
Master Thesis

Comparing Photorealism in Game Engines for

Synthetic Maritime Computer Vision Datasets

Kashish Sharma

First Examiner: Prof. Dr.-Ing. Udo Frese

Second Examiner: Dr. Rene Weller

April 2024



Urheberrechtliche Erklärung

Hiermit versichere ich, dass ich die vorliegende Abschlussarbeit selbstständig angefertigt habe. Es
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Preface

Photorealism is the term that defines the degree of reality in images that has been generated.
That is, images not taken with a traditional camera but generated artificially. These methods
vary from painting an image manually (back in the 1960s when the term photorealism was coined)
to generating images with Artificial Intelligence (AI). Irrespective of the method that has been
employed for creating the image, they are all called photorealistic, the image looks like it has been
photographed. However, there is a question that most of us do not ask when someone calls an
image photorealistic. The question is, “Photorealistic to what extent?”

In this thesis, we will start by discussing the problems associated with the creation of computer
vision datasets that comprise real world photographs. Followed by a discussion of methods that
others have incorporated to overcome the shortcomings with real-world dataset creation. Then, we
will apply one of the method in our use case that is maritime infrastructure. Spoiler alert! We will
create synthetic datasets with game engines. Yes, game engines (with an “S”), there’s two of them.
The synthetic images from both the game engines will replicate the scenarios from a real-world
dataset. In the end, we will place the synthetic images from both the game engines next to the
real dataset image and ask - “Photorealistic to what extent?” The difference is this time, alongside
asking, we will answer it as well.

P.S. Someday I will do something similar for the term Cinematic.
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Abstract

Computer vision for real-world applications faces data acquisition challenges, including accessibil-
ity, high costs, difficulty in obtaining diversity in scenarios or environmental conditions. Synthetic
data usage has surged as a solution to these obstacles. Leveraging game engines for synthetic
dataset creation effectively enriches training datasets with increased diversity and richness. The
choice of game engine, pivotal for generating photorealistic simulations, significantly influences
synthetic data quality.

This thesis aims to compare Unreal Engine’s and Unity Engine’s capabilities in generating
synthetic maritime datasets to support ship recognition applications. To this end, the real-world
maritime dataset ShipSG has been replicated in the corresponding game engines to recreate the
same scenarios. To this end, a true-to-scale 3D model of the Doppelschleuse was crafted using
Blender, aiming to reproduce the scenery of the ShipSG images. This model is further used in the
corresponding game engines, along with 3D models of different vessels, to recreate these scenarios
in rendered synthetic datasets.

The performance of the generated synthetic datasets is benchmarked against the real-world
ShipSG dataset using the YOLOv8 model for ship segmentation. The comparison includes an
assessment of performance differences between manually annotated synthetic datasets and those
with auto-generated annotations by Unity Engine. Additionally, the comparison investigates ef-
fects, such as sunlight presence and lens distortion, to find the configuration that most enhances
performance when using YOLOv8. The dataset generated using Unity engine with manual annota-
tions, both with and without lens distortion, provided the best accuracy in ship recognition (mAP
of 72.3%). Both were used to augment the ShipSG dataset to train YOLOv8. The configuration
with lens distortion provides the highest mAP increase, of 0.4% compared with YOLOv8 perfor-
mance on ShipSG when no synthetic data is used (76.5% vs 76.9%). This evidence underscores
that utilizing game engines can effectively support and enhance ship recognition tasks.

This thesis demonstrates the potential of synthetic datasets to augment real-world maritime
data, highlights the importance of detailed and accurate 3D modelling, and systematically provides
a methodology to select the most fitting game engine for the generation of photorealistic images
to enhance maritime computer vision applications.
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Chapter 1

Introduction

This chapter presents the core motivations and goals of the thesis. We will introduce the potential
of synthetic data generation in the maritime domain using game engines, set the stage for a
comparative study of photorealistic synthetic images, and motivate their application to enhance
real-world maritime datasets for computer vision tasks.

1.1 Motivation

The field of computer vision has witnessed significant advancements, driven by the availability of
large scale datasets for training machine learning models [1]. These datasets typically consist of
images captured in real-world scenarios, showcasing a variety of events and occurrences [1]. Ideally,
the events depicted in these images should reflect those occurrences accurately. However, achieving
this ideal scenario is not always possible. Several factors hinder the creation of such datasets:

• Data acquisition cost: obtaining real-world data can be expensive. The logistical cost asso-
ciated with the equipment and infrastructure add to the overall cost of acquisition.

• Data bias: real-world data can experience data bias because of environmental conditions,
sampling methods. This limits the information and can contribute to unfair results.

• Privacy and ethical considerations: datasets from the real-world can contain information
that is sensitive and raise concerns for privacy and ethical usage. Complying to privacy and
ethical regulations is crucial for dataset creation and usage.

In the maritime domain, these challenges are amplified by several factors. First, the envi-
ronmental conditions in maritime environment are unpredictable and harsh with factors like fog
and rain can affect the visibility and image quality [2]. Second, the limited viewing points from
which images can be captured, restrict the perspectives from which data can be collected [3].
Further, the vastness of the maritime environment adds to the logistical cost and effort spent on
data acquisition. The quality of the data that needs to be acquired is the next critical aspect to
consider.

Synthetic data generation has emerged as a promising alternative that addresses the limitations
of real dataset [4]. Synthetic datasets offers the ability of generating datasets on demand, including
scalability, reproducibility and customisation [5]. By leveraging advanced simulation techniques
like a game engine, highly detailed synthetic datasets that simulate maritime scenarios can be
generated [3][4][6]. Exploration of multiple viewpoints, dynamic sequences provides for a compre-
hensive data for instance segmentation. Furthermore, it facilitates cost-effective data generation
and eliminates the need for extensive resources.
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CHAPTER 1. INTRODUCTION

1.2 Goals of the Thesis

The primary goal of this thesis is to conduct an empirical comparison of synthetic images generated
by Unity and Unreal game engines, focusing on their quality and photorealistic attributes, and the
performance when used to augment real-world maritime datasets. The breakdown of the subgoals
of this research are:

• Photorealism Simulation: Explore how the Unity and Unreal game engines simulate
photorealism in synthetic maritime datasets. This includes the recreation of a detailed 3D
model of a port infrastructure and ships present. Moreover, with an analysis of rendering
methodologies that contribute to image realism, such as textures, materials, lighting, and
dynamic environmental effects such as sky and water.

• Systematic Comparative Analysis of Game Engines: Benchmark synthetic datasets
rendered with the game engines against real-world maritime datasets to assess quantitatively
their relative quality and usefulness. The comparison will focus on the accuracy in ship
segmentation using these datasets.

• Study of Photorealism Effects: Identify and analyze the critical parameters that influence
the photorealism of synthetic images. This goal aims to derive insights on optimizing game
engine settings for enhanced realism in maritime synthetic dataset generation.

• Augmentation of Real-World Datasets: Investigate the potential of using synthetic
datasets to augment real-world maritime datasets in improving the performance of computer
vision models, specifically focusing on ship segmentation tasks.

Through these objectives, the thesis will provide a comprehensive evaluation of the capacities of
both game engines to produce high-quality, photorealistic images for computer vision applications,
thereby informing future uses and developments in synthetic data generation.

1.3 Structure of the document

The theoretical foundation of perspective, along with 3D modelling software Blender, Game En-
gines and a game engine component Skybox is discussed in Chapter 2. Chapter 3 contains discus-
sion on prior works that have carried out in real-world ship segmentation, use of synthetic datasets
and game engines of the generation of synthetic datasets. The creation of a true-to-scale model of
the Doppelschleuse along with its materials and vessel models is covered in Chapter 4. Chapter
5 elaborates the methodology that has been followed for the creation of synthetic dataset in both
the game engines. The experimental setup for the analysis along with the results in presented
in Chapter 6. In Chapter 7 the outcome of the thesis is summarised and concluded. Finally, in
Chapter 8, future work is suggested.
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Chapter 2

Theoretical Background

Prior to the description of the methodologies used in this thesis, there are some theoretical founda-
tion which discussion eases the understanding of them. In this chapter, we will start by describing
a photography phenomena, the perspective, vanishing point and lens distortion. This is followed
by a description of Blender a tool that supports 3D modelling. Subsequently, we will briefly discuss
game engines and we will establish a baseline for game engine comparison. Lastly, an important
common component of game engines, the skybox, is introduced.

2.1 Perspective, Vanishing Point and Lens

When taking a photograph of the real-world, we are trying to represent a 3D world on a 2D surface
(photograph). The appearance of the objects in the 3D world and its representation on a 2D surface
depend on factors like the position of the photographing camera, the focal length of the lens that
is being used and the relative position and orientation of the objects to the camera. By changing
any of these factor, can result in a different reproduction of the 3D world on the 2D surface. To
match the real-world images to the images in the game engine, it is important that these factors
coincide. In this section we will be discussing certain aspects of perspective drawing that will help
us match the real-world images to the images that are being formed in the game engines.

Figure 2.1: Vanishing Point on the Horizon

3



CHAPTER 2. THEORETICAL BACKGROUND

The rules of perspective are techniques applied in painting to give a flat surface a sense of
depth, much like taking a photograph. The major rule of perspective is that parallel lines in the
3D world when (as seen in the fig.2.1) projected, all cross at the same point in the 2D space. This
point is called the Vanishing Point (in red, fig.2.1). The vanishing point lies on the Horizon, which
is imaginary horizontal line that lies on the eye level of the viewer. Tracing the vanishing point on
real world image (fig. 2.1) helps in understanding the orientation of the camera with which it has
been photographed.

Another phenomenon that images exhibit is lens distortion. Lens distortion is the deviation
from the ideal projection that is, the image appears to be deformed or curved unnaturally. Consider
this, if the straight lines traced in the fig. 2.1 for the vanishing point wouldn’t have appeared
straight, then there would have existed a lens distortion in the image. There are five major types
of lens distortions, Barrel, Pincushion, Mustache, Chromatic Aberration and Vignetting [7].

In the scope of this thesis, Barrel distortion is important. Ideally the horizontal and vertical
lines (fig. 2.2) in an image should be appear straight (also seen in fig. 2.1). Barrel distortion cause
vertical and horizontal lines to bend outwards from the center of the image and occurs with wide
field of view lenses [8]. Another reason for a Barrel distortion to occur is if the size of the image
plane (diagonally) is larger than the focal length of the lens [9].

Figure 2.2: No Distortion (left) and Barrel Distortion (right). Image Source [10]
.

In the Chapter Environment setup in game engines, we will trace the vanishing point and
observe the lens distortion on an image from a real dataset. Doing so will provide us with the
orientation of the real camera, and help us in the mimicking the same in synthetic images.

2.2 Blender

To craft a 3D model of that should be similar to real world, we need a 3D modelling software that
can create complex models in file formats compatible with the generation of synthetic images later
on. Blender [11] serves as tool for that.

Fundamental Tools

Boasting a comprehensive suit of tools for modelling, animation, rendering and compositing,
Blender has emerged as a powerful tool for 3D modelling and content creation. Some of the
fundamental tools include

• Measure tool [12] - helps with measuring distance or angles and areas within the 3D scene.
This tool is helpful in ensuring that the size of the models correlate their real-world counter-
part.

