interface is documented in the online help file that comes with SimRobot. In
addition, the scene description language that is used to model the simulation scenes is explained
in the help file. Hence, these descriptions are not repeated here.

I.1 Getting Started

SimGT2002 can either be started directly from the Windows Explorer (fromT:\GT2002\Bin),
from Microsoft Developer Studio, or by starting a scene description file1. In the first case, a
scene description file has to be opened manually, whereas it will already be loaded in the lat-
ter two cases. When a simulation is started for the first time and no layout has been patched
into the Windows registry, only the editor window will show up in the main window. Select
Simulation|Start to run the simulation. TheTree Viewwill appear. AScene Viewshowing the
soccer field can be opened by double-clickingWORLD GT2002. However, the scale of the dis-
play will not be appropriate. After selectingView|Zoom|4xandView|Perspective Distortion|Level
1 the field will fit into the window. In addition, the presentation can be simplified by reducing
theView|Detail Level. Please note that there also exist keyboard shortcuts and toolbar buttons for
most commands.

After starting a simulation, a script file may automatically be executed, setting up the robots
as desired. The name of the script file is part of the scene description file. Together with the
ability of SimRobot to store the window layout, the software can be configured to always start
with a setup suitable for a certain task.

Although any object in theTree Viewcan be opened, only displaying certain entries in the
object tree makes sense, namely theWORLD, the objects in the group “robots”, and allVALUEs
of objects starting withVIEW.

1This will only work if SimGT2002 was started at least once before.

143

144 APPENDIX I. SIMGT2002 USAGE

I.2 Scene View

The Scene Viewappears if theWORLDis opened from theTree View. As stated above, a 4x-
zoom and a level 1 perspective distortion are ideal for displaying the field. The view can be
rotated around two axes, and it supports several mouse operations:

• If a robot is clicked between its forelegs (on the field plane), it can be dragged to another
position.

• If a robot is clicked between its hind legs, it can be rotated around its body center, i. e. the
middle between its forelegs.

• If an active robot (see below) is double-clicked, it is the currently selected robot, i. e. the
robot console commands are sent to.

• The ball can be dragged around. Note that its “click position” is on the field plane.

• If the bar from the corresponding challenge is available, it can be dragged around by click-
ing on its center.

• The bar can also be rotated by dragging one of its ends.

I.3 Robot View

A Scene Viewcontaining a single robot can be opened by double-clicking aVEHICLE in the
sub-treerobotsof the Tree View. In such a view, the robot is displayed centered, and it can be
zoomed to fill the entire window. This allows seeing more details of the robot, e. g. the state of
its LEDs. The view supports four different mouse actions:

• If the back of the robot is clicked, this simulates an activated back switch of the robot. A
second click will deactivate the switch.

• If the back area of the top surface of the head is clicked, this simulates an activated back
head switch. Again, a second click will deactivate the switch.

• If the front area of the top surface of the head is clicked, this simulates an activated front
head switch. It is deactivated by a second click.

• A double-click in the window throws the robot on its side. Note that this can only be seen
in the globalScene View. In the robot view, the fact that the robot felt down is visualized
by hiding its tricot. A second double-click will bring the robot back on its feet.

I.4. SCENE DESCRIPTION FILES 145

I.4 Scene Description Files

The language of scene description files is documented in the online help file of SimRobot. How-
ever, there are some facts that are special in SimGT2002:

• At the top of a scene description, just belowWORLD, the instructionREMARKcan be
used to specify the name of the script that will be executed when the simulator is started.
A script file contains commands as specified below, one command per line. The default
location for scripts isT:\GT2002\Config\Scripts, their default extension is.con. If no file
is specified, SimGT2002 will useT:\GT2002\Config\Scripts\console.conif it exists.

• Near the end of a scene description file, there is a group called “robots”. It contains all
activerobots, i. e. robots for which processes will be created.

• Below the group “robots”, there is the group “extras”. It containspassiverobots, i. e. robots
which just stand around, but which are not controlled by a program. Passive robots can be
activated by moving their definition to the group “robots”.

• Below that, there is the group “balls”. It contains the balls, i. e. normally a single ball, but
several ones for the ball challenge.

• There can also be a macro “bar”, which was used for the corresponding challenge.

A lot of scene description files can be found inT:\GT2002\Config\Scenes.

I.5 Console Commands

Console commands can either be directly typed into the console window or they can be executed
from a script file. There exist two different kinds of commands. On the one hand,global com-
mandschange the state of the whole simulation, or they are always sent to all robots. On the
other hand,robot commandsonly have an impact on the set of currentlyselected robots.

I.5.1 Global Commands

call <file>. Executes a script file. A script file contains commands as specified here, one com-
mand per line. The default location for scripts isT:\GT2002\Config\Scripts, their default
extension is.con.

cls. Clears the console window.

echo<text>. Print text into the console window. The command is useful in script files to print
commands that can later be activated manually be pressing “enter”.

gc reset| ready | playing | final | kickOff (blue | red) [<blueScore> <redScore>]. Game
control. The command is sent to all robots. ThekickOff-command is interpreted according
to the team color of each robot.gc resetresets the score counters.

146 APPENDIX I. SIMGT2002 USAGE

help | ?. Displays a help text.

robot ? | all | <name> {<name>}. Connects the console window to a set ofselected robots.
All commands in next section are only sent to the selected robots. The commandrobot ?
displays a list of all robot names. To select a single simulated robot, it can also be double-
clicked in theScene View. To select them all, typerobot all.

sc [gameManager] (<a.b.c.d> | <a.b.c> <d> {<d>}). Starts a wireless connection to real
robots. The syntax is very similar to the one of the start-script of the router (cf. Sect.5.3).
The command will start the router in the background and will display its messages in
the console window. It should only be used once and only in the script that is executed
when the simulation is started. It will add new robots to the list of available robots (named
by the least significant byte of their IP-addresses), and for each of these robots, a full
set of views is added to theTree View. Please note that physical robots only send debug
drawings on demand, so the views will remain empty until the drawings are requested
by the appropriate debug keys. When the simulation is reset or SimGT2002 is exited, the
router will be terminated.

st off | on. Switches the simulation of time on or off. Without the simulation of time, all calls to
SystemCall::getCurrentSystemTime()will return the real time of the Windows PC. How-
ever, as the simulator runs slower than real-time, the simulated robots will receive less
sensor readings than the real ones. If the simulation of time is switched on, each step of
the simulator will advance the time by 8 ms. Thus,SimGT2002simulates real-time, but it
is running slower. By default this option is switched off.

