Universitat
Bremen

Faculty 3: Mathematics and Computer Science

| Cannot Believe All this Dirt!

Analysis of Synthetic Soil-Based Occlusion on
Tableware Detectors with a Procedural Tableware
Data Generator

Jacky Philipp Mach

machja@uni-bremen.de
Matriculation No. 4329647

1. Examiner: Prof. Dr.-Ing. Udo Frese
2. Examiner: Dr. Rene Weller

Advisor: Prof.Dr.-Ing. Udo Frese

A Thesis Submitted for the Degree of

Master of Sciene in Computer Science

October 21, 2024

Jacky Philipp Mach
I Cannot Believe All this Dirt!

Analysis of Synthetic Soil-Based Occlusion on Tableware Detectors with a Procedural

Tableware Data Generator
Master Thesis, Faculty 3: Mathematics and Computer Science

University of Bremen, October 2024

Declaration of Authorship

Hereby, I declare that I have composed the presented work independently on my
own and without any other resources than the ones indicated. All thoughts taken

directly or indirectly from external sources are properly denoted as such.

Bremen, the October 21, 2024

Fllec i

Jacky Philipp Mach

Acknowledgements

Throughout the writing of this thesis, I have received a great deal of support and
assistance. I would first like to thank my supervisor, Prof. Dr. -Ing. Udo Frese,
whose expertise was invaluable in each stage of the process, from the formulating
of the research topic to the writing of this thesis. You supported me greatly and

were always willing to help me.
[would also like to thank Dr. Rene Weller for taking the time to review my thesis.

In addition, I would like to thank my family and friends, who supported me by

providing happy distractions to rest my mind outside my research.

Last but not least, I would like to thank Desiree Bergner for all the support she

has given me during this difficult time.

Abstract

With the growth of the global market for robotics technology, the investment in the
catering industry and the potential automation of physical tasks such as collecting
and cleaning soiled tableware, object detector models are required that can handle
dynamic environments, object conditions and sensory variations. For an object
detector to handle such challenges, data with high variability is required, which
is not available in context of detecting tableware. Thus, this thesis develops a
synthetic image data generator, which creates images of a dining room with clean
and soiled tableware and the corresponding ground truth images. Furthermore, the
importance of soil-based occlusion will be analyzed by training an artificial neural
network (ANN) on a dataset with synthetic images of only clean tableware and on
a dataset with synthetic images of clean and soiled tableware. The results show
that the performance of tableware detectors that are only trained on images with
clean tableware, deteriorates when soiled tableware must be detected. This result
shows that disregarding soiled-based occlusion on tableware can deteriorate the
real-world applicability of tableware detectors. For the future, the model should
be compared to other existing tableware detector models. In addition, real images
should be included in the dataset to analyze the domain gap between synthetic

and real images in the domain of tableware detection.

Contents

1 Introduction
2 Related Works
2.1 Soil Detection Solutions
2.2 Synthetic Data Generators
2.3 Tableware Detection and Robotic Grasping Systems
3 Synthetic Dataset Generation
3.1 Blender
3.1.1 DModifiers
3.1.2 Geometry Nodes
3.1.3 Materials and Shader Nodes
3.1.4 Compositor
3.1.5 Blender Python APT
3.2 Dining Room o
3.2.1 Plate.
3.2.2 Fork
323 Knife
324 Spoon
325 Glass
326 Table
3.2.7 Chair
3.28 Room
3.2.9 Table Distribution
3.2.10 Lighting

co ot U =

10

13
14
15
16
19
23
23
24
25
27
31
33
36
37
40
44
48
49

3.2.11 Camera . . .

3.3 Dining Room Materials
3.3.1 Tableware Materials
3.3.2 Furniture and Floor Materials

3.3.3 Wall Materials
3.4 Food Soil
3.4.1 Soil Definition

3.4.2 Implementation
3.5 Dataset Generation Pipeline
3.5.1 Blender Settings
3.5.2 Data Generation Process
3.5.3 Computational Cost of the Dataset Creation