4



CHAPTER 2. THEORETICAL BACKGROUND

• Extrude tool [13] helps in creating new geometry by extending existing faces, edges, or vertices
along their normals or specified directions.

• Knife tool [14] facilitates cutting and creating new geometry within a mesh object.

Besides these tools Blender also provide, Camera [15], useful for defining the viewpoint from which
the scene will be rendered, and Light [16], that helps in illuminating objects or scenes.

Blender offers the ability to assign materials to the models. The materials can be baked
onto the model or assigned with the help of an external image. Baking materials [17] optimise
the scenes for faster rendering or export them to external applications while preserving the visual
fidelity of the materials. Shader Editor [18] provides support for assigning material with the help of
external image files [19]. By default a Shader Editor initiates with a Principled BSDF (Bidirectional
Scattering Distribution Function) [20] node that helps in adjusting material properties like, Base
Colour, Roughness, Alpha (transparency) etc. There is also provision for generating materials
procedurally [21] and materials that are transparent like glass.

These comprehensive features make Blender the ideal choice for creating realistic models while
maintaining the level of detail and accuracy required for complex structure.

An in-depth use case scenario of the Blender tools and methods of creating materials is explained
in Chapter 4 Model Creation. Creation of every model and materials are explained individually.

2.3 Game Engine

Game Engines are complex, multipurpose tools designed for the development of games. Though
Game Engines are not 3D modelling software, they offer a development environment which can be
reused for variety of games, sometimes even without the knowledge of scripting [22] [23].

Modern game engines are built on component architecture [24], where each component handles
a particular task. Major components are: Audio, which handles the sound design and music of the
game; Physics Engine, which helps in simulating physics; Scripting, which offers the ability to add
custom codes in the game; Animation, which enables the capability of animating; and the most
important component for the creation of synthetic image datasets, the Rendering Engine, which
handles the graphics rendering.

2.3.1 Rendering Engine

When considering 3D games, one often first thinks of the stunning graphics. The rendering en-
gine is where the action happens. The camera, lighting, and objects— with their materials and
textures—are placed to prepare the scene for rendering. The rendering engine then compiles this
scene setup and executes the rendering process.

(a) Camera Frustum with Near and Far Planes (b) Viewing Frustum

Figure 2.3: Culling in Render Engine
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CHAPTER 2. THEORETICAL BACKGROUND

In a scene (fig. 2.3a), there are objects placed at certain positions along with the camera and the
light source. The camera has configuration much like the real-world camera. Based on the camera’s
configuration (fig. 2.3a), near and far clipping planes are assigned by the render engine, where the
objects in the scene are visible. Game engine makes use of this information and calculates the
matrix to transform the objects from the scene’s world coordinates to the viewport of the camera.
Occlusion culling [25] takes place and the objects that are outside the viewing frustum are cut off.
Objects that lie inside the viewing frustum are rendered (fig. 2.3b).

In this thesis, the rendering engine holds the utmost significance in the game engine, as we will
use the rendered image for experimentation.

2.3.2 Contemporary Game Engines

Companies such as Ubisoft [26], Rockstar games [27] have their own proprietary engines. Rela-
tively smaller studios or independent developers make use of ugh third party game engines. As
of December 02, 2022 (fig.2.4) the two most popular game engines are the Unity Engine and the
Unreal Engine [21]. These two game engines together hold more than 50% of the market. Thus,
these two game engines are chose as the contenders for comparison in this thesis.

Figure 2.4: Popular Game Engines, Source: Slashdata (December 2, 2022)

2.3.3 Unity Engine

Announced at the June 2005 Apple Worldwide Developers Conference, Unity Engine [28] holds the
highest number of users. Credited as the easy to use for beginners [29], Unity offers support for
iOS, Android, macOS, Windows as well for XR (Extended Reality). Unity Engine offers two devel-
opment pipelines; the Universal Render Pipeline (URP) [30] and High Definition Render Pipeline
(HDRP)[31]. The URP is optimised for performance and supports wider range of platforms, in-
cluding mobile devices. The HDRP is designed for high-end performances and prioritises visual
quality over performance. Unity engine is free for students and hobbyists [32].

2.3.4 Unreal Engine

Cited as the most successful game engine [33], Unreal Engine [34] was primarily used for first
person shooter games. The first game that was built using the engine is Unreal [34] in the year
1998 [35]. The game engine Unreal was developed by Epic Games and is available for free for
students, educators, hobbyists and companies generating less than $1 million USD. The pricing for
companies generating over $1 million USD in annual gross revenue and are not creating games is
$1,850 per seat [36].
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The source code is written in C++ and Unreal provides its own Blueprint Visual Scripting [22]
for those who are not familiar with the C++ language. The current stable version in Unreal Engine
5.3.

2.3.5 Baseline for game engines comparison

So far we have seen the features of both the game engines. To make sure that both the game
engines have the same level for a fair photorealism comparison in rendering images for maritime
computer vision applications, it is important to set some baseline for consideration before we dive
into the experiment.

• The version of both engines should have similar rendering capabilities.

• Considering the rendering capabilities of both the engines, the most recent stable version of
both the game engines should be considered.

Given this baseline, Unity Engine HDRP 2023.2 and Unreal Engine 5.3 are selected for com-
parison in this thesis.

2.4 Skybox

The Skybox is a common component in game engines that helps with the creation of a visually
immersive background, setting the scene mood. Skyboxes can be cube maps or panoramic images
projected onto the interiors surface of the game world. This technique is used to simulate the
appearance of a distant scenery or the sky itself.

Both the game engines are capable of creating procedural sky [37][38]. But, the generated
procedural sky in both the game engines will differ. In the scope of this thesis, it is important that
the sky in both the game engines match each other. Therefore, the procedural skybox is replaced
by a static skybox. The static skybox in both the game engines will carry the same material for
the sky. Thus, the sky appears consistent in the respective game engines.

(a) Skybox - Cube Map (b) Unfolded Cube Map Skybox

(c) Skybox - Panoramic
(d) Panoramic - Unfolded
Source [39]

Figure 2.5: Skyboxes - Cube Map and Panoramic

A cube map skybox, as the name implies, forms a cube when folded. A common shape
that the skybox takes when unfolded is shown in fig. 2.5b It comprises six images that a player
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sees when looking in that direction (front, left, right, up, down and back) (fig. 2.5b) The game
world is positioned inside this cube map skybox (fig. 2.5a) A panoramic skybox (fig. 2.5d) is a
single panoramic image that encircles the game world in a latitude-longitude (cylindrical) fashion
(fig. 2.5c).

A panoramic skybox material can be used with a cube map skybox. When applying a panoramic
skybox material (fig. 2.5d) to the cube map skybox, the game engine optimises the panoramic
skybox material and matches it to the shape of cube map (fig. 2.5b). This is true for skyboxes
whose shape differs from the two discussed as well (see Section 5.3.1).

In this project, four panoramic skybox materials (fig. 2.5c, 2.5d, A.2, A.4) are used with both the
game engines. The four skyboxes are sourced from Poly Haven [40]. The chosen skybox materials
facilitates the creation of skies with overcast, clear and cloudy conditions. The implementation of
the skybox for both the game engines is elaborated in Sections 5.2.1 and 5.3.1. The first of the
four sky boxes can be seen in fig.2.5d, the rest can be seen in the Appendix (fig. A.2, A.3, A.4).
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Chapter 3

Prior Work

In Chapter 2 Theoretical Background, we have discussed important concepts that will be utilised
in this thesis. Moreover, we discussed rendering in game engines and the reason behind selecting
Unity and Unreal as game engines and laid the baseline of the comparison. In this chapter, we will
observe existing works in the literature, which will help understand the problems associated with
the creation of maritime real-world dataset. Followed by a discussion on a real-world maritime
dataset that will be utilised for the creation of synthetic images and as a benchmark for the
comparison. Then we will have an overview of the existing work on synthetic dataset creation
and why game engines are suitable for it. In the end, some existing comparison of the two game
engines will be discussed.

3.1 Real-world datasets for maritime computer vision

Instance segmentation methods, normally reliant on deep learning [1], aim to identify object in-
stance in an image at the pixel level, delineating its shape with a mask. These methods require
datasets to be trained [1]. In the scope of the maritime domain, general purpose instance segmen-
tation datasets like COCO [41] do not fit the task of ship recognition. Maritime domain requires
images from the real-world that showcases varied ship data with precise annotations including
the ship class, masks and features like geographical coordinates. Existing datasets related to ship
detection that are Singapore Maritime Dataset (SMD) [2], SeaShips [42] and the dataset by Chen
et al. [43]. These datasets suffer from a lack of annotations for instance segmentation, limited
diversity in ship types, and the absence of a favorable oblique view, all of which complicate the
process of georeferencing. To over come these obstacles with ship segementation, a novel dataset
ShipSG [44] was created by DLR Bremerhaven.

ShipSG is a real-world dataset for ship segmentation and georeferencing available in the public
domain. The images in the dataset showcase the Fischereihafen-Doppelschleuse, port basin in
Bremerhaven, Germany. The dataset (fig.3.1) comprises 3505 images using two different cameras
with static and oblique view. Overall, 11625 ship masks annotated manually are grouped in seven
classes. The seven classes are Cargo, Law Enforcement, Passenger/Pleasure, Special 1, Special
2, Tanker and Tug. Each image includes a geographic annotation specifying the latitude and
longitude of one of the ship masks depicted in the image. With the ShipSG dataset images, we
experience a Barrel distortion because the focal length of the lens is smaller than the diagonal size
of the camera sensor and the lens has a wide field of view (FOV) (see section 2.1).
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Figure 3.1: Images from ShipSG dataset, showcasing the two camera views and annotated masks
and class

Acquiring these images of real-world datasets such as ShipSG is a difficult task in itself (as
discussed in Section1.1 Motivation). In the publication [2], Dilip K. Prasad et al have explained
the issues like changing illumination and weather conditions, variation in the appearance of the
objects. These challenges with data acquisition led to exploration of alternate means for creating
datasets, such as synthetic datasets to support real-world applications, which will be covered
by Section 3.3 In the next section we will be discussing a real-world maritime dataset and its
performance with segmentation model. This dataset will serve as a benchmark in our quest for
choosing the best game engine for synthetic maritime applications.

3.2 Instance Segmentation on ShipSG using YOLOv8

As discussed in the previous section, deep learning algorithms depend on deep learning algorithms
that require task-specific data. In the publication [45], YOLOv8 [46] was utilised for ship segmen-
tation and georeferencing using the ShipSG dataset (see section 3.1). YOLOv8 is a state-of-the-art
real-time model computer vision model built upon previous YOLO (You Only Look Once) versions.
YOLOv8 architecture provides support for object detection, instance segmentation, pose estima-
tion, tracking, and classification. YOLOv8 also offers customisation of the architecture along with
five model sizes. The models range from the quickest and lightest to the deepest and most precise:
YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x.

The mean Average Precision (mAP) is a widely used metric in computer vision that evaluates
the precision of a model’s object detection and instance segmentation (mask of the object) capabil-
ities. It is computed by averaging the precision across all classes, where precision is defined as the
ratio of true positive detections over the sum of true positive and false positive detections. True
positives are determined by whether the Intersection over Union (IoU) between the predicted and
ground truth bounding boxes or instance masks exceeds a certain threshold. The formula for IoU,
in the case of instance segmentation, is given by:

IoU =
area(Mpred ∩Mgt)

area(Mpred ∪Mgt)
(3.1)

Where Mpred and Mgt represent the predicted and ground truth masks, respectively.
The Average Precision for each class i is then computed by summing the precisions at different

IoU thresholds:

APi =
∑
t∈T

p(t)∆t (3.2)

In this formula, T is the set of IoU thresholds (normally from 0.5 to 0.95), p(t) is the precision
at threshold t, and ∆t is the difference between consecutive IoU thresholds (normally 0.05).