<text>. Comment. Useful in script files.

I.5.2 Robot Commands

ci off | on. Switches the calculation of images on or off. The simulation of the robot’s camera
image costs a lot of time, especially if multiple robots are simulated. In some development
situations, it is a better solution to switch off all low level processing of the robots and
to work with oracled world states, i. e. world states that are directly delivered by the sim-
ulator. In such a case there is no need to waste processing power by calculating camera
images. Therefore, it can be switched off. However, by default this option is switched on.
Note that this command only has an effect on simulated robots.

dk ? | (<key> off | on | <number> | every<number> [ms]). Sets a debug key. The Ger-
manTeam uses so-called debug keys to switch several options on or off at runtime. Type
dk ?to get a list of all available debug keys. Debug keys can be activated permanently, for
a certain number of times, or with a certain frequency, either on a counter basis or on time
(cf. App.E.2). All debug keys are switched off by default.

hcm ? | <mode>. Sets the head control mode (cf. Sect.3.7.3). Typehcm ?to get a list of all
available head control modes.

I.6. ADDING VIEWS 147

hmr <tilt > <pan> <roll >. Sends a head motion request, i. e. it sets the joint angles of the
three axes of the head. This will only work if the actual head control mode isnone. The
angles have to be specified in degrees.

mr ? | <type> [<x> <y> <r>]. Sends a motion request. This will only work if nobehavior
control is active. Typemr ? to get a list of all available motion requests. Walk motions
also have to be parameterized by the motion speeds in forward/backward, left/right, and
clockwise/counterclockwise directions. Translational speeds are specified in millimeters
per second; the rotational speed has to be given in degrees per second.

msg off | on. Switches the output of text messages on or off. All processes can send text mes-
sages via their debug queues to the console window. As this can disturb entering text into
the console window, it can be switched off. However, by default text messages are printed.

pr continue | illegalDefender| obstruction | keeperCharged| ballHolding. Penalize robot.
The command sends one of the four penalties to all selected robots, or it signals them
to continue with the game after a penalty.

prc ? | <role> (blue | red). Sets the player role and the team color. Typeprc ? to see all player
roles available.

so off | on. Switch sending oforacled world stateson or off.Oracled world statesare normally
sent to all processes. This allows the modules calculating the world state to be switched
off without a failure of the robot. However, the option can produce confusing results if
parts of the world state are only sometimes calculated by the robot. Then, the world state
sometimes results from the robot’s own calculations and sometimes from the simulator.
Therefore, sending oracled world states to the robots can be switched off. By default, it is
switched on. Note that this command only has an effect on simulated robots.

sr ? | <task> (? | <solution>). Sends a solution request. This command allows switching the
solutions for a certain task. Typesr ? to get a list of all tasks. To get the solutions for a
certain task, typesr <task> ?.

I.6 Adding Views

In SimGT2002, views are used to display debug drawings (cf. App.E.5). These are
generated by the robot control program, and they are sent to SimGT2002 viamessage
queues(cf. App.E.1). In SimGT2002, the views are defined in the source code. They
are instantiated separately for each robot. All views in the current code are defined in
T:\GT2002\Src\Platform\Win32\SimRobot\RobotConsole.cpp. There are two kinds of views:
image viewsandfield views.

148 APPENDIX I. SIMGT2002 USAGE

Image Views. An image view displays information in the system of coordinates of a camera
image. It is defined by giving it a name and by listing the debug drawings that will be part of the
view, e. g. theimagePerceptCollectionview is defined as:

IMAGE_VIEW(imagePerceptCollection)
image, perceptCollection, lines

END_VIEW(imagePerceptCollection)

Field Views. A field view displays information in the system of coordinates of the soccer field.
It is defined similar to image views. For instance, theworldStateview is defined as:

FIELD_VIEW(worldState)
fieldPolygons, fieldLines, worldState

END_VIEW(worldState)

Appendix J

RobotControl Usage

This chapter describes how to use the RobotControl application. As RobotControl is a very com-
plex system, not all features will be described. But it will help to get an overview about the
capabilities of the program.

J.1 Starting RobotControl

Requirements. RobotControl needs at least version 4.0 of the Microsoft Internet Explorer in-
stalled on your system to work properly. In addition, it is important that RobotControl can access
the GT2002 directory tree on driveT:.

After the First Start the application looks a little bit strange. No child windows appear and all
tool bars are pushed together. But the toolbars can be moved with the mouse to be distributed
over more rows. To switch toolbars on or off, right-click on the tool bar area and select the visible
tool bars from the popup menu. Dialogs can be opened by using the “View” menu or, for some of
them, by using the “Views” toolbar. Note that the window layout will not be restored during the
next start of the application unless it is saved using the “configuration” toolbar (cf. Sect.J.2.2).

J.2 Application Framework

The following toolbars and dialogs form the framework of the application.

J.2.1 The Debug Keys Toolbar

Figure J.1: The Debug Keys Toolbar

149

150 APPENDIX J. ROBOTCONTROL USAGE

The Debug Keys Toolbar(cf. Fig. J.1) is used to switch debug keys on or off (cf. App.E.2).
Each debug key can be parameterized in four different ways describing how often and in which
frequency it will be enabled.

The combo box contains all available debug keys. To edit the properties of a debug key, select
the key from the list and use on of these buttons:

Disabled. The debug key is disabled.

Always. The debug key is always enabled.

n times. The debug key is enabled forn times, i. e., it will returntrue the nextn times it is asked,
andfalseafterwards.n has to be entered into the edit control before the button is pressed.

Every n times. The debug key is enabled everyn-th time, i. e., it will returntrueeveryn-th call,
andfalsein between.

Every n ms. The debug key is enabled everyn milliseconds, i. e., it will returnfalseuntil at least
n milliseconds passed since the last time it returnedtrue.

Disable All. Disables all debug keys.

There are two debug key tables in RobotControl, one for a physical robot connected via the
wireless network, and one for the selected simulated one. With the buttonsEdit table for robot
andEdit table for local processesone can select which of them is edited.Sendsends both debug
key tables to the proper destinations by putting them into message queues, i. e. nothing will
change as long asSendhas not been pressed.

J.2.2 The Configuration Toolbar

Figure J.2: The Configuration Toolbar

TheConfiguration Toolbar(cf. Fig.J.2) is intended to manage different configurations of Robot-
Control. Up to now, it only works for window layouts.