4 Tableware Datasets

5 Convolutional Neural Network

5.1 Architecture
5.2 Training Setup . . .
5.3 Training Results . .
5.3.1 Loss
5.3.2 Metrics . . .

6 Evaluation
6.1 Quantitative Analysis
6.2 Qualitative Analysis

7 Discussion
8 Conclusion

Bibliography

ii

51
33
23
o4
61
63
64
65
66
66
67
68

69

73
73
77
78
79
79

83
83
84

91
95
97

List of Figures

1.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21

Structure of the Thesis

Example of a Modifier Stack
Example of a Geometry Node
Example of a Node Graph

Applications of the Principled BSDF-Shader

Examples of Texture Maps
Plate Attributes.
Generating Process of the Plate Object
Fork Attributes
Generating Process of the Fork Object
Knife Attributes
Generating Process of the Knife Object
Spoon Attributes
Generating Process of the Spoon Object
Glass Attributes
Generating Process of the Glass Object
Table Attributes
Generating Process of the Table Object
Chair Attributes
Generating Process of the Chair Object
Room Attributes
Generating Process of the Room Object

16
17
18
21
22
25
27
29
31
32
33
34
35
36
37
38
40
42
44
46
47

iii

iv

3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34
3.35
3.36
3.37
3.38
3.39

4.1
4.2
4.3

5.1
5.2
5.3
5.4
5.5
5.6

6.1
6.2
6.3

Generating Process of the Window Object . .
Tableware and Chair Distribution
Procedural HDRI Node Graph
Indoor Lighting Distribution

Example of Camera Placement

The Ceramic, Glass and Stainless Steel Material

The Wood and Wood Plank Material
The Marble Material
The Veined Marble and Marble Tile Material
The Plastic Material
The Metal Material
The Stone Tile Material
The Checkered Tile Material
The Carpet Material
The Concrete and Plaster Material
The Brick Material
Examples of Food Soil
The Soiled Tableware Material

Examples of the Generated Tableware Images
PCA of Cleaned and Soiled Dataset
Heatmaps of the Ground Truth Images

The CNN Architecture
Maximum Model Parameters Calculation . . .
Loss Curves of the Model
Binary IoU Curves of the Model
Precision Curves of the Model
Recall Curves of the Model

Clean Model: Detection of Clean Plates . . .
Clean Model: Misclassification of Reflections .

Clean Model: Misclassification of Large Plates

48
49
20
ol
52
o4
95
26
o7
o8
o8
39
60
61
62
63
64
66

70
71
71

75
77
79
80
81
82

85
86
86

6.4
6.5
6.6
6.7

Clean Model: Undetected Plates . .
Soiled Model: Detection of Clean Plates
Soiled Model: Identification of Glass Occlusion

Clean Model: Soil classified as Plate

87
88
88
89

List of Tables

6.1 Loss and Metric of Model Evaluation

vii

1. Introduction

With the ongoing development of robotics [52] and the growth of the global market
for robotics technology [40], more and more robots can be found in a wide range of
industries [2, 15, 51, 55, 66]. Although the catering industry is a significant sector
[27], where companies invest money, the use of robotics is not common due to
multiple problems such as human-robot collaboration, object conditions, architec-
tural obstacles, sensory variations, dynamic variations, and real-time constraints
[31]. Still, Chui et al. [17] state “73 percent of the activities workers perform
in food service and accommodations have the potential for automation, based on
technical considerations”. In their analysis, they included physical activities such
as preparing, cooking or serving food; cleaning food preparation areas; preparing
hot and cold beverages; and collecting soiled tableware. Each physical activity can
be further divided into different challenges, e.g. collecting soiled tableware can be

categorized into detecting, grasping, and sorting tableware.

For object detection, machine learning or deep learning algorithms achieved mean-
ingful results, but require data with high variability [35, 81, 86, 87]. Detecting
tableware contains challenges such as object conditions, sensory and dynamic vari-
ations [23, 30, 31, 46, 47], which means that high variability in data is also required
for this task [12, 30, 31, 36, 46, 506].