Finally, the mAP is the mean of the AP values for all Nclasses classes:

mAP =
1

Nclasses

Nclasses∑
i=1

APi (3.3)
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Instance segmentation using YOLOv8x performed on the ShipSG for the segmentation and
classification of ships yields a mean Average Precision (mAP) of 76.45%. This value is used
as benchmark for this thesis when evaluating the performance of game engines using synthetic
datasets. The performance of the synthetic dataset should be as close as possible to the benchmark
of the real-world dataset. To achieve the highest performance possible, the developments in the 3D
scenes of this thesis focus on the perception of the synthetic datasets as photorealistic as possible.
This will be described in detail in the following chapters.

In the following sections, we will discuss synthetic datasets as alternative to real datasets, which
will allow us narrow down the methodology followed in this thesis to obtain our own synthetic
datasets, that should be suitable suitable for maritime applications.

3.3 Existing Synthetic Datasets

Synthetic dataset generation has shown the potential to the issues of the real-world dataset ac-
quisition (Section 3.1) by creating artificial images that simulate real-world scenarios, allowing
to address the limitations in real data availability and quality. By generating synthetic images,
researchers and practitioners have augmented existing datasets with diverse and realistic data,
improving the robustness and capabilities of computer vision models[3]. It was in 2010 that Simon
Baker et al. [47] proposed the first realistic and a pure synthetic computer generated dataset, the
Middlebury Dataset.

Besides eliminating the obstacles of real-world data acquisition, synthetic dataset generation
has showcased other advantages ([48],[49],[50],[51],[52]), including:

• Scalability: synthetic data generation techniques has provided with tools for creating large
scale datasets repressing diverse scenarios

• Bias control: as the generation of dataset is within control, the extent of bias in the dataset
can be controlled. Moreover, by augmenting synthetic data in real these bias can be min-
imised.

• Cost-effective: generating synthetic dataset can be cost effective and help in reducing the
time it takes for annotations.

• Preserves privacy: The images are generated artificially, the question of sensitive information
getting leaked is eliminated altogether.

Jonathan Becktor [3] et al. have regarded the use of synthetic dataset as a solution to their
data collection problems in maritime setting. Inclusion of synthetic data resulted in an increase of
3-5% overall performance in their use case (discussed in depth in section 3.4). Additionally it has
provided flexibility with dataset creation and optimise the entire creation process.

MPI-Sintel [49] dataset was the first dataset to make use of Blender [11], a 3D modelling-
animation software for the generation of synthetic images. The open source short film Sintel [53]
was utilised to study optical flow. The MPI-Sintel [49] dataset provided with longer scene sequence,
along with specular reflections and atmospheric effects that are missing in the Middlebury dataset.
These effects made the generated images more realistic. While the MPI-Sintel dataset showcased
the use of animation software in generating synthetic dataset, there are limitations associated with
the use of Blender. For instance, Blender does not offer real-time interactivity, the physics in
Blender is again not real-time but baked. These limitations open the door for other simulation
methods, like Game Engines. In the following section, we will discuss at existing works where
game engines proved their capabilities in generating synthetic datasets.

3.4 Game Engines for Synthetic Data Generation

Using a 3D animation software for the generation of synthetic dataset paved a way for simulation
software. Simulation softwares where the real world can be recreated photo-realistically, rules of
the physics applies and can be tweaked to match the dataset needs, like playing a 3D game. Reason
why, Stephan Richter et al. [54] made use of the game GTA5 (Grand Theft Auto 5) to create large
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datasets with pixel-level labels. Thus reducing the human effort and accelerating the development
of computer vision. DeepGTAV [4] is an open source framework to produce ground truth training
data. DeepGTAV has been utilised for object detection on Unmanned Aerial Vehicles (UAV) [4].

With game engines, a developer or practitioner is not bounded to the assets that are available
within a game. The CARLA [55] project is a open source simulator for autonomous driving in
urban layout built with Unreal Engine. CARLA is also used for the Virtual Traffic Simulator by
the students at the Universität Bremen to replicate Borgfeld district in Bremen to improve traffic
handling [56].

Microsoft made use of game engine to build simulators for drones and cars in their project
AirSim [57].The AirSim project is available with both the Unreal and Unity game engine. Unreal
Optical Flow Demo showcases a patch that facilitates the implementation of the features on an
Unreal-based robot simulator, Pavilion [58]. The project also combines the use of Unreal Game
engine and the Robot Operating System (ROS) [59].

RobotriX [50] is a dataset by Alberto Garcia-Garcia et al that helps in solving robotic vision
problems. The dataset comprises of hyperrealistic indoor scenes explored by robot agents. To
record and generate the dataset, they built a tool called UnrealROX in Unreal Engine 4. An
improvised version of UnrealROX, UnrealROX+ [51] was presented in 2021. UnrealROX+ added
new features like Python API for interacting in virtual environment and generating albedo.

In the maritime domain, Jonathan Becktor [3] et al (also in section 3.1 Real-world datasets
for maritime computer vision) made use of Unreal Engine and created an environment similar to
Limfjorden in Denmark. Various ship models that are seen in Limfjorden were added in Unreal
Engine for the creation of synthetic datasets. This way, the complications with data collection
that they faced in their earlier project [48] was resolved. As a result the overall performance with
object detection improved by 3-5%.

As seen in all these projects, the use of game engines for the generation of synthetic dataset has
shown its potential. However, so far these works do not discuss the reason for which they selected
or developed their game engine for their computer vision application. Therefore, the next section
will review existing literature where game engines have been compared so that a scientific selection
of the correct game engine can be done.

3.5 Comparison of the Game Engines

Regarding the comparison of the two game engines under consideration for this thesis, Unity Engine
vs Unreal Engine, there is no extensive research on the topic.

In their publication [60], Ramiz Salama et al have only discussed the history, supported plat-
forms and marketing of both the game engines. Hussain Ali Juma Al Lawati [61] has presented a
similar comparison of the two game engines and stated that both the game engines are similar.

Paul E. Dickson et al [62] provided a subjective comparison where students were first taught
game development with both the game engines and were asked to pick which one of the two is
easier to learn. The students credited Unreal engine as frustrating to learn. From faculty’s point of
view, they cite Unity engine was easier but teaching Unreal engine provided more job satisfaction.

Antońın Šmı́d [24] presented a comparison of the two game engines by building the same Pac
Man game. The comparison showcases the hardware profiling of both the game engines on various
platforms such as a PC, laptop, mobile device and VR glasses. The visual comparison is subjective
and compared with Blender’s visual fidelity. Alongside the author has also provided personal
opinion of the comparison.

Therefore, a scientific and quantitative comparison of both engines when generating synthetic
datasets, analysed for their specific task, has not been found in the literature. In this thesis, we
tackle this comparison in the specific task of ship segmentation from synthetically generated images
to find a reasoning behind the selection of the game engine.
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Model Creation

In Chapters 2 and 3 we explored the foundations of photorealism, the use of game engines for
synthetic image generation, and existing applications that could be improved using them, namely
maritime computer vision applications like ship segmentation. Expanding upon the motivated
need to use game engines for such an application, this chapter focuses on the description of the 3D
models crafted and developed in this thesis. These models will take part in the complete 3D scene
that will be used later in the game engines to render synthetic images for ship segmentation, and
will allow the comparison of the engines.

We start by identifying structures from the real dataset, ShipSG, that are crucial for the
reconstruction. Following that, the modelling and the steps taken to ensure their scale matches
the real world are explained. Lastly, the section 4.3 highlights the vessel models that will be used
in the scene.

4.1 Breakdown of Real Image - Key Structures

As discussed in Section 3.1, the ShipSG dataset was captured with views to the Doppelschleuse
in Bremerhaven. From, Section 2.2 we know that game engines are not 3D modelling software.
Therefore, to create a true-to-scale 3D model replica of the Doppelschleuse, we make use of Blender.
Later, the handcrafted 3D model of the Doppelschleuse will be utilised in both the games engines.

To ensure that the 3D model of the Doppelschleuse is true to scale, Google Maps [63], along with
its measure tool, was employed to verify the model’s adherence to real-world proportions. Google
Maps is a web mapping service developed by Google that provides detailed satellite imagery, street
maps, 360-degree panoramic views of streets (Street View), real-time traffic conditions, and route
planning for traveling by foot, car, bicycle, or public transportation. The Doppelschleuse location
was visited and visually inspected on multiple occasions and documented for any details that have
been missed out on.

We begin by identifying the key structures that are visible in the ShipSG dataset. This helps
us narrow down the structures that are of prime importance and should exist in the 3D model.

Identifying the key structures

The images in the ShipSG dataset (fig. 4.1a) have been photographed from the rooftop of the Alfred
Wegener Institute (AWI) at the Doppelschleuse, Bremerhaven, Germany. The AWI building has
a glass exoskeleton visible in the foreground (fig. 4.1b). The section of the rooftop where the
two sides of the exoskeleton meet faces the Doppelschleuse port basin, as can be seen in fig. 4.1a.
The mid-ground (fig. 4.1b) comprises the street connecting the Doppelschleuse with the city and
the port basin with the two lighthouses. In the background (yellow, fig. 4.1b) is the Weser river
dividing Nordenham to the left and Bremerhaven to the right.

Most relevant structures for the 3D scene recreation are in the foreground and the mid-ground.
The background comprises of the water body and distant land which are not that significant. Thus,
the Bremerhaven land (orange in fig. 4.2) in the background has been omitted from the 3D model
to simplify the modelling. The key structures (fig. 4.2) that are pivotal for the the 3D-model and
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(a) Real Image from ShipSG dataset (b) Breakdown: Foreground - Green, Mid-
ground - Blue, Background - Yellow

Figure 4.1: Breakdown of the depth in image

should exhibit a high level of detail (LOD) are the AWI building (green), the connecting street
(blue), the two lighthouses viz., Molenfeuer Süd (red) and Nordmole (yellow) and the Lotsenstation
(magenta).

Figure 4.2: Key Structures for 3D model creation

The Nordmole lighthouse (yellow in fig. 4.2) existed at the time of creation of the ShipSG
dataset (2020). Unfortunately, in August 2022, its pier sank and subsequently it was demolished
to avoid any mishaps. Thus, it does not appear in the satellite view of the Doppelschleuse (fig. 4.3).
However, since the Nordmole is part of the ShipSG dataset, its 3D recreation has been included in
this thesis and is explained in section 4.2.
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4.2 Creation of the models

The following Steps (1 to 5) explain the development flow of the 3D scene undertaken in this thesis.

Step 1: The Land

Before modelling the relevant structures using Blender, it is important to model and scale the
land on which they stand. This helps in identifying their locations and orientation. A satellite
top view image of the Doppelschleuse (fig. 4.3) was taken from Google Maps [63]. The area under
consideration has a width of 1000m and a length of 500m. This image serves as a reference for the
shape of the land and its dimensions and shapes are used in Blender.