As it is sometimes very difficult to arrange the dialogs and toolbars in the main window for
efficient use, theConfiguration Toolbarallows saving window layouts to the Windows registry.
With theNewbutton, new layouts can be created from the current one,Renamerenames a layout,
andDeletedeletes a layout. Note that changes in the layout are not automatically saved. Instead,
this has to be done manually by pressing theSavebutton. One can select between different
layouts by selecting a different entry in the combo box.

J.2. APPLICATION FRAMEWORK 151

Figure J.3: The Settings Dialog: RobotControl’s most often used dialog

J.2.3 The Settings Dialog

With theSettings Dialog(cf. Fig. J.3), solutions for modules (cf. Sect.3) running on the robot
or on the PC can be switched. A certain combination of solutions is called a setting and can
be stored. All settings are stored inT:\GT2002\Config\Settings. The default solution for each
module is marked with an asterisk.

J.2.4 The Log Player Toolbar

Figure J.4: The Log Player Toolbar

In RobotControl, logfiles can store a set of messages of any kind used to communicate between
modules or between dialogs or toolbars and modules, e. g. it is possible to record pictures sent
by a robot in a logfile, and then play that logfile several times to test different kinds of image
processing with exactly the same input data.

The Log Player Toolbar(cf. Fig. J.4) is used to record, play, and modify such logfiles. Its
buttons should be known from other players, e. g. CD-players.Playing a logfile sends all mes-
sages in it to all running modules in RobotControl as well as to all dialogs that can handle that
type of message.Step forwardandStep backwarddo the same with single messages.

Recording appends all messages sent from a robot via the wireless network to the actual
logfile (in memory) that can besaved afterwards.

152 APPENDIX J. ROBOTCONTROL USAGE

J.2.5 WLan Toolbar

Figure J.5: The WLan Toolbar

The WLan Toolbar(cf. Fig. J.5) is used to create, edit, and switch between different wireless
network configurations. It also allows connecting to (and of course disconnecting from) one of
the robots in the current wireless network configuration. ThePlayers Toolbardecides to which
robot a connection is established.

Figure J.6: The WLan New Dialog

Creating new and modifying existing wireless network configurations opens the dialog shown
in figureJ.6. Connections to robots are established via the router (cf. Sect.5.3). The dialog allows
all relevant parameters to be specified: the (base) IP address of a robot as well as the IP address
of the router and its base port that is used to map between port numbers on the router and robot
IP addresses to be routed to.

TheAutoIP-checkbox is used to decide whether the robot IP address is fixed or a base address,
to which the team color and the player role are added to to get the real IP address.

Furthermore settings can be edited such as the wireless networkESSID, the Netmask, the
APmode, theWepKey, and theChannel. In addition, it can be selected to save these settings with
thePlayers Toolbardescribed next.

J.2.6 Players Toolbar

The Players Toolbar(cf. Fig. J.7) allows choosing the team color and the player role of the
actual robot, either a simulated one or a robot connected to via the wireless network. If the current
wireless network configuration (cf. Sect.J.2.5) usesAutoIP, the IP address automatically changes
when changing team color or player role. Team color and player role change messages are sent

J.3. VISUALIZATION 153

Figure J.7: The Players Toolbar

to all processes running on the PC and even to the robot connected via the wireless network.
This way team color and player role can be changed at runtime. All these settings can be saved to
T:\GT2002\Config\player.cfgthat is used to determine team color and player role on the PC and
on robots at startup. According to the current wireless network configuration (cf. SectJ.2.5) the
file T:\GT2002\Config\wlanconf.txtis also changed after pressing theSave-button. That allows
easy creation of memory sticks for a complete team, supported by thecopyfiles-button.

J.2.7 Game Toolbar

Figure J.8: The Game Toolbar

With the Game Toolbar(cf. Fig. J.8) the game control data can be generated and sent. So for
tests with a single robot, Sony’s RoboCup Game Manager is not needed.

J.3 Visualization

J.3.1 Image Viewer and Large Image Viewer

The two image viewer dialogs (cf. Fig.J.9) display images and debug drawings from thequeue-
ToGUI (cf. Fig.5.3) so images from the robot, the log player, or the simulator are displayed. The
Image Viewerhas space for four images with fixed resolution. TheLarge Image Viewershows
only one image and is sizeable. With the context menu different types of images and different
debug drawings can be selected. The context menu also containsCopy drawingsandCopy image
and drawingswhich copies only the debug drawings as a vector graphic or the image with the
drawings as a bitmap to the clipboard. Important: to see a debug drawing created in a special so-
lution of some module (cf. Sect.3), this solution has to be selected (cf. Sect.J.2.3). For example,
to see the debug drawingline, in the settings dialog the solution for theLines Perceptorhas to be
changed fromdisabledto Default.

J.3.2 Field View and Radar Viewer

TheField Viewand theRadar Viewer(cf. Fig. J.11) both display percept drawings. TheRadar
Viewerdisplay the percepts relative to the robot. TheField Viewdraws the percepts based on the
robot’s localization on the field. In both dialogs the drawings can be selected with the context
menu.Copy drawingscopies the drawings as a vector graphic to the clipboard.

154 APPENDIX J. ROBOTCONTROL USAGE

Figure J.9: Image Viewer and Large Image Viewer Dialog

J.3.3 Color Space Dialog

Figure J.10: The Color Space Dialog showing the u-channel of an image as a height map.

TheColor Space Dialog(cf. Fig. J.10) visualizes how an image uses the YUV color space, and
displays the y, u, and v channel as a height map. By dragging with the left mouse button the 3-D
scene can be rotated. With the context menu the type of view can be selected.

J.3. VISUALIZATION 155

MonteCarlo
particle

player

flag

goal
ball

point on a
field line

simulated robot

vision of the simulated robot

Figure J.11: RobotControl’s Field View and the Radar Viewer Dialog

J.3.4 Time Diagram Dialog

Figure J.12: The Time Diagram Dialog

The Time Diagram Dialog(cf. Fig. J.12) visualizes the times which different modules need
for their execution in terms of bars. The values next to each bar show the measured time in
milliseconds and the frequency (in times per second).

Times can be measured on the robot by selectingstop times on robot. If you are using the
simulator (cf. Sect.J.4), the times can be measured on the computer by selectingstop times local.
The optionview log filesdisplays the measured times of recorded logfiles. Since the times for the
execution of the modules can vary very much from one measurement to the next one, the motion
of the time-indicators can be smoothed by using average values. The average can be chosen
between 2 and 500 measurements. Clicking the right mouse button in the dialog opens a dialog

156 APPENDIX J. ROBOTCONTROL USAGE

in which the modules of interest can be selected. This dialog also offers the option to export the
values to a file in a comma-separated format.