Collecting and labeling such a domain-specific dataset is costly, labor-intensive,
time-consuming, has copyright implications in the case of external collections, and
has ethical and legal concerns in terms of privacy. It is also error-prone due to
inaccuracies during manual labeling and inconsistencies in case multiple people

are labeling the data. Synthetic Data Generation is a solution for the mentioned

problems, because it is automated, synthetic, generates error-free ground truths,
and can generate the required variability in data such as object variations, sen-
sory variations, and dynamic environments. With this approach, an unlimited
number of realistic synthetic data can be created and used to train deep learning
algorithms. Multiple works have been published using synthetic data for model

training and state improved model performances [16, 37, 38, 63, 65, 83].

In the context of the catering industry and the use of robotics technology, multiple
works (see chapter 2) have been published on soil detection solutions, tableware
detection, and robotic grasping systems, but are limited to a set of tableware
or environments, and did not consider soiled dishes. These limitations affect the
applicability of these systems in real environments. In addition, different works [11,
14, 23, 406] state that soil can significantly affect model performance, for example,

due to soiled-based occlusion.

To address this research gap, the thesis provides an analysis on the effects of soil-
based occlusion on the performance of a convolutional neural network (CNN) by
asking the following question: (1) “Does the recognition of dishes in a CNN improve

when images of soiled tableware are included in the model training process?”.

The structure of the thesis can be seen in figure 1.1. In chapter 2, related works
on soil detection solutions, tableware detection and robotic grasping systems, will
be outlined. Afterward, the implementation and functionality of the synthetic
tableware dataset generator, which is used to address the research gap, will be
presented in chapter 3. The dataset generator is capable of creating synthetic
images of soiled tableware in dining rooms and allows users to customize char-
acteristics such as the set of tableware, types on soil on the tableware, dining
room layout, camera perspective, lighting, and the level of soil. With the dataset
generator, two synthetic image datasets will be created for a pixel-wise binary clas-
sification task. One dataset contains images of dining rooms with soiled tableware,
and the other dataset contains images of dining rooms with clean tableware. The
ground truth images will be binary masks of clean and soiled plates. Attributes,
such as geometry or material, of the dining room and tableware will be random-

ized for each image. Chapter 4 will present an analysis of both datasets, such

1. Introduction

as the distributions of the randomized attributes of the tableware or the dining
room, to provide insight into the generated datasets. In addition, heatmaps of
the percentage of occurrence of labeled pixels in the ground truth images will be
presented. To answer the research questions, both datasets will be used to train a
CNN, which should detect plates in images and output the pixels that belong to
a plate. The chosen model architecture and training process will be explained in
chapter 5. The performance of the CNN after being trained on both datasets will
be analyzed, compared and presented in chapter 6. Based on this research, the
results and current limitations of the thesis will be discussed and possible future

research areas will be highlighted in chapter 7 and chapter 8.

1. Introduction
Motivation, Research Gap, Thesis Structure

2. Related Works
Dirt Detection Solutions, Synihetic Data Generators,
Tableware Detection and Robotic Grasping Systems

3. Concept and Implementation
Technologies, Synthetic Dataset Generation,
Geometry and Shader Node Setups

4, Tableware Dataset
Statistical Analysis of the
Clean and Soiled Tableware Dataset

5. Convolutional Meural Network
Model Architecture, Training Setup. Training Resulis

6. Evaluation
Quantitative and Qualitative Analysis of the CNN

7. Discussion

8. Conclusion & Future Work

Bibliography

Appendix
Code and Data Availability,
Minimum and Maximum Object Attributes,
Clean Tableware Images, Soiled Tableware Images

Figure 1.1 Structure of the Thesis

2. Related Works

In the following chapter, related works will be presented to provide an overview
of the different research areas that this thesis belongs to, such as different soil
detection solutions, synthetic data generators, tableware detection and robotic
grasping systems. Although research has been conducted in these fields, the related
works have stated different research gaps, which this chapter will highlight and how
the thesis will address them.