Figure 4.3: Satellite View of Doppelschleuse from Google Maps

The reference image is scaled to measure (1000x500m) in Blender to match the real world scale.
The dimensions of the land features in the reference image is compared with the measurements in
Google Maps (fig. 4.4). A contour of the land under consideration is traced and a plane mesh is
introduced in Blender. The plane mesh is modelled to match the traced contour. This creates the
ground map of the Doppelschleuse. Because a plane mesh was utilised for the tracing, the map
traced is a planar mesh, therefore it’s scale on Z-axis is 1. To give this planar mesh a volume, it
is extruded (see Blender tools in section 2.2) vertically (Z-axis) to 10m to provide ample depth, so
that after adding water in the respective game engines(see Sections 5.2.1, 5.3.1), the water does
not flood the land surface.

(a) On reference image (b) Crafted in Blender

Figure 4.4: Measurement of the features and Marking the key structures

The terrain of the Doppelschleuse is treated as a flat land, except for the Weser-Strandbad,
located next to the Lotsenstation. If the Strandbad is treated as a flat land, then it comes in the
line of sight with more prominence. This is not the case in the real images as seen in fig. 4.4a,
where the Strandbad presents a slight slope. Hence, the Strandbad tapers towards the end and
appears different in the Blender top-view (fig. 4.4b).
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After superimposing the reference image on the created ground in Blender, the position of the
key structures, along with the respective length, width, and orientation, is marked (fig. 4.4). The
tracing of the street is also aided by the satellite view. The top view does not provide the height
of the structures and their shapes. In the following steps to this one, we derive the height for each
structure and consider its shape.

The shape of the traced street (fig. 4.4b) was subdivided (cut up) from the main land model
with the Blender knife tool[14] (see 2.2). This subdivision helps in changing the material of the
street from the land materials of the land.

Materials for the Land
Based on the appearance of the land, four major materials can be inferred. The first one is for

the grass, second for the gravel parts, a third one for the Strandbad and lastly as asphalt for the
street and Molenfeuer Süd land. The materials ([64],[65],[66],[67]) for these parts were obtained
from Poly Haven [40] and Ambient CG[68]. To apply the material at their respective positions, four
new materials were created in Shader Editor (see section 2.2) of Blender. Each new material has a
Principled BSDF Node [20] (see section 2.2). The obtained materials have their own, Base Color,
Roughness and Normal which connects to the Principled BSDF Node of the created materials. By
combining all the properties of the materials, a composite material is obtained, which is applied
to their respective position (fig.4.19).

Step 2: Molenfeuer Süd & Lotsenstation

The Molenfeuer Süd (fig. 4.5) measures 14m in height[69] and is supported by a base that stands
1m tall(fig. 4.5a). It comprises 6 sections(fig. 4.5b), with the bottom 5 sections serving as pilings
with a crosshatch pattern. The light source is housed in the service room on the top. The service
room makes up one-fourth of the entire structure, the remaining three-fourth are its pilings. Based
on these observations, the model for the lighthouse was crafted. The ladder has been exempted
from the model.

(a) Molenfeuer Süd (b) Molenfeuer Süd Proportions

Figure 4.5: Molenfeuer Süd and its structures proportions

Lotsenstation is a four-story structure. As seen in fig. 4.6, the base floor is elevated compared to
the three floors above it(fig. A.1b). The width of the floor above the base is slightly small(fig. A.1a).
The top two floors are wider than the bottom floors by 25% and the extension is supported by
exposed pillars(fig. A.1a). The base floor has an entrance for parking along with a warning for
the permissible maximum height of the vehicle to be 2.1m (fig. 4.7). Using this the height of the
structure can be estimated by stacking rectangles of the same height as the entrance to the parking.
The seventh rectangle exceeds the height by half. Thus, the overall height of the Lotsenstation is
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approximated to 13.65m (height per floor = 3.4m)((fig. 4.7)). The approximate length and breadth
of the Lotsenstation is known from Step 1.

Figure 4.6: Lotsenstation

Figure 4.7: Tracing the height of the Lotsenstation

Materials for the Molenfeuer and the Lotsenstation
The Molenfeuer Süd has three materials for the main structure, the base and the glass on the

at the light source. Material for the main structure and the base is Baked whereas for the glass a
new material with Glass BSDF[70] is created and assigned to it.

The Lotsenstation comprises five materials each for the base floor, the pillars, the top two
floors, the glass windows and the glass floor. To create glass materials, Glass BSDF[70] is used.
Rest of the materials are baked in the structure.
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Step 3: The AWI Building

(a) AWI - front view (b) AWI - side view

Figure 4.8: Alfred Wegener Institute (AWI), Bremerhaven

From Step 1, the position and orientation of the AWI building is known. The Lotsenstation
measures approximately 13.65m in height and comprises four storeys and serves as a reference. The
inspection of the structure in person, revealed the height of each floor to be over 3.4m. Additionally,
the top floor of the AWI is taller than the rest. The number of clamps (fig. 4.9a) securing the glass
exoskeleton showcases this difference in height. Therefore, using the Lotsenstation as reference and
the visual inspections in person, the height of the five-story AWI can be approximated to 20m.

(a) Number of clamps (in green) on the top floor
and rest of the floors

(b) Difference in size of the exoskeleton and in-
ternal structure

Figure 4.9: Estimation of the dimensions - AWI
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The exoskeleton and interior structure of the AWI building are at different heights. The inward
slope on the rooftop (fig. 4.1a) showcases this difference in height. Plus, the interior structure
is approximately 1m shorter (fig. 4.9b) from all sides of the exoskeleton. The longer side of the
AWI has 29 vertical bars in its exoskeleton. The bars are organised in a pattern that alternates
between thick and thin. The shorter side is composed of 9 bars, all with equal thickness. The
awning windows on the rooftop (seen in fig. A.7a) are positioned between 2 consecutive thick bars.
These observations of the AWI provide a clear understanding of the model’s shape and are crucial
because the dataset images were captured from its rooftop and the structure lies in the foreground.

Figure 4.10: Arrangement of the bars (thick - blue, thin - green) and the position of the awning
windows(in red)

Materials for the AWI Building
The AWI has four materials altogether for the glass exoskeleton, the frame of the exoskeleton,

floor at the rooftop and for the step that surrounds the floor. The glass exoskeleton material is
created like the glass material of the Lotsenstation 4.2. For the exoskeleton frame, the material is
baked. Same material that was used for the gravel in the Land (section4.2), is used on the rooftop
of the AWI.

Step 4: Nordmole

(a) Nordmole (b) Nordmole height distribu-
tion

Figure 4.11: Proportions of the Lotsenstation. Source: www.deutsche-leuchtfeuer.de
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The reference image (fig. 4.3) from the Google Maps do not provide a precise position of the
Nordmole or of the land on which it stood. For the reconstruction of the model, it is important
that the position of the Nordmole matches with the dataset images. To ensure this, a camera [15]
is added in Blender. The resolution of the camera matches the dataset image resolution. This
camera is positioned on top of the AWI and overlooks the Doppelschleuse basin. The obtained
view from the camera matches the view of the dataset image. This facilitates in matching the
position of the Nordmole to the dataset image.

The height of the Nordmole is known to be 14m [69]. By dividing the entire structure into 14
equal parts (fig. 4.11b), the position of each feature is estimated. In the division, the lighting rod
is in the 1st and 2nd sections. The dome covers the 3rd and 4th sections while the astragal glass
for the light belongs to the 5th section. In the 6th section lies the balcony, while the three sets of
windows are positioned in sections 8, 10, and 12-13 respectively. The entrance goes from section
12 to 14.

(a) Concentric platform - green, Half hex-
adecagon - pink

(b) Cubes at the bottom - pink, Width of the
boundary - green

(c) Position of the pathway

Figure 4.12: Aerial and side view of the Nordmole
Image Source: (fig. 4.12a, 4.12b) www.nordsee-zeitung.de, (fig. 4.12c) www.butenunbinnen.de

The pathway leading from the mainland to the Nordmole has a boundary on both the sides.
The length of the pathway is adjusted by comparing the image from the Blender camera with the
real image. One of the boundary is thicker than the other (fig. 4.12b) and the pathway does not
meet the lighthouse at its centre (fig. 4.12c), but is positioned to one side1. The edge of the land
on which the Nordmole stood was not a perfect circle but had 8 sides or half of a hexadecagon (16
sided polygon)(fig. 4.12a). The Nordmole’s centre and the hexadecagon coincided. The Nordmole
stood on a platform with three concentric, elongated circles of varying sizes(fig. 4.12a). This
should have also served as steps to access the door of the Nordmole. The base has alternating

1Some of the images in this section were photographed while dismantling the Nordmole and are used to explain
the structure’s shape and form. The purpose of these images is not to cause any offense in any manner.
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brick cubes(fig. 4.12b) surrounding the entire circumference of the Nordmole. Finer details such
are the year “1914” on the lightning rod, the bent ladder on the dome is added(fig. 4.18).

Materials for the Nordmole
The Nordmole has four materials, a bricked material that extends to its pathway, another

material for its dome, a material for the astragal glass and a material for the base. The bricked
texture of the Nordmole and its pathway is created by making use of procedural brick texture node
in Blender [71]. The dome’s colour is taken from the Nordmole image, and is baked in it. The
glass material is created like the glass material of the Lostsenstaion 4.2. The colour of the base is
baked as well.

Step 5: Other Details

The piers visible in the dataset images (fig. 4.1a) are added on land on which the Molenfeuer Süd
stands. Their orientation is traced from the satellite image (fig. 4.3) as well. The ribs on the
vertical surface of the Molenfeuer Süd land is created. The streetlights are added as well. The
respective materials are baked (see 2.2)in each structure.

4.2.1 Results of the Complete 3D Model

The integration of the key structures presented in Steps 1 to 5 complete the Doppelschleuse model
with the rest of structures. The completed model is exported in .fbx (filmbox) format[72] with
+Y axis Up (right-hand coordinate system)[73]. This format is supported by both the game
engines, allowing a seamless import. The materials created with Principled BSDF are exported
as .png image files. The baked materials are retained in the fbx model. The glass materials are
only supported within Blender. Therefore the fbx model does not retains the glass material. The
material for the glass is created within the respective game engines and explained in their respective
sections (section 5.2.1, 5.3.1). This model is exported in both the game engines to maintain
consistency with the game objects and allows a fair comparison. The following subsections will
present the resulting crafted 3D models described in the previous section, and that have been
crafted in this thesis.

Molenfeuer Süd

Fig. 4.13 shows the visual comparison between the real and crafted Molenfeuer Süd. The colour
of the baked (see 2.2) materials were extracted from the real image. The damage to the corner of
the base is excluded as it is not that significant.

(a) Molenfeuer Süd - Real (b) Crafted Molenfeuer Süd -
Blender

Figure 4.13: Molenfeuer Süd
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Lotsenstation

In Fig. 4.14 the visual comparison between the real and crafted Lotsenstation is shown. It is
important to note that the windows in the Blender model are considered as a single piece because
their division is not visible in the real dataset images. This reduces the complexity of the model
as redundant meshes are removed.