The design of the dialog varies, depending on its size and the number of the selected modules.

J.4 The Simulator

The simulator is a very powerful extension for RobotControl. Like SimGT2002 (cf. Sect.5.1), it
is based onSimRobot. The simulator offers a lot of possibilities to develop, test and debug new
algorithms or alternative solutions for modules without using a robot.

Figure J.13: Toolbar of the Simulator

As shown in FigureJ.14, all relevant objects for robot-soccer are included in the simulation:
the field (including landmarks, goals, lines, etc.), players and the ball. Other objects (e. g. for
challenges) can be added with ease. The created image depends on the position of the robot and
also on the current angles of head and leg joints.

a) b)

Figure J.14: a) Created image and b) Object Viewer of the simulator

For developing modules which result in movement of the robots, e. g. behavior, the object
viewer (cf. Fig.J.14) shows the complete field with all simulated objects. It can be activated
by the buttonObject Viewerof the simulator toolbar (cf. Fig.J.13). The vantage point of the
observer is variable and can be changed by moving the bars under and beneath the displayed
scene. The zooming level, detail level, and the perspective distortion can be adjusted by using
the appropriate buttons in the toolbar. Besides these options, the toolbar contains buttons to start

J.5. DEBUG INTERFACES FOR MODULES 157

and reset the simulation, and to force a step-by-step mode. The touch sensors at the back and the
head of the robot can be “virtually pressed” by the buttons marked with an arrow at the according
position. One of those buttons pretends the robot to be fallen aside.

A very helpful feature of the simulator is the oracle. It lets the robot know everything of
its environment exactly. This can help to develop modules without being dependent on other
modules. For example a behavior can be implemented and tested without a self-locator. The
buttonsend oracleactivates this function.

Up to four robots of one team can be simulated at the same time. To send commands or
receive information from a robot, connect to it by choosing it out of the list atRobotsin the
menu bar. This menu also includes the option to generate images for the connected robot or all
simulated robots. Be aware, that generating images for all robots needs a lot of computing power.
An entry in the status line of RobotControl shows the currently connected robot.

J.5 Debug Interfaces for Modules

For some of the Modules specific debug interfaces were developed.

J.5.1 Xabsl Behavior Tester

Figure J.15: The Xabsl Behavior Tester Dialog

TheXabsl Behavior Testeris a debugging interface to theXabslBehaviorControlmodule (cf.
Sect.3.6.2). One can view almost all internal states of the engine.OptionsandSkillsandOutput
Symbolscan be selected manually for separate testing.

With the checkboxtest on robotin the right upper corner one can set if the behavior shall be
tested on the robot or in the simulator.

158 APPENDIX J. ROBOTCONTROL USAGE

In the combo boxtest an optionan option can be selected to be the root option. The execution
of the option tree starts then from that option. This allows testing single options separately.

At the bottom of the dialog with the checkboxtest a skillthe execution of the options can be
switched off completely. Instead the skill that is selected in the combo box at the left bottom is
executed with the parameters that are entered into the edit fields below.

At the top of the white area theOption Activation Pathis displayed. The first column shows
all the activated options. The second column shows the time how long these options are already
activated. Then in the third column the active state of each option, and in the fourth column the
time how long the state is already active, are displayed.

Then theActivated Skillshows, which skill is currently activated and its parameters. The
motion requestshows the motion request that resulted from the execution of the skills.

TheInput Symbolssection shows the current values of the selected input symbols. The selec-
tion, which symbols shall be displayed, can be done with the context menu of the dialog. Same
with Output Symbols.

The dialog reads the filexabsl-debugging-symbols.dat. It is important that this file was gener-
ated from the same XML file as the intermediate code. Otherwise it may possibly cause program
crashes.

At last, in the context menu exists an entryReload Files. The dialog rereads the debugging
symbols and sends the intermediate code to the robot and to the local processes, where the engine
is newly created. That allows the testing of changes in the behavior without rebooting the robot
or restartingRobotControl.

J.5.2 Motion Tester Dialog

a) b)

Figure J.16: The Motion Tester Dialog with a) walking and b) special actions

With theMotion Tester Dialog(cf. Fig. J.16) it is possible to sendMotionRequestsfrom Robot-
Control to the robot.

In the upper area of the dialog the different modes stand, getup, walk, or special action can
be chosen. In walk mode the velocities inx andy direction and the rotation speed can easily be
set by sliders. In special action mode the different special action (i. e. kicks or joy dance) can be
chosen from an select box. In the lower area of the dialog the movement of the tail can be set.

J.5. DEBUG INTERFACES FOR MODULES 159

Possible settings are, e. g., wag horizontal or parallel to ground (based on the evaluation of the
gravity sensor).

To send theMotionRequestto the robot, you have to push thesendbutton.
For another way to control the robots motion, theJoystick Motion Tester(cf. Sect.J.5.5) is

available.

J.5.3 Head Motion Tester Dialog

Figure J.17: The Head Motion Tester Dialog

The Head Motion Tester Dialog(cf. Fig. J.17) is handy to test the head control module, it is
possible to sendHeadMotionRequestsor to set theHeadControlModefrom RobotControl.

The desiredHeadControlModeis selectable from a list of all available modes. Some modes
require additional parameters (i. e. the coordinates of a point to look at). These can be set in the
appearing input elements.

In HeadMotionRequestmode, the desired joint values can be set by sliders.

J.5.4 Mof Tester Dialog

Figure J.18: The Mof Tester Dialog

TheMof Tester Dialog(cf. Fig.J.18) is used to write and test new motions. Motions are specified
in a description language (cf. Sect.5.4). Joint data lines from these descriptions may be entered
into the input field of the dialog and can be sent to the robot via the wireless network at runtime.

160 APPENDIX J. ROBOTCONTROL USAGE

For this dialog to work it is necessary that the moduleDebugMotionControlis running on
the robot instead of the default motion control module. The debug module will not execute nor-
mal motion requests from behavior control but rather wait for debug messages sent from the
MofTesterdialog. It is activated on the robot by switching module solutions with theSettings
Dialog (cf. Sect.J.2.3).

Theexecutebutton parses the input field for lines containing joint data information and sends
the sequence to the robot. If theloop checkbox is activated when pressingexecutethe sequence
will be executed repeatedly.