2.1 Soil Detection Solutions

There are different approaches to soil detection that are applied to different do-
mains such as tableware, floors or cars. This task can be interpreted as pixel-wise
detection [5] to detect soil as occlusion, object detection [9], object classifier [14]
to categorize soil (for example, solid and liquid soil) or segmentation task [33]
to determine the position and shape of soil. The following related works present
different soil detection solutions that utilize artificial neural networks (ANN). Al-
though these works focus on soil detection for floors, while the thesis focuses on
soiled object detection, the related works offer insight into different approaches to
gather, create and utilize image data, which contain soil, for training ANNs. In
addition, there are research gaps and possible difficulties in using image data that

contain soil.

Kim et al. [46] analyzed different control methodologies for robots used for clean-

ing tasks, such as sweeping floors, washing dishes and wiping windows. The au-

2.1. Soil Detection Solutions

thors differentiated between classic control approaches consisting of position con-
trol, force and impedance control, and learning-based controlled methods, such
as learning from demonstration, supervised learning, and reinforcement learning.
The authors concluded that current cleaning robots dedicated to specific applica-
tions cannot handle the variability of domestic environments. Additionally, they
state that the performance of supervised learning algorithms is dependent on given
data, thus the performance deteriorates in new environments compared to trained
environments. This means that training data for supervised learning algorithms
are required to have variability. This problem will be addressed by the thesis by
developing a synthetic image generator of a dining room scene with soiled table-
ware. Scene characteristics such as lighting, set of tableware, soil or dining room

layout will be adjustable to increase variability.

Bormann et al. [9] developed a visual soil and office item detection system, which
is based on the YOLOv3 framework, for cleaning robots for tasks such as optimiz-
ing wet cleaning results and facilitating demand-oriented daily vacuum cleaning.
For training data, a synthetic image dataset generator from a small set of real
scene, dirt and object examples was developed. The dataset generator blends ran-
domly modified patches of dirt and office objects with clean ground floor images,
and optionally adds simulated light sources and shadows to the synthetic scene.
Random numbers of segmented dirt and object samples are selected and randomly
rotated, flipped and resized before being blended into the clean ground images.
For post-processing, artificial shadows and brightness of random shape and inten-
sity at random positions were added to mimic real scene variance. The authors
concluded that collecting an larger dataset, compared to the dataset used in their
work, might benefit detection performance and robustness as the set of real scene,
dirt and object examples limits the variability of the synthetic images as the set is
used for blending. The presented problem is addressed by this thesis by replicating
a 3D dining room scene, where scene characteristics like room layout, lighting or
set of tableware can be changed and randomized, to create synthetic image data

with variability.

Canedo et al. [14] propose a vision system, based on the YOLOv5 framework,
to detect soiled spots on the floor. For the training of their ANN, they extended

2. Related Works

a synthetic data generator found in literature to solve the lack of real data in
this domain. They collected images of solid and liquid soil and clean floors online
through Google Search. Floor images are selected by segmenting the floor from
other objects in the image such that soiled spots are only generated on the floor
and do not overlap with other objects. This approach helps models distinguish
between soiled spots and objects in the image, which reduces the number of false
positives. The tool blends dirt samples into clean floors in random locations and
adds simulated light sources and shadows. It can also apply geometric transforma-
tions to floors and dirt samples, such as flipping the clean floor images horizontally
and vertically. For testing, the authors conducted four experiments. In one exper-
iment, their ANN was trained on floor images, where objects were removed from
the training dataset to observe the impact of using floor images with objects on the
models’ performance. The results showed that the models falsely classified objects
as soiled spots. For evaluation, their models were tested on a real dataset (ACIN
dataset) and achieved positive results. Canedo et al. concluded that increasing the
variety of floors, solid and liquid dirt in the synthetic image dataset might improve
their reported results. In addition, their work was limited in liquid dirt samples,
which affected the performance of their models. They also stated to include floor
image samples with partially visible objects, because their models misclassified
objects that appear partially in the image, such as chairs, wires or shoes, as soiled
spots. This work shows that the use of synthetic image data for training ANNs
can achieve positive results on real data and that the models are able to gener-
alize on real data. Furthermore, the experiment showed that additional objects
in the scene can reduce the misclassification of objects as target objects, in this
case soil. To address the mentioned problems, additional objects such as chairs,
glasses, spoons and forks will be added to the dining scene in the synthetic image

data generator of this thesis.