(a) Lotsenstation - Real

(b) Crafted Lotsenstation - Blender

Figure 4.14: Comparative Visualization of Lotsenstation

Alfred Wegener Institute (AWI) Building

(a) AWI Building - Real (b) Crafted AWI Building - Blender

Figure 4.15: Alfred Wegener Institute (AWI)

The visual comparison between the real and crafted AWI building is shown Fig. 4.15. It is
noticeable that as the images of the real dataset ShipSG are captured from the rooftop of the
AWI, the windows are not visible. Thus, they are omitted in the crafted 3D model.
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Nordmole

The comparison of the real and 3D crafted Nordmole can be seen in fig. 4.16 and 4.17. We can
observe that the support structures (in white) are added as final details.

(a) Nordmole - Real (b) Crafted Nordmole - Blender

Figure 4.16: Nordmole - Side View

(a) Nordmole - Real (b) Crafted Nordmole - Blender

Figure 4.17: Nordmole - Top View

As can be seen in fig. 4.18, the dome is shaded uniformly in the model as the faded part is not
significantly visible in the dataset image. This also reduces the time and labour that would have
been spent on shading the dome manually.

Doppelschleuse

The top-view of the completed model (fig. 4.19) showcases all the structures with their materials.
The parts that do not have a colour on them are not important for the project, since they do not
take part in the views of ShipSG. Thus, they have the default white material.
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Figure 4.18: Nordmole dome (left - real, right - 3D model)

Figure 4.19: Top view of the crafted Doppelschleuse using Blender.

4.2.2 View from the AWI in Blender

(a) ShipSG - Real (b) Crafted ShipSG ShipSG view - Blender

Figure 4.20: Visual comparison of the real and crafted Doppelschleuse, including all key structures.

A view similar to the real view provided by the ShipSG dataset can be observed in fig. 4.20. To
the left the image from the real dataset ShipSG and to the right is the image rendered from the
Blender camera 4.2 showcasing the created model. The depth of the land underneath the surfaces
in the model is 10m (see 4.2) which provides sufficient depth to add the water body within the
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game engines.
This completes handcrafting the modelling of the true-to-scale Doppelschleuse 3D model. As

discussed, consideration has been given to the Level of detail (LOD) that the model exhibits is
high. Special attention has been given to the materials as well.

4.3 Vessel Models

As presented in section 3.1, the vessels in the ShipSG dataset are categorised into 7 classes. Twenty-
one vessel models that replicate those present in the ShipSG and span over the 7 classes were
acquired from Turbosquid[74] to be used within the crafted 3D model to simulate real ShipSG
scenarios using the game engines. The resizing of the vessels was performed in Blender to match
the scale of the vessels present in ShipSG. The real dimensions was obtained from the AIS[44]
messages of the ShipSG dataset, which contain ship length information. The materials of certain
vessels (fig. A.7) were changed in Blender as well, to match the vessel colours present in the dataset.
All the vessels acquired and resized can be found in the Appendix. (fig. A.5, A.6, A.7).

(a) Tug Boat (b) Law Enforcement Boat (c) Tug Boat

(d) Law Enforcement Boat (e) Cargo Vessel (f) Fishing Boat

Figure 4.21: Some of the Vessels
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Chapter 5

Environment setup in game
engines

In the previous Chapter 4, we have discussed the creation of a true-to-scale 3D model of Dop-
pelschleuse using Blender and the vessel models. In this chapter we elaborate on the methodology
followed in both the game engines for the creation of synthetic datasets, which precedes the experi-
mental evaluation presented in Chapter 6. We begin by tracing the vanishing point (see the theory
in section 2.1) on a sample image from the ShipSG dataset. With the groundwork established, we
dive into the methodology followed in the respective game engines and discuss the components like
sun, water that will help in creating synthetic images that match the real dataset.

5.1 Breakdown of Real Image - Perspective

Figure 5.1: Vanishing Point in the ShipSG image vanishing point in red, horizon in blue,
reference lines in green

Unlike the example discussed in the Section 2.1, tracing the Vanishing Point sometimes is a chal-
lenge because of lack of parallel lines in the image. The ShipSG dataset was created with a
Raspberry Pi camera module that measures of 7.9mm diagonally [75]. This sensor was equipped
with a 6mm wide-angle lens [76]. As a result, the images of the dataset exhibit a Barrel lens
distortion (section 2.1). This distortion is evident based on the the appearance of the horizon in
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fig. 5.1 . Moreover, it can be inferred from the figure 5.1 that the camera is not held parallel to
the ground but tilted downwards.

The simplest vanishing point (red) (fig.5.1) that can be traced is made possible by drawing a
line from the rooftop of the Lotsenstation, and that can be observed in green. Another line from
the platform that exists on top of the Molenfeuer Süd and another one on land on which it stands.
All three of them, appear to emerge from the same point on the horizon (blue).

The tracing of the vanishing point is critical, as it helps to align the camera in respective game
engines to match the real images. The parameters (like focal length) of the real camera can be
assigned to the camera in the respective game engine. But the orientation of the game engine
camera should match the orientation of the real camera. Only then, the synthetic images will
match the real one. Now that we know the position of the vanishing point in the real image, we
can orient the camera in the respective game engine to match the vanishing point of the synthetic
image with the real one. Thus, creating a synthetic image that is equivalent to the real image.

With the vanishing point of the real image now known, we are ready to setup the game engines
for the creation of synthetic dataset, starting with the Unity Engine.

5.2 Unity Engine

This section elaborates on the steps to create the synthetic scene with the 3D Doppelschleuse model.
Before diving into the methodology, it is important to become familiar with the terminologies [77]
used by Unity. Understanding these terms helps clarify the operations involved and described in
this chapter. These terminologies are listed as follows:

1. Scene: Scene contains the environment of the game like camera, characters, etc.

2. GameObject: Fundamental object in a scene that represents characters, scenery, camera, etc.

3. Component: The functional part of a GameObject. For instance, if a GameObject carries a
component “Rigid Body” it will then obey rigid body physics.

4. Prefab: A GameObject that has been saved as a template. It facilitates in easy usage if the
same GameObject carrying the same components is to be used multiple time.

With the important terms now known, we start by creating a Master Scene. The Master Scene
serves as a template for all the Scenes that are to be recreated.

5.2.1 Creating the Master Scene

Upon initialising a new HDRP (see section 2.3.3) Scene in a project, Unity Engine provides default
Sky and Fog Volume, Sun and a Main Camera in the Scene. This Scene serves as a Master Scene.
GameObjects that are common to all the Scenes that are to be recreated are added to the Master
Scene. Then, copies of this Master Scene is created. Modifications are made in each Scene based
on the respective reference image. This fosters in easy development of multiple Scenes with less
error.

Sky & Fog Volume

The Sky and Fog Volume (fig. 5.2a) helps in creating volumetric effects of the Sky and Fog.
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(a) Fog Component (b) Exposure Component

Figure 5.3: Fog and Exposure Components

(a) Sky & Fog Volume Component (b) HDRI Sky Component

Figure 5.2: Sky & Fog Volume Component

The Volume mode is Global so that the changes are rendered globally and not bounded to a
finite volume. Under the Visual Environment component, the Sky type is changed form Physically
Based Sky to HDRI (High Dynamic Range Image) Sky. This enables the use of skybox (see
section 2.4). Along with this change, the Physical Based Sky component is turned off and HDRI
Sky override (fig. 5.2b) is added to the Sky and Fog Volume. Custom cubemap skybox material
is assigned under the HDRI Sky. This component provides with the rotation of the skybox as
well. Thus, the same skybox material can be used to create different appearance of the sky as
required. The Intensity Mode is changed to Lux, this enables setting of light intensity for the
diffused skylight.

The Fog component (fig. 5.3a) facilitates the activation of fog in a scene. The component
provides Fog Attenuation Distance, which controls the density of the fog and visibility. The default
value of the Fog Attenuation Distance is 400. By reducing the default value, heavy fog is created.
Fog Attenuation Distance is changed as per the Scene’s requirement.

Exposure component (fig. 5.3b) facilitates in setting the rendering exposure of the Scene for the
camera. The menu provides with options like Fixed, Automatic and Physical Camera to control
the exposure [78]. In this use case, as the camera properties are custom, the Exposure is set to
Physical Camera, thereby making the exposure dependent on the camera settings and parameters.
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Sun

The Sun GameObject facilities in simulating a directional sunlight (fig. 5.4a). In real world, the
objects cast shadows based on the position of the sun. In Unity engine, casting of the shadow is
governed by rotating the Sun.

(a) With a directional Sun light (b) Without a directional sunlight

Figure 5.4: Effect of a directional sunlight

Under the Emission component, the appearance of the light can be tweaked. The two modes,
Filter & Temperature and Color provide control over the light’s appearance. In Filter & Tem-
perature, the colour temperature of the light can be calibrated from 1500◦K to 20000◦K along
with its intensity in Lux. The intensity unit Lux is similar to the real-world [79]. Therefore, by
increasing the Lux value, a sunny day can be simulated (fig. 5.4a). In the absence of a directional
sunlight (fig. 5.4b), the HDRI Sky component becomes the only source of light. Thus, a diffused
ambient light is spread throughout the Scene. This is crucial for the investigation in parameters
for photorealism.

Camera

The Camera (Main Camera) components help with the setup of the rendering parameters. The
Physical Camera is enabled to change the camera parameter. The sensor size of the camera used
for capturing ShipSG images measures 7.9mm diagonally and the focal length of the lens is 6mm.
By enabling the Physical Camera, these parameters are applied to the Camera.

(a) No lens distortion (b) with lens distortion and
colours

(c) Monochrome Image

Figure 5.5: Effects of Post-Processing volume on the images

The curvilinear wide angle distortion exhibited in the real images (fig. 5.1) is introduced in
synthetic images (fig. 5.5b) by adding post processing volume [80] in the Scene. Post processing
volume provides with Lens Distortion component that is tweaked to create the curvilinear horizon
(fig. 5.5a). Under the post processing volume, we also get the option to change the colour saturation
of the image. By reducing the values to 0, the images can be made monochromatic (fig. 5.5c) .
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These two parameters, lens distortion and monochromatic image are also part of the photore-
alism experiment.

Water

The Water system package was introduced by Unity at the Tech Stream 2022.2 [81]. It provides
an out-of-the-box tool to create water bodies [82].

Figure 5.6: Ocean Component

A new GameObject Ocean is added from the Water GameObject list. Under the Project Setting
HDRP, Water is enabled. Upon doing so a water body will spawn. Scripts are provided by the
developers to simulate buoyancy [83]. Script interaction needs to be enabled for this. The waves in
the water body are procedurally generated with Fast Fourier Transform (FFT) [81]. These waves
are controlled by changing the wind parameter under the swell tab (fig. 5.6).

Figure 5.7: Simulated Ocean - Unity Engine

The appearance of the sky correlates with the appearance of the water’s surface (fig. 5.7) i.e.
no additional changes are required to have the reflection of the sky on water.

Perception Package

The Perception package [84] offers a set of tools for creating synthetic datasets intended for com-
puter vision purposes. The toolkit is equipped with a Perception camera component that captures
RGB images with the ground truth. By adding this component to the Camera GameObject,

30



CHAPTER 5. ENVIRONMENT SETUP IN GAME ENGINES

images can be captured. The frame rate at which the images are captured is controlled by this
component. The Labelling component assigns the labels to the GameObject. Thus, every time
the labelled GameObject appears in the Scene, it will be annotated according to its label. Label
Config component carries the taxonomy of all the labels. Under the Label Config, the annotation
type like Bounding Box, Instance Segmentation, Semantic Segmentation are assigned along with
the label colour.