Thestopbutton stops any sequence currently being executed.
The readbutton provides a very handy tool when creating new motions. It reads the robot’s

current joint angles from sensor data and puts them into a new line in the input field. This is
extremely useful in combination with the stay-as-forced motion mode theDebugMotionControl
module provides while not executing joint data sequences. In stay-as-forced mode all motors
are controlled with feedback from sensor input, and therefore they always maintain their current
position. In this mode joints may be moved manually and the resulting joint angles can be read
into theMof Tester Dialog.

J.5.5 Joystick Motion Tester Dialog

Figure J.19: The Joystick Motion Tester Dialog

TheJoystick Motion Tester Dialog(cf. Fig. J.19) is used to control a robot that is connected via
the wireless network by joystick. Using such an analog input device is, e. g., useful for testing
new walking engines or parameters or just walking stability. The primary aim is not a complete
remote control, but only moving the robot around (and optional moving its head) while all other
modules keep running autonomously.

This dialog is only tested with an MS Sidewinder Precision 2 USB joystick, but should work
with any joystick providing three axes, an accelerator, and eight buttons. After the joystick has
been attached, theuse joystickbox has to be checked to start using this dialog. If no joystick
seems to be connected, the dialog will refuse to work.

The joystick controls the walking engine of a robot connected with RobotControl via the
wireless network. The direction the robot should move to according to the state of the joystick is
visualized in the dialog. Red text inJoystick Motion Tester Dialogsignals that current changes

J.6. COLOR CALIBRATION 161

have not been executed yet, black text shows the actual states or commands, and grey text visu-
alizes states or commands that were sent last but are inactive at the moment.

The buttons 1 to 4 can be used for different kicks, button 7 to start thegetupmotion and button
5 to switch from walking control to head control. As long as button 5 is pressed, the joystick will
control the head instead of the walking. That will be visualized by the dialog, too.

To ease the use of the dialog for different people, different schemes for joystick control were
implemented. One is calledStickSpeed, in which the walking speed is completely controlled by
the three axes of the joystick, the accelerator is used to switch between head control modes, the
walking type can be changed with button 8, and all special actions can be generated by holding
button 6 pressed and moving the accelerator.

Another scheme forJoystick Motion Tester Dialogis calledAcceleratorSpeed: the accelerator
is used to control the forward walking speed, the axes are only used for sideward speed and
direction, and walk types can be changed with button 6.

Commands will only be sent via the wireless network if they differ from the previous com-
mand and at most every 300 ms, because the router throughput and especially its response times
do not allow much more. So whirling around the joystick will definitely not encourage the robot
to do the same.

J.6 Color Calibration

J.6.1 The Color Table Dialog

Figure J.20: The Color Table Dialog

TheColor Table Dialog(cf. Fig. J.20) is used to create color tables for image processing. The
current image from the simulator, a logfile or the robot’s camera (via WLAN) is shown top right
(cf. Fig. J.20). Beneath the same image can be seen, segmented with the current color table.
Choosing a color class and clicking with the left button on a pixel in one of the two images will

162 APPENDIX J. ROBOTCONTROL USAGE

assign the color class to the4 × 4 × 4 cube in YUV color space according to the color value of
the pixel. The result takes effect immediately and the segmented image will be updated. Clicking
with the right button on a pixel will remove the according color class assignment. There are also
functions to undo the last assignment, to clear all assignments for a whole color class and to reset
the complete table.

On the left side of the window, two sights of the current color table in YUV color space are
shown. They have no additional functions.

After having assigned all needed colors, the table can be saved to a file. The GT2002 vision
modules need a file namedcoltable.c64. It is also possible to load an existing file and to modify
it.

J.6.2 HSI Tool Dialog

Figure J.21: The HSI Tool Dialog

This tool uses the HSI color space to create a color table. It allows the user to specify the mini-
mum and maximum values for hue, saturation and intensity for each color class using sliders and
gives an instant feedback by real time color classification of four images at the same time. These
images are directly taken from the memory ofRobotControland can be held as long as needed. It
is also possible to update an image simultaneously with the one in the memory ofRobotControl.
The tool saves the color table both in HSI and YUV format. By selecting an image there is an-
other dialog with a zoomed view (cf. Fig.J.22) of it and the belonging color classified image. In
this dialog the color class can simply be edited by selecting single pixels. There is also an undo
function for several steps.

J.6. COLOR CALIBRATION 163

This HSI approach leads to good results very quickly by defining big sectors in the color
space and it is more tolerant against changing light conditions. The tool can be combined with
the other color table tool using YUV color space. First, the HSI tool is used to quickly generate
a color table and the YUV tool can be employed for fine tuning if required.

Dialog structure. The main dialog (cf. Fig.J.21) consists of two parts. In the upper half are
spaces for four RGB images and below them the corresponding color classified images will be
displayed. Below each space there are buttons for capturing an image and at the left is a check
box for an automatic update of the image above it.

In the lower half of the dialog are most of the controls. There is a combo box with entries for
all color classes used by the image processing module, a button for loading HSI color tables, a
button for saving the HSI and the corresponding YUV color table and six sliders for determining
the range of the selected color class in the HSI color system. An HSI color class consist of a
minimum and a maximum value for hue (H), saturation (S), and intensity (I).

Main dialog. With thecapturebuttons in the upper half of the main dialog (cf. Fig.J.21) the
actual image thatRobotControlhas in memory can be saved. It can be done for four images.
When the box beforeupdatebelow the left place is checked, this image is updated automatically,
whenRobotControlgets a new image from the robot or a log file. The color classified image will
be updated automatically when you change the range of a color class.

With the combo box at the lower left of the dialog the color class to be edited can be selected.
The sliders show the minimum and maximum values of this color class. The ranges for H, S,
and I can be modified by changing the positions of the sliders. While moving a slider the color
classified image is permanently updated.

The range of values for the hue of a color class goes from 0 to 360, and for saturation and
for intensity from 0 to 100. Because the value for hue in HSI color system lies on a circle, it
is possible that the maximum value for this range is smaller than the minimum value. For a red
color, e. g., the minimum of the hue range could be 350 and the maximum could be 15. For
saturation and intensity the minimum value should be below the maximum value.

The color table can be saved by pressing theSavebutton. It appears a file dialog where
the destination and the name of the color table can be selected. The suffix.hsi will be added
automatically. A YUV color table converted from the HSI color table will also be saved with the
same name and the suffix.c64.

An HSI color table can be load by pressing theLoadbutton. It can be selected in the appearing
dialog. It is only possible to load HSI color tables. YUV color tables are not supported yet by the
HSI tool.