2.2. Synthetic Data Generators

2.2 Synthetic Data Generators

To train an ANN, task-specific labeled data is required, which in some cases are
not available due to the task, the domain or difficulties in creating such dataset.
Manually collecting and labeling training data can be costly, labor-intensive, time-
consuming, has copyright implications in the case of external collections, and has
ethical and legal concerns in terms of privacy. Additionally, manual labeling is
error-prone due to inaccuracies and inconsistencies in the case of multiple people
labeling the data. Synthetic data generators are an automated alternative that
generates ground truths without errors and can generate labeled synthetic data
with the required variability that is needed to train ANNs to achieve meaningful
results [35, 81, 86, 87]. For creating synthetic image data, the generators render
a replicated 3D scene of the domain environment and the corresponding ground
truth label, or use a set of real images to combine and create new synthetic images
[9, 14]. The presented works achieved positive results in different domains with
the use of synthetic image data generators to generate datasets that are used to
train ANNs. They give insight into the usage, problems, results and adaptability

of synthetic data generators.

With the aim of automating containerized freight transport processes, Delgado et.
al [19] developed ANNs to detect and segment categorized damages, such as con-
cave damages on the container face, damages located on the edges of the container
or dents. In addition, the detection of markers that identify the type of trans-
ported goods and a door/no-door classifier. Due to the lack of real image data
in such a domain, a methodology was developed to generate a synthetic dataset,
which is realistic, varied, balanced and labeled, for visual inspection tasks of con-
tainers in a deck environment, which was modeled in the 3D computer graphics
software Blender. The scene contains the container, an ship-to-shore crane with
the clamp that hooks the container as a model. The purpose of the crane is to pro-
vide fidelity to the rendered scene. Camera locations and scene specifications are
based on the existing setup of a port in the real world. The scene mimics position,
focal length and image resolution with similar distortion and properties to the real

cameras on the dock. For the lighting, high dynamic range images (HDRIs) are

2. Related Works

used as sole light source of the scene and background, but are randomized for each
image. The set of HDRIs covers the variety of daytime and night-time images and
urban or industrial environments with different weather conditions. The container
object was modeled after the standard international organization for standardiza-
tion (ISO) measures of containers. For realistic materials, defects such as dirt,
aging, rust or scratches were added to the base material. The data generation
pipeline is executed by a Python script, which interacts with the Blender scene
objects natively. The color of the container material changes randomly given a
list of RGB values. In addition, the container material attributes are randomly
changed to age the container. For the randomization, the range of values were
set empirically. A statistical analysis of the generated dataset were conducted
to prove that the dataset is balanced and has variability due to the randomness
of the object attributes. To evaluate their ANN, the authors conducted several
experiments, which show that ANNs, trained on synthetic datasets, are applica-
ble for real-world scenarios. They concluded that synthetic labeled datasets are a
feasible alternative to train state-of-the-art ANNs that are applied for real-world
problems. In addition, they stated that their methodology of generating synthetic
image data allows researchers to generate any setups regarding of their configura-
tions and also allows to generate any situation of interest. This thesis will adopt
this methodology by implementing a dining scene, model the objects and scene
after real-world measurements, randomize aspects of the objects and materials,
implement a Python script to execute the data generation pipeline and conduct a
statistical analysis of the two generated datasets. As stated in the work, objects of
the target scene can be modeled to provide fidelity in the remodeled scene. This
thesis will also adopt this approach and include objects such as fork