(a) Generated Image (b) Generated Annotation Mask

Figure 5.8: Generated Image and its generated annotation masks. Colours represent different
object categories.

The Perception package captures images as per the defined frame rate, simultaneously it also
generates annotation masks (fig. 5.8b) and a JSON file for the masks. As the package is still ex-
perimental, the generated JSON file provides support for only Bounding Boxes in Unity Engine’s
own format Synthetic Optimized Labeled Objects (SOLO) [85]. In this project, the vessels are
annotated under Semantic Segmentation. Thus, the generated JSON file is redundant, as it carries
no information about the segmentation masks. To make use of the generated segmentation masks
with the YOLOv8, the annotation masks are converted from an image file to YOLOv8 annota-
tion format. The YOLOv8 format consists of one text file per image. Each row in the text file
corresponds to a class and contains the polygon coordinates of an instance of the object in the
image [86].

Setup of the Doppelschleuse model

The Doppelschleuse model created in the section 4.1 is added in the Scene along with the material
files. The baked materials are created by the Engine upon import. The materials are manually
assigned to their respective locations.

As discussed in section 4.2.1, the material for glass needs to created in the Unity Engine. To
do so, a new material is created in the Scene. The Surface type of the material is changed from
Opaque to Transparent (fig. 5.9a). Under the Surface Inputs the Alpha (A) of the Base Map
(fig. 5.9c) is reduced to a 5. Setting the Alpha to 5, makes the glass transparent but retain 5% of
opaqueness. Lastly, the Refraction Model (fig. 5.9b) under Transparency Input is changed to Planar
with the Index of Refraction (IOR) set to 1.52. This value of the IOR for glass is provided by the
developers [87]. The glass material is then applied to the exoskeleton of the AWI building. Similar
glass materials are created and assigned to the glass of the lighthouses and the Lotsenstation.

All the vessel models are added into the Scene. Their materials and scale are inspected and the
respective segmentation labels are assigned. These vessel models are then converted as Prefabs.
This reduces the hassle of adding a vessel in the Scene and ensuring that it exhibits the properties
consistently.

The addition of the Doppelschleuse model completes the setup of the Master Scene. In the
Section (6.2.1), we will discuss the creation of the datasets with the help of this Master Scene, to
be used in the experimental evaluation of this thesis. In the next section 5.3 we will setup Unreal
Engine for synthetic dataset creation.

31



CHAPTER 5. ENVIRONMENT SETUP IN GAME ENGINES

(a) Surface Type - Transparent (b) Setting the IOR

(c) Alpha (A) Setup

Figure 5.9: Properties of the Glass Material

5.3 Unreal Engine (UE5)

In this section, we will be setting up the Master Map of the Doppelschleuse model for Unreal
Engine. Same as in Unity Engine, there are certain terminologies native to Unreal Engine [88].
The explanation of these terms eases with the understanding of this section. These terminologies
are listed as follows:

1. Map: Is the gameplay area containing the environment that a player interacts with. It is
also referred as Level.

2. Actor: Fundamental objects that is placed in a Level such as the camera

3. Component: functionality that can be added to an Actor

5.3.1 Master Map

Similar to the Master Scene (section 5.2.1) that was created in Unity Engine, a Master Map is
created to accelerate the creation of dataset in Unreal Engine.

Upon starting a new Project in UE5 it offers templates for various game genres and a Blank
Template. Blank template is chose to ensure that there aren’t any particular game settings in
the Project. The Project begins with a new Map consisting of Lighting, a PlayerStart (starting
position of the Player) and HLOD (Hierarchical Level of Detail) [89] components in the Map. The
Hierarchical Level of Detail (HLOD) system helps manage many Static Mesh Actors by merging
them into a single proxy mesh and Material when viewed from afar. This decreases the number of
Actors needing rendering, reducing draw calls per frame and improving performance.

Under Lighting we get DirectionalLight useful for creating sunlight; ExponentialHeightFog for
creating fog volume, SkyAtmosphere a physically based sky rendering technique; SkyLight creates
ambient light, SM SkySphere another method for creating physically based sky and Volumetric-
Cloud for the creation of clouds. Together they help in creating sun, sky, clouds and fog.
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HDRI Backdrop Tool

Under the Lighting components group SM SkySphere and VolumetricCloud are removed and a
HDRI Backdrop tool [90] is added. The HDRI Backdrop is where the skybox (section 2.4) will be
assigned. The default shape of the HDRI Backdrop mesh is of a dome called EnviroDome (as show
in figure 5.10). The shape of the default skybox is not like the one discussed earlier in section 2.4.
But it functions in the same manner as discussed. The same panoramic skybox material which
takes the shape of a cubemap (fig. 2.5a)for Unity Engine, is optimised by Unreal Engine to take
this EnviroDome shape. The skybox can be rotated within the HDRI Backdrop.

Figure 5.10: Shape of the HDRI Backdrop mesh

Fog

The Exponential Height Fog actor controls the density of the fog and it’s falloff. For scenarios with
high fog density, a value close to 0 is selected and the falloff is reduced as well.

Figure 5.11: Exponential Height Fog in UE5

DirectionalLight

The directional light component mimics the sunlight (fig. 5.12a). The rotation of the directional
light facilities with the formation of shadows. The unit of its intensity is Lux [91]. However, the
value does not correspond to the real-world light intensity unit Lux. For instance, the default value
is 6 Lux, but 6 Lux in the real-world is the intensity of a light bulb. Colour temperature of the
light can also be adjusted with the Temperature tab.

Upon removal of the DirectionaLight (fig. 5.12b), the SkyLight becomes the only source of
light. This a diffused light illuminates the entire Map. This is how the images for the photorealism
parameter experiment is created.
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(a) with directional light (b) without directional light

Figure 5.12: Effect of directional light

Water System

Water system in Unreal Engine needs to be activated from the plugins panel. The Water body
cannot be added directly into the Map, it requires a landscape. Thus, a landscape is added into
the Map. It is made sure that the landscape is flat surface as the Doppelschleuse model will be
placed on top of this landscape. A Water Body Ocean is introduced in the project outliner.

UE5 makes use of Gerstner waves [92] for the simulation of the water body. Their randomness,
amplitude and the wavelength can be controlled under the properties of the Gerstner waves.

Figure 5.13: Water Body Ocean (left) and the Landscape(right)

Camera

In UE5, there is a camera assigned to the PlayerStart and spawns when the game is initialised.
But in this use case, where images are needed to be recorded, UE5’s Sequencer is more apt.
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Figure 5.14: Tracks and Time in a Sequencer

The Sequencer (fig. 5.14) has tracks distributed over time like a video editing software. The
Cine Camera Actor is added to the Sequencer and positioned on top of the AWI building. A Cine
Camera Actor is replicated the real-world camera. Thus, the camera parameters (fig. 5.15) like
the recording resolution and focal length, are assigned to the Cine Camera Actor. The output
format, like the video file or image sequence, is set in the Sequencer and the recording time period
is assigned in the Sequencer. (Note: Unity Engine has a similar tool called Recorder [93]. But,
the Perception package captures the images along with the annotation masks. So the need for
the Recorder becomes obsolete. Conversely, the Sequencer does not provide annotation like the
Perception Package. More about this is explained in the section 6.2.2 )

Figure 5.15: Cine Camera Actor

Colour grading (fig. 5.16a) is possible with the Cine Camera Actor. Thus, by reducing the
saturation to 0, the recorded images become monochromatic. It is useful for the experimental
dataset.

Lens distortion is not provided by the Cine Camera Actor. The distortion is added separately
by creating a new material. The Material Domain of the lens distortion material is changed to
Post Processing. Screen Position node is added and its variables are assigned. The output value
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(a) Monochrome Image (b) with lens distortion and
colour

(c) No lens distortion

Figure 5.16: Effects of post-process volume

is connected to the Radial Falloff [94], which eventually links to the Emissive Color of the Lens
Distortion material. An instance of this material is created. A post-process volume is added in the
outliner and its extent is set to infinite so that the post processing works across the entire Map.
The Lens Distortion Instance is assigned to the post processing volume resulting in an image with
lens distortion (fig. 5.16b). For the photorealism effects dataset, the Lens Distortion is removed to
form a planer image (fig. 5.16c) .

Models Setup

The Doppelschleuse model is added in the project. The option to generate materials while import-
ing is disabled as it causes some issue with the scale of the materials. Instead after importing the
model, the materials are added individually and assigned their respective positions.

As explained earlier (section 4.2.1), a new material for glass needs to be created. We start by
creating a new material. The Blending Mode is changed from Opaque to Translucent, by doing
so the Opacity option is activated. The Lighting Mode for Translucency is changed to Surface
TranslucencyVolume to enable the Metallic and Roughness option.

Figure 5.17: Material Node for glass material
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In the Material Graph(fig. 5.17), a constant 3 Vector node is connected to the Base Color.
The constant 3 Vector node holds the RGB value of the colour. Thus, the colour of the glass
can be assigned from this. A variable constant node is assigned to each Metallic, Roughness and
Opacity. A Fresnel node [95] that goes through the Lerp (Linear Interpolation) [96] node and into
the Refraction (Index of Refraction). The A and B value of the Lerp node is assigned to 1 and 1.52
respectively. The value of the Index of Refraction for glass is provided by the developers [97]. The
Fresnel node helps in adjusting the reflections on the material. An instance of the glass material is
created and the instance is assigned to the exoskeleton of the AWI. Similarly, glass materials are
created and assigned to the glass of the lighthouses and the Lotsenstation.

Vessel Models are added in the project like the Doppelschleuse model. Their materials and
scale are implemented.
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Chapter 6

Experimental Setup and Results

In Chapters 4 and 5, we have seen the creation of the Doppelschleuse 3D model and the methodol-
ogy employed in both the game engines for the generation of synthetic datasets, respectively. This
chapter aims to empirically compare Unity and Unreal engine and determine which one supports
maritime computer vision task, like ship segmentation using ShipSG.

First, the pipeline for experimental evaluation is described. Second, we present the synthetic
datasets generated with both engines, comprising images and segmentation annotations. To analyse
the effects of photorealism, these synthetic validation datasets were generated multiple times, each
time omitting different photorealistic effects. Creating varied validation sets allow to determine
their contribution numerically for the task of ship segmentation. Third, we showcase the validation
of the datasets using the instance segmentation model YOLOv8. Finally, the synthetic datasets
that provide the best segmentation accuracy are used to augment the real ShipSG dataset and
trained using YOLOv8, with the aim to demonstrate whether utilizing game engines can effectively
support and enhance ship recognition tasks.

6.1 Experimental Evaluation Pipeline

Figure 6.1 illustrates the experimental evaluation pipeline designed in this thesis. A summary of
the evaluation pipeline is as follows:

3D Model Creation
In Section 4.1 we have discussed the creation a true-to-scale model of the Doppelschleuse. This
model is imported in both the games engines respectively, together with the 3D vessel models
presented in Section 4.3.

Generation of Synthetic Datasets with Game Engines
In Section 5.2 and 5.3 a master template for both the game engines has been created, to facilitate the
simulation process. With the help of the master template for both game engines, synthetic images
that replicate several ShipSG images are rendered with varying photorealistic effects. Annotations
for ship segmentation, meaning the mask contour of the ships and their, are also rendered for each
synthetic image.