Zoom dialog. By performing a click with the left mouse button on one of the RGB images,
another dialog window with a zoomed view (cf. Fig.J.22) of the selected image and the belonging
color classified image will appear. In this dialog it is possible to improve the precision of the
ranges for color classes by selecting single pixels. At the lower left the combo box with the color
classes to edit is located. There is also anUndobutton for the last six changes.

164 APPENDIX J. ROBOTCONTROL USAGE

Figure J.22: The HSI Tool Zoom Dialog

By pressing the left or the right mouse button on a pixel in one of the zoomed images the
selected color class will be modified. If the left mouse button has been pressed and the color of
the selected pixel lies outside the color class, the range will be enlarged until the values for hue,
saturation, and intensity are inside this range. If the right mouse button has been pressed and the
selected pixel lies inside the range of the color class, the range will be reduced until the values
for hue, saturation, and intensity are outside of it.

By selecting single pixels, it is possible to determine which color should belong or not belong
to the chosen color class. Thus precision of the class can be improved.

J.6.3 Camera Toolbar

Figure J.23: The Camera Toolbar

The Camera Toolbar(cf. Fig. J.23) is used to set the parameters that are provided by the
robot’s camera. These parameters are set with the combo boxes. White balance may be set to
indoor, outdoor, or FL mode. Shutter speed may be selected from slow, medium, or fast. Finally
low, medium, or high camera gain can be chosen.

Thesend to robotbutton sends the selected parameters via the wireless network to the robot.
The new settings are applied immediately. When viewing the camera pictures with the image
viewer (cf. Sect.J.3.1) the effects of different camera settings can be observed.

Thesavebutton writes the settings to a file namedcamera.cfg. This file is loaded at the start
of RobotControl to initialize theCamera Toolbarwith its contents. But more important this file

J.7. OTHER TOOLS 165

is copied to the memory stick and loaded when booting the robot. The settings from this file are
used on the robot unless different parameters are sent with the toolbar.

J.7 Other Tools

J.7.1 Debug Message Generator Dialog

Figure J.24: The Debug Message Generator Dialog

TheDebug Message Generator Dialog(cf. Fig.J.24) is used to generate less commonly used
debug messages for which no special dialog exists. The combo box is used to select what type
of debug message is generated. When pressing thesendbutton a message will be generated by
parsing the input in the text field. The dialog may be extended easily by adding the code to
parse the text input into a debug message. Therefore it allows generating new debug messages
with RobotControlwithout having to create a new dialog. It is used, e. g., to send a new set of
parameters to the walking engine. By this it is possible to change the walking style at runtime
and therefore develop new walks very quickly. Another application is to test playing acoustic
messages on the robot by sending the corresponding debug message.

J.7.2 Test Data Generator Dialog

Figure J.25: The Test Data Generator Dialog generated an image which is shown by the Color Space
Dialog

TheTest Data Generator Dialog(cf. Fig.J.25) can generate any type of data and put it into a
message queue. At the moment two differentschemesexist. One generates an image with a green

166 APPENDIX J. ROBOTCONTROL USAGE

background and an orange circle. The size and position of the orange circle can be modified with
the sliders. This was very helpful for testing the ball preceptor. The other scheme generates an
image that demonstrates the YUV color space. The first slider modifies the Y value. The image
shows all U and V values.

J.7.3 Evolver Dialog

With theEvolver Dialog, new gait patterns for the robot can be developed by applying an Evo-
lutionary Algorithm (EA). This class of optimization algorithms uses populations of individuals,
in which each individual (in this context) represents a different gait pattern. In the course of the
algorithm, the fitness of each individual is tested on the robot by executing tournaments (i.e.
foot-races). The better ones are chosen to constitute the next population, the other patterns are
discriminated. A good introduction to EA is given by [13]. TheEvolver Dialogallows specifying
the parameters for the algorithm as well as executing the evolution process.

Figure J.26: The Evolver Dialog

The dialog window, as illustrated in figureJ.26, is arranged in two columns. The left one
shows the parameters for the algorithm, while the right part illustrates parameter sets of actual
individuals for debug purposes. The set of buttons at the bottom of the window can be used to
run and evaluate tournaments.

The parametersGenerationsandPopulation Sizeare used to define the number of generations
and the number of individuals in each generation. In practice,0.5· Generation· Population Size
tournaments have to be run to finish a complete evolution process. The experiments conducted
show, that a population size of 10 to 20 seems to be a reasonable choice [6, 7]. The Mutation
parameter is a floating point variable the value of which can be chosen among numbers ranging
from 0 to 1. Exemplary, by settingMutation to 0.3, about 30 % of the parameters of each indi-
vidual will be mutated. TheCrossoverparameter affects the generation of a new population. If
Crossoveris set to 0.3, then 30 percent of the entire population consists out of individuals that are
generated by the crossover function. The rest (70%) are selected survivors of the last generation.
TheReplaceparameter defines the probability that an individual is replaced by a randomly gener-
ated or predefined one when a new generation is built up. IfReplaceis set to 0.4, then 60% of the

J.7. OTHER TOOLS 167

new generation is generated out of individuals of the former population. The valueWinners Fit-
nessis assigned to the winner of a tournament. The looser’s fitness is set to100−Winners Fitness.
If no winner can be determined, both individuals get a fitness value of 50. A value more than 50
and up to 100 is a reasonable choice for theWinners Fitness. Standard Valuesdetermines, how
many individuals of a new population are taken fromT:\GT2002\Config\genome.gen. There,
a standard individual can be defined. WhenStandard Valuesis set to zero, no individual is ini-
tialized from predefined value. IfStandard Valuesis set to 0.1 andReplaceis set to 0.4, then
10% · 40% = 4% of all individual are initialized by standard values1.

Selection and Scaling Schemedefines, how the fitness value is scaled and used to discrim-
inate between the different individuals. The different methods are explained in [13]. Walking
Typeenables to choose between different walking engines implemented in GT2002. The actually
implemented walking engines and their parameters are explained in section3.7.1. TheEvolving
Modeparameter can be used to select between different kinds of tournaments. Actually, auto-
matic and semi-automatic fitness estimation modules are developed [6, 7]. Nevertheless, this
methods do not perform with full functionality under all side-constraints. Therefore,Evolving
Modecan only be set to “manual” in this release. The last parameterMofLinesis only useful
whenWalkingTypeis set toMofDebugWalk. It determines the number of parameters (genomes)
each individual consists of (cf. Sect.3.7.1for details.)

The buttons at the bottom of the window provide the following functionality:Next, 1, and2
of theShow Individualrow send specific gait patterns to the robot, such that the user can evaluate
their fitness. Usually, only theNext-Button is used to show the following walking pattern. In some
cases, the user might be unsure, then he or she can recall the first1 or the second2 gait explicitly.
A double-click on an individual from the list (right column) starts the implicated gait pattern
automatically, too. ThePausebutton can be used to stop an actually executed walk immediately.

The quality of the individual can be evaluated by pressing one of the buttonsNone, 1, or 2 in
theVote Individualrow. If the first shown pattern is better,1 has to be pressed, if the tournament
results in a tie, theNonebutton must be pressed.Resetstarts and restarts the whole evolution
process. To save intermediate results, theLoad andSavebuttons can be used to save a selected
Genomeor an entirePopulation, respectively.

1For the first generation,Standard Valuesdefines, how many individuals of the wholePopulation Sizeare initial-
ized by a predefined individuum.

References

[1] Simrobot homepage. http://www.tzi.de/simrobot.

[2] J. F. Allen. Maintaining knowledge about temporal intervals.Communications of the ACM,
26:832–843, 1983.

[3] R. Brunn, U. D̈uffert, M. J̈ungel, T. Laue, M. L̈otzsch, S. Petters, M. Risler, T. Röfer,
K. Spiess, and A. Sztybryc. Germanteam 2001. InRoboCup 2001, number 2377 in Lecture
Notes in Artificial Intelligence, pages 705–708. Springer, 2002.

[4] H.-D. Burkhard. Mental models for robot control. InProceeding on Dagstuhl Seminar
“Planbased Control of Robotic Agents”. Springer LNAI-Series, 2001.

[5] H.D. Burkhard, J. Bach, R. Berger, B. Brunswieck, and M. Gollin. Mental models for robot
control. In M. Beetz et al., editor,Plan Based Control of Robotic Agents, number 2466 in
Lecture Notes in Artificial Intelligence. Springer, 2002. To appear.

[6] Ingo Dahm and Jens Ziegler. Adaptive methods to improve self-localization in robot soccer.
In RoboCup Symposium Fukuoka, 2002.

[7] Ingo Dahm and Jens Ziegler. Using artificial neural networks to construct a meta-model for
the evolution of gait patterns of four-legged walking robots. Into appear in International
Conference on Climbing And Walking Robots (CLAWAR), November 2002.

[8] J. Foley, A. van Dam, S. Feiner, and J. Hughes.Computer Graphics: Principles and Prac-
tice. Addison-Wesley, 1997.

[9] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte Carlo localization: Efficient position
estimation for mobile robots. InProc. of the National Conference on Artificial Intelligence,
1999.

[10] John F. Hart et al.Computer Approximations. SIAM Series in Applied Mathematics. Wiley,
1968.

[11] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination
of minimum cost paths. InIEEE Transactions on Systems, Man, and Cybernetics, volume
SSC-4:2, pages 100–107. Institute of Electrical and Electronics Engineers, Inc., 1968.

168

REFERENCES 169

[12] V. Jagannathan, R. Dodhiawala, and L. Baum.Blackboard Architectures and Applications.
Academic Press, Inc., 1989.

[13] J. R. Koza.Genetic Programming. MIT Press, Cambridge, MA, 1992.

[14] S. Lenser and M. Veloso. Sensor resetting localization for poorly modeled mobile robots.
In Proc. of the IEEE International Conference on Robotics and Automation (ICRA), 2000.

[15] F. K. H. Quek. An algorithm for the rapid computation of boundaries of run length encoded
regions.Pattern Recognition Journal, 33:1637–1649, 2000.

[16] Th. Röfer. Strategies for using a simulation in the development of the Bremen Autonomous
Wheelchair. In R. Zobel and D. Moeller, editors,Simulation-Past, Present and Future,
pages 460–464. Society for Computer Simulation International, 1998.

[17] D. Schulz, W. Burgard, D. Fox, and A.B. Cremers. Tracking multiple moving targets with
a mobile robot using particle filters and statistical data association. InProc. of the IEEE
International Conference on Robotics and Automation (ICRA), 2001.

[18] T. Naruse T. Takahashi Y. Nagasaka, K. Murakami and Y. Mori. Potential field approach
to short term action planning in robocup f180 league. InRoboCup 2000, Lecture Notes in
Artificial Intelligence. Springer, 2001.

	1 Introduction
	1.1 History
	1.2 Scientific Goals
	1.2.1 Humboldt-Universität zu Berlin
	1.2.2 Technische Universität Darmstadt
	1.2.3 Universität Bremen
	1.2.4 Universität Dortmund

	1.3 Contributing Team Members
	1.3.1 Humboldt-Universität zu Berlin
	1.3.2 Technische Universität Darmstadt
	1.3.3 Universität Bremen
	1.3.4 Universität Dortmund

	1.4 Structure of this Document

	2 Architecture
	2.1 Platform-Independence
	2.1.1 Motivation
	2.1.2 Realization
	2.1.3 Supported Platforms
	2.1.4 Math Library
	2.1.4.1 Class Hierarchy
	2.1.4.2 Provided Data Types

	2.2 Multi-Team Support
	2.2.1 Tasks
	2.2.2 Debugging Support
	2.2.3 Process-Layouts
	2.2.3.1 Communication between Processes
	2.2.3.2 Different Layouts

	2.2.4 Make Engine
	2.2.4.1 Dependencies
	2.2.4.2 Realization
	2.2.4.3 Automation and Integration

	3 Modules in GT2002
	3.1 Body Sensor Processing
	3.2 Vision
	3.2.1 Blob-Based Vision
	3.2.1.1 Flood-Fill RLE Blob Detector
	3.2.1.2 Landmarks Perceptor
	3.2.1.3 Ball Perceptor
	3.2.1.4 Players Perceptor

	3.2.2 Grid-Based Vision
	3.2.2.1 Using a Horizon-Aligned Grid
	3.2.2.2 Ball Specialist
	3.2.2.3 Flag Specialist
	3.2.2.4 Goal Specialist
	3.2.2.5 Player Specialist
	3.2.2.6 Lines Perceptor

	3.3 Self-Localization
	3.3.1 Single Landmark Self-Locator
	3.3.1.1 Approach
	3.3.1.2 Results

	3.3.2 Monte-Carlo Self-Locator
	3.3.2.1 Motion Model
	3.3.2.2 Observation Model
	3.3.2.3 Resampling
	3.3.2.4 Estimating the Pose of the Robot
	3.3.2.5 Results

	3.3.3 Lines Self-Locator
	3.3.3.1 Observation Model
	3.3.3.2 Optimizations
	3.3.3.3 Early Results

	3.4 Ball Modeling
	3.4.1 Ball Is Visible
	3.4.2 Ball Is Not Visible
	3.4.3 Ball Speed

	3.5 Player Modeling
	3.5.1 Determining Robot Positions from Distributions
	3.5.2 Integration of Team Messages

	3.6 Behavior Control
	3.6.1 TUDXMLBehavior
	3.6.1.1 Structure of a Behavior Model Document
	3.6.1.2 Language
	3.6.1.3 Documentation
	3.6.1.4 Conclusion

	3.6.2 XABSL
	3.6.2.1 The Behavior Architecture
	3.6.2.2 Formalization of Behavior - XABSL
	3.6.2.3 The XabslEngine

	3.7 Motion
	3.7.1 Walking
	3.7.1.1 Approach
	3.7.1.2 Parameters
	3.7.1.3 Odometry correction values
	3.7.1.4 Inverse Kinematics

	3.7.2 Special Actions
	3.7.3 Head Motion Control
	3.7.3.1 Head Control Modes
	3.7.3.2 Speed Adjustment
	3.7.3.3 Joint Protection

	4 Challenges
	4.1 Pattern Analysis Challenge
	4.2 Collaboration Challenge
	4.3 Ball Challenge
	4.3.1 Architecture
	4.3.2 Modeling of the Potential Field
	4.3.2.1 The Different Objects

	4.3.3 Visualization of the Potential Field
	4.3.4 Path Planning
	4.3.4.1 Gradient Descent
	4.3.4.2 Local Minima

	4.3.5 Results

	5 Tools
	5.1 SimGT2002
	5.1.1 Simulation Kernel
	5.1.2 User Interface
	5.1.3 Controller

	5.2 RobotControl
	5.3 Router
	5.4 Motion Configuration Tool

	6 Conclusions and Outlook
	6.1 The Competitions in Fukuoka
	6.1.1 Results
	6.1.2 Experiences

	6.2 Future Work
	6.2.1 Humboldt-Universität zu Berlin
	6.2.2 Technische Universität Darmstadt
	6.2.3 Universität Bremen
	6.2.4 Universität Dortmund

	7 Acknowledgements
	A Installation
	A.1 Required Software
	A.1.1 Common Requirements
	A.1.2 GreenHills-Based Development
	A.1.3 gcc-Based Development

	A.2 Source Code
	A.2.1 Robot Code
	A.2.2 Tools Code

	A.3 The Developer Studio Workspace GT2002.dsw

	B Getting Started
	B.1 First Steps with RobotControl
	B.1.1 Looking at Images
	B.1.2 Discover the Simulator

	B.2 Playing Soccer with the GermanTeam
	B.2.1 Preparing Memory Sticks
	B.2.2 Establishing a WLAN Connection
	B.2.3 Operate the Robots

	B.3 Explore the Possibilities of the Robot
	B.3.1 Send Images from the Robot and Create a Color Table
	B.3.2 Try Different Head Control Modes
	B.3.2.1 Search for ball with different color tables
	B.3.2.2 Pay Attention to the Horizon when the Robot is Lifted from Ground and Rotated

	B.3.3 Watch Different Walking Styles
	B.3.4 Create Own Kicks
	B.3.5 Test simple behaviors
	B.3.5.1 Test Skills
	B.3.5.2 Test Options

	C Processes, Senders, and Receivers
	C.1 Motivation
	C.2 Creating a Process
	C.3 Communication
	C.3.1 Packages
	C.3.2 Senders
	C.3.3 Receivers

	D Streams
	D.1 Motivation
	D.2 The Classes Provided
	D.3 Streaming Data
	D.4 Making Classes Streamable
	D.4.1 Streaming Operators
	D.4.2 Streaming using read() and write()

	D.5 Implementing New Streams

	E Debugging Mechanisms
	E.1 Message Queues
	E.2 Debug Keys
	E.3 Debug Macros
	E.4 Stopwatch
	E.5 Debug Drawings
	E.6 Modules and Solutions

	F XABSL Language Reference
	F.1 General Structure of an XABSL Document
	F.2 The Element description
	F.3 The Element environment
	F.4 The Element skills
	F.5 The Element options
	F.6 The Element state
	F.7 The Type statement
	F.8 The Type conditional-statement
	F.9 The Group boolean-expression
	F.10 The Group decimal-expression-inside-a-state
	F.11 The Group decimal-expression
	F.12 Example
	F.13 Tools

	G The XabslEngine Class Library
	G.1 Files
	G.2 XABSL Definitions
	G.3 System Functions
	G.4 Skills
	G.5 Symbols
	G.6 Initializing an Engine
	G.7 Executing the Engine
	G.8 Debugging Interfaces

	H XABSL in GT2002
	H.1 XabslBehaviorControl
	H.2 Editing Behaviors
	H.2.1 Files
	H.2.2 Coding Conventions
	H.2.3 Validation
	H.2.4 Generating Files
	H.2.5 Adding Symbols
	H.2.6 Adding Skills

	H.3 Testing and Debugging

	I SimGT2002 Usage
	I.1 Getting Started
	I.2 Scene View
	I.3 Robot View
	I.4 Scene Description Files
	I.5 Console Commands
	I.5.1 Global Commands
	I.5.2 Robot Commands

	I.6 Adding Views

	J RobotControl Usage
	J.1 Starting RobotControl
	J.2 Application Framework
	J.2.1 The Debug Keys Toolbar
	J.2.2 The Configuration Toolbar
	J.2.3 The Settings Dialog
	J.2.4 The Log Player Toolbar
	J.2.5 WLan Toolbar
	J.2.6 Players Toolbar
	J.2.7 Game Toolbar

	J.3 Visualization
	J.3.1 Image Viewer and Large Image Viewer
	J.3.2 Field View and Radar Viewer
	J.3.3 Color Space Dialog
	J.3.4 Time Diagram Dialog

	J.4 The Simulator
	J.5 Debug Interfaces for Modules
	J.5.1 Xabsl Behavior Tester
	J.5.2 Motion Tester Dialog
	J.5.3 Head Motion Tester Dialog
	J.5.4 Mof Tester Dialog
	J.5.5 Joystick Motion Tester Dialog

	J.6 Color Calibration
	J.6.1 The Color Table Dialog
	J.6.2 HSI Tool Dialog
	J.6.3 Camera Toolbar

	J.7 Other Tools
	J.7.1 Debug Message Generator Dialog
	J.7.2 Test Data Generator Dialog
	J.7.3 Evolver Dialog