Validation with YOLOv8x
We use the synthetic rendered datasets and mask annotations to evaluate the performance of
segmenting ships. The instance segmentation model YOLOv8x (largest version) was employed to
validate these synthetic validation sets. The goal of this experiment is to which effects and which
engine provide the best mAP, which is used to augment the real ShipSG training set for further
evaluation.

Data Augmentation Experiment
From the previous step, the dataset of the game engine that performs the best in the comparison is
selected for data augmentation. The synthetic images are further added to the training set of the
ShipSG dataset and YOLOv8x is trained from scratch and evaluated on the purely real ShipSG
validation set. This experiment allows to understand if utilising game engines can effectively
support and enhance ship recognition tasks.

38



CHAPTER 6. EXPERIMENTAL SETUP AND RESULTS

Figure 6.1: Experimental Evaluation Pipeline

6.2 Generation of Synthetic Datasets with Game Engines

Revisiting Chapter 3 Prior Work, the ShipSG dataset contains 3505 images of the Doppelschleuse.
The dataset is split into two sets: training (80%, 2804 images) and validation (20%, 701 images).
For the experimental evaluation of this thesis, 52 images of the real validation set of ShipSG were
replicated, replacing the corresponding 52 real images out of the 701 images of the validation set
of ShipSG. Figure 6.2 shows the distribution of the dataset with and without synthetic data.

Figure 6.2: Dataset Distribution for ShipSG and Synthetic datasets

To analyse effects for photorealism, the augmented validation set of the ShipSG with the 52
recreated images was generated 6 times per game engine. Each synthetic validation dataset, per
game engine, attains different photorealistic effects, creating varied validation sets that will allow to
determine numerically the effects that matter for the task of ship segmentation. The configurations
for these effects are:

1. All effects present (sun light, water body, lens distortion and colours).

2. Absence of directional light (sun light).

3. Absence of the water body.
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4. Absence of lens distortion (lens correction).

5. Absence of colour (monochromatic images).

6. Replacement the water body with a plane surface.

The first configuration contains all possible effects that would make the image photorealistic
to the human eye. The subsequent configurations remove or reconfigure the corresponding effect
using the first configuration as a baseline. The study of the absences of sun light, water body,
lens distortion, and colour, aim to present their significance in the datasets for our maritime
computer vision application, since their modelling involves increased manual modelling time by the
practitioner creating the model. The last configuration aims to study the impact of water properties
and the importance of using simulated water body, which includes physics (waves and reflections),
in the implementation of this thesis. Using these configurations, the goal is to identify which
configuration helps supporting ship segmentation tasks more effectively, which will be demonstrated
along this chapter. The following subsections focus on the generation of each synthetic validation
set per game engine and configuration.

6.2.1 Image and Annotations Rendering using Unity

The Master Scene presented in 5.2.1 serves as the starting point for the 52 images that are to be
recreated. The Master Scene holds all the required GameObjects, which have been explained in
Chapter 5. The modifications that allow to obtain the datasets per effect configuration are made
in the Sky and Fog Volume, Sun, and the Water GameObjects based on the reference image from
the ShipSG dataset. With the help of the vanishing point traced in section 5.1, we orient the
camera in the Scene so that the vanishing point of the synthetic image lies at the same position as
seen in the reference image (5.1).

For each of the 6 configurations, the vessels corresponding to the selected images from the
validation set of ShipSG to be replicated are added in every scene. The position of the vessel
in the Scene matches the reference image. Once each setup is complete, the scene is rendered
with the Perception package (see section 5.2.1). This package supports both image and instance
segmentation annotations. The first frame is captured 3 seconds after the simulation has started,
allowing ample time for the game engine to refine the simulation. Consecutive image captures
are performed after every 10 frames. The simulation is stopped manually after 10-15 seconds.
Providing with sufficient fame captures along its segmentation mask. From the captured frames,
the most suitable one and its corresponding segmentation mask is selected manually after visual
inspection, based on similarity with the corresponding real image. Figure 6.3 summarizes the
rendering process using Unity, of both images and automatic ship segmentation annotations.

Figure 6.3: Unity rendering flow (images and mask annotations).
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The generation process is repeated for all the 52 selected images and with the 6 photorealistic
effects. Beyond the automatically generated ship mask annotations, manual mask annotations
were created using CVAT (Computer Vision Annotation Tool)[98] for a more extensive evaluation.
The ship categories on both the automatic and manual annotations are matched to the original
corresponding class on each reference ShipSG image. The annotation mask for all synthetic images
are converted into YOLOv8 format.

The process results on 6 datasets with auto generated annotations, and an additional 6 datasets
with manual annotations. Both share the same images but the annotations differ, which will be
used later with YOLOv8 to evaluate ship segmentation performance. Figure 6.6 shows a visual
comparison of the Unity rendered images per configuration, together with each corresponding real
ShipSG image, and automatic and manual annotations.

6.2.2 Image and Annotations Rendering using Unreal

The Master Map (section 5.3.1) presented in Section 5.3 serves as the starting point for the 52
images that are to be recreated. The Master Map holds all the required Actors with the defined
components, which have been explained in Chapter 5. The modifications that allow to obtain
the datasets per effect configuration are made in the HDRI Backdrop, Directional Light, Water
System and Cine Camera Actor on the basis of the reference image from the ShipSG dataset. The
orientation of the Cine Camera Actor is matched with the corresponding real image by ensuring
that the position of the vanishing point in the synthetic image matches the vanishing point position
in the real image(fig.5.1). Once these modifications are done, the corresponding vessel models are
added to the Master Map. The vessels are positioned in the Master Map to match the reference
images.

The Map is rendered after completion of the setup. The rendering is performed with the
Sequencer. The first 3 seconds are dead frames, which means that the rendering will result in
blacked out images, a default feature of Unreal. This is done to provide the UE5 with sufficient
time to refine the simulation. The simulation continues for a total of 10 seconds. After the
simulation ends, the most suitable image is selected manually after visual inspection, based on
similarity with each corresponding real image. Figure 6.4 summarizes the rendering process using
Unreal.

Figure 6.4: Unreal rendering flow (only images, automatic annotations not supported).

Unlike the Unity Engine, Unreal Engine 5 does not offer an out-of-the-box tool for auto-
matic mask segmentation annotations. NVIDIA provides a Deep learning Dataset Synthesizer
(NDDS)[99] plugin for annotations. However, support for the NDDS plugin ends at Unreal En-
gine 4.22. To ensure that the comparison utilises the latest versions of both game engines, Unreal
Engine 5.3 is preferred over 4.22. Therefore, the ship masks are annotated manually using CVAT
for the rendered Unreal images. The ship categories on the manual annotations are matched to
the original corresponding class on each reference ShipSG image. The annotation mask for all
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synthetic images are converted into YOLOv8 format. Figure 6.7 shows a visual comparison of the
Unreal rendered images per configuration, together with each corresponding real ShipSG image,
and manual annotations.

The result of the rendering with Unreal engine is 6 datasets, one per effect configuration, all
with manual ship annotations.

6.2.3 Summary of Generated Datasets

As discussed in the beginning of Section 6.2, the 18 recreated synthetic datasets (12 for Unity and
6 for Unreal) (section 6.2.1, 6.2.2) are substituted for the real images in the ShipSG validation
set. Thus, each of the new validation sets still contain 701 images, of which 52 of the total set
are synthetic. The annotation mask for all synthetic images are converted into YOLOv8 format.
The 18 validation sets are summarized in Table 6.1. For Unity Engine, datasets are categorised
based on the annotation method into two groups: manually annotated and auto-annotated. Each
of these two sets of the Unity Engine carries the same variation in the photorealistic effect.

Unreal Engine Unity Engine - auto annotations Unity Engine - manual annotations
All effects All effects All effects

No directional light No directional light No directional light
No water body No water body No water body

No lens distortion No lens distortion No lens distortion
Monochromatic Monochromatic Monochromatic

Plane surface for water body Plane surface for water body Plane surface for water body

Table 6.1: Rendered synthetic datasets for the experimental evaluation.

6.3 Validation Results

The instance segmentation method YOLOv8 is selected for ship segmentation validation of the
generated synthetic datasets. Among the YOLOv8 possible models, YOLOv8x is chosen given its
high performance on the real ShipSG dataset [45]. We used the YOLOv8x weights resulting of
training ShipSG (only real images) as described in [45]. These weights, when used for validation
of the real validation set, provide a mAP of 76.5%, which is used as the benchmark value for the
synthetic datasets. The weights trained on the real ShipSG training set are now used to validate
the generated sets that contain the above described synthetic images. A summary of the validation
can be seen in Table 6.2. And examples of inferred ship masks on the synthetic images can be
found in figures 6.5, 6.6, 6.7.

mAP (%)
Configuration Unreal (manual ann.) Unity (auto ann.) Unity (manual ann.)

All effects 71.7 62.7 72.3
No directional light 71.5 62.0 69.3
No water body 71.5 62.7 69.3

No lens distortion 71.3 63.7 72.3
Monochromatic 71.0 62.3 69.6

Plane surface for water body 72.0 62.2 69.6

Table 6.2: Validation results of YOLOv8x trained on real ShipSG and validated on the synthetic
datasets. Unity contains both auto and manual annotations, while Unreal only manual.

None of the game engines surpass the mAP 76.5% of the real dataset, which was expected, since
the YOLOv8x was both trained and validated on real images. The goal of this experiment, however,
is to identify which game engine achieves the closest mAP to the mAP of the real dataset, when
using synthetic images. In this regard, mAP on Unity Engine with manual annotations (all effects)
outperforms Unreal Engine with manual annotations (all effects) by 0.5%. Despite exhibiting a
higher mAP consistently, Unreal Engine could not surpass the highest mAP of the Unity Engine.
This suggests that Unity Engine’s synthetic images with manual annotations with all effects and no
lens distortion are much closer to the real-world images and annotations. In the case of Unity with
manual and auto-annotations, there is a nearly 10% decrease in mAP between the auto-annotated
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Figure 6.5: Segmentation Results - Unity and Unreal - All Parameters
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Figure 6.6: Segmentation Results - Unity - Photorealism Parameters

44



CHAPTER 6. EXPERIMENTAL SETUP AND RESULTS

Figure 6.7: Segmentation Results - Unreal - Photorealism Parameters
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and manually annotated synthetic images, which highlights the significant role annotations play
in influencing both quality and subsequent model performance. Figure 6.8 depicts an example of
a synthetic image rendered with Unity and the auto and manual annotations.

(a) Auto-Annotations (b) Synthetic Image (c) Manual Annotations

Figure 6.8: Visual comparison of manual and automatic annotation of ship masks on the Synthetic
image. The colors of the masks represent different ship categories. - Unity Engine

We can note from fig. 6.8 that the manual annotations for synthetic images match better with
the real-world annotations. This is because, specifically, only the visible portion of the vessel
above the water surface is annotated in the manual annotation (fig. 6.8b, 6.8c). Conversely, Unity
Engine’s auto annotations overlooked the submerged vessel hull and annotates the entire vessel,
disregarding water (fig. 6.8a). As a result, the generated annotation masks of both the scenarios
(with and without the water body) are same. This is evident from the results obtained in both
scenarios, with and without the water body (Unity auto-annotations) remain the same. This is
an aspect that needs to be considered by the Unity Engine practitioners when generating similar
datasets and annotations, as both the auto annotations toolkit [84] and water generation package
[82] are still experimental. The presence of the ship mask annotation under water is not segmented
by YOLOv8, and when compared to the ground truth, a decrease in mAP is produced since the
mask would be considered as incomplete.

Figure 6.9: YOLOv8x on Unity generated image. False Positive appears without directional light
(Bridge of the cargo is identified as a Tug boat).

The resulting mAPs per removal of individual effects from the scenes also show that these
effects contribute to the realism of the synthetic images. The monochrome dataset for both the
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engines shows a decline in the mAP. This decline is substantial (2.7%) for Unity Engine (manual
annotation) than Unreal Engine (0.7%) and persists by 0.4% with Unity Engine’s auto annotations.
Thus, this highlights the importance of coloured images in instance segmentation. For Unity Engine
(with both the annotations), the decline continues further by 0.3% in the absences of sun. But
for Unreal Engine without sun, the mAP drops by 0.2% compared to sun’s presence. The absence
of a strong directional light from the sun eliminates the casting of shadows by the objects in the
scene. This causes false positives, as seen in (fig. 6.9). Thus, the sun is significantly important.

(a) No Water Body (b) With Water Body (c) Plane Surface

Figure 6.10: Synthetic Images - Unreal Engine

As discussed earlier in this section, the dataset is trained with real images where the vessels
are partially submerged in water. Thus, it is hard to see an entire vessel when it is in water
(fig. 6.10b). Upon removing the water body (fig. 6.10a), the vessels are visible entirely and confuses
the segmentation algorithm. As a result, performance of Unreal Engine and Unity Engine (manual
annotations) the falls than in the presences of water. When a plane surface substitutes for the
water surface (fig. 6.10c), the mAP of the Unity Engine with auto annotations decreases by 0.5%
from 62.7% than in the absence of water. On the contrary, the mAP for Unity Engine (manual
annotations) and Unreal Engine increases by 0.3% and 0.5% with respect to the results obtained
in the absence of water. Unreal Engine achieves its highest performance (of 72% mAP) when a
plane surface replaces the water. Eliminating the visual properties (such as reflection) exhibited
by the water, eases the segmentation for images generated in Unreal Engine. In the absence of
lens distortion, Unreal Engine experiences a drop of 0.4% than in the presence of lens distortion.
Unity Engine (manual annotation) retains its peak performance of 72.3%. The mAP performance
of Unity Engine (auto annotations) reaches 63.7% without lens distortion.

Taking into account the results mentioned earlier, the two best candidates for the data aug-
mentation experiment (fig. 6.1), are Unity Engine with all effects and Unity Engine without lens
distortion, both with manual annotations. Their performance (mAP 72.3%) with ship segmenta-
tion stands the closest to the benchmark of 76.5% set by the ShipSG dataset.

6.4 Data Augmentation Experiment

Expanding upon the previous section’s results, the mAP performance of the manually annotated
Unity Engine dataset with all the photo-real effects and without lens distortion stands the highest
(72.3%). Therefore, these two datasets are selected for Data Augmentation Experiment (fig.6.1).

The experiment consists in augmenting the training set of ShipSG by adding synthetic images,
train YOLOv8, and validate in the real-only (original) ShipSG validation set. The goal of this
experiment is to determine whether these configurations a useful to augment real maritime datasets
for ship segmentation applications.

The experiment is repeated twice, once per best candidate implementation (all effects and no
lens distortion). Since the synthetic images are recreations of 52 images of the real validation set,
the corresponding real-images from the validation set of the ShipSG are removed. Consequently,
the training set comprises 2856 images (2804 original + 52 synthetic), while the validation set
contains 649 images (instead of the original 701). Additionally, their corresponding annotations of
the synthetic images have been added to the training set.
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For a fair comparison with the baseline given by [45], the training of YOLOv8x using the
synthetically augmented datasets use the same initial conditions as presented in [45]. This means,
random weight initialization and training during 300 epochs. Therefore, the training is comparable
to the training originally performed with the real images in the the work presented by [45]. Table

YOLOv8x training mAP (%)
Original ShipSG [45] (baseline) 76.5

Unity Engine (manual ann.& all effects) 76.9
Unity Engine (manual ann. & no lens distortion) 76.7

Table 6.3: Results of the Data Augmentation Experiment after training YOLOV8x with and
without synthetic images.

Following the training of YOLOv8x on the new datasets, the configuration with all effects
present exhibits a mAP increase of 0.4% (Table 6.3) compared to YOLOv8x performance on ShipSG
without the utilisation of synthetic data. The dataset without lens distortion also showcases an
increase of 0.2% mAP. These increments, though modest due to the low number of synthetic images
utilised compared with the total dataset volume, are significant and highlight the value of synthetic
data in refining the model for real-world maritime computer vision tasks.
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Conclusion

This thesis explored the effectiveness of game engines in generating photorealistic synthetic datasets
for the improvement of maritime computer vision applications, particularly focusing on the com-
parison between Unity Engine and Unreal Engine. Scenarios from the real-world maritime dataset
ShipSG were reconstructed in the game engines. To help with the reconstruction, a true-to-scale
3D model of the Doppelschleuse was created in 3D modelling software Blender. The key structures
in the Doppelschleuse were identified and manually crafted. These structures include the buildings,
roads and lighthouses. The created model was set up in the respective game engines, along with the
corresponding vessel model, sky and water body. A total of 52 images from the ShipSG validation
set, with their corresponding scenario and vessels, were recreated and rendered in both the game
engines. To analyse effects for photorealism, the synthetic images were generated 6 times per game
engine. Each synthetic validation dataset, per game engine, attains different photorealistic effects.
These effects are: sun light, water body, lens distortion and colours, and allowed the numerical
comparison of photorealism in both engines. Ship masks present in the rendered images generated
by the Unity Engine were annotated twice, once with its auto-annotation toolkit, and a second
time manually. Annotations for the Unreal Engine images were done manually as it does not offer
any annotation toolkit.

Each of the 18 synthetic sets of images replaced their original counterpart in the validation
set of ShipSG. The validation was performed with the instance segmentation model YOLOv8.
Specifically, YOLOv8x, the model with the highest accuracy on the real validation set of ShipSG,
with mAP of 75.6%, was used. The Unity Engine with manual annotations demonstrated superior
performance over Unreal Engine, evidenced by an improvement of mAP of 72.3% compared to
Unreal’s 71.7%. When comparing Unity with auto-annotations and manual-annotations, we found
a decrease of mAP in the auto-annotations of 10%. The drop in mAP in auto annotations is
caused by Unity’s annotations tool marking the entire ship hull, unlike real images where the hull
is underwater and not visible. Manual annotations result in better replication of those found in
real dataset. Despite having a pixel-perfect annotations, the fact that the performance of the
auto-annotated dataset with Unity is subpar, highlights the improvements that practitioners of
the Unity Engine should take into account when generating synthetic maritime datasets.

Moreover, the validation with each individual photorealistic effect showcases their contribu-
tion towards making maritime synthetic images close to real. The removal of a directional light
(sunlight) resulted in a decrease of the mAP for both the engines, and false positives in the segmen-
tation of ships. The absence of a water body caused a decline in performance for all the models.
Adding a flat surface for the water improved the performance compared to its absence, and Unreal
engine performs as its best in this case. For Unity engine, the performance with flat surface for
the water is still lower than the realistic water body. This shows that the default water simulation
in Unreal underperforms in our application compared to Unity’s. In maritime computer vision
applications, this is a critical consideration, given that water simulation is central to the maritime
domain. Image properties, like chromaticity and lens distortion, have an impact as well.

The data augmentation experiment further demonstrated the practical utility of synthetic data
when combined with real images for training. By integrating synthetic images into the training set
of ShipSG, and after retraining YOLOv8x, there was a noticeable improvement in model perfor-
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mance, evidenced by an increase in mAP from 76.5% to 76.9% when the augmented data was used.
This increment, though modest due to the low number of synthetic images utilised compared with
the total dataset volume, underscores the value of synthetic datasets in enhancing the robustness
and accuracy of maritime computer vision models.

Overall, this thesis provides a systematic comparison of the efficacy of game engines in synthetic
image generation for maritime computer vision applications. While studying individually each
photorealism effect, their role and combination has be shown crucial in generating synthetic images
that closely mimic real images. The increment in performance when used for further training
signifies the value of synthetic data in refining the model for real-world maritime computer vision
tasks. This outcome emphasizes the critical role of carefully selecting the correct setup for crafting
synthetic datasets.
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Future Work

A significant insight from this thesis is the critical role of annotations in synthetic dataset quality.
While the auto-annotation toolkit (Perception package) offered by the Unity Engine substantially
reduces time and effort in annotation processes, it does not achieve the accuracy of manual an-
notations. Future work should focus on improving the outcome of this toolkit to ensure that
auto-generated annotations can match the precision of manual methods. Enhancements to the
auto-annotation processes are essential for enabling wider adoption and reliability in practical
applications, especially when scaling up the volume of data that requires annotation.

Another pivotal area for future research is the exploration of water physics in synthetic maritime
environments. The study has highlighted the importance of further developing photorealistic water
simulations but there is still scope for improving the water simulation such as the water ripples
the vessels cast in their motion. There is a need to extend this to more complex scenarios, such
as the depiction of stormy weather conditions, which could significantly influence the realism and
applicative value of synthetic datasets in maritime computer vision. Investigating these aspects
would help in creating more accurate and diverse training datasets that are crucial for improving
model robustness under various environmental conditions.

Lastly, this thesis has demonstrated positive outcomes from replacing real images with synthetic
ones, though in limited number. To further validate and expand upon these findings, future
studies should experiment with integrating a larger set of synthetic images into training datasets.
This expansion would provide more comprehensive insights into the scalability and effectiveness of
synthetic data in enhancing the training and performance of computer vision models. The impact
of a broader application of synthetic datasets across different training scenarios and model types
would be invaluable in understanding the full potential of synthetic data in maritime and other
computer vision domains.
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Appendix

Lotsenstation

(a) Width proportions (b) Height proportions

Figure A.1: Proportions of the Lotsenstation

Panoramic Skyboxes

Figure A.2: Panoramic Skybox-3
Source [100]
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Figure A.3: Panoramic Skybox-4
Source [101]

Figure A.4: Panoramic Skybox-2
Source [102]
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All Vessel Models

(a) Vessel 1 (b) Vessel 2 (c) Vessel 3

(d) Vessel 4 (e) Vessel 5 (f) Vessel 6

(g) Vessel 7 (h) Vessel 8 (i) Vessel 9

(j) Vessel 10 (k) Vessel 11 (l) Vessel 12

Figure A.5: Vessels (12 of 21)

Link to the Synthetic Dataset Images

You can find all the synthetic images here: Link
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(a) Vessel 13 (b) Vessel 14 (c) Vessel 15

(d) Vessel 16 (e) Vessel 17 (f) Vessel 18

(g) Vessel 19 (h) Vessel 20 (i) Vessel 21

Figure A.6: Vessels (9 of 21)

(a) Vessel 22 (b) Vessel 23

Figure A.7: Vessel 10 and 15 with new materials
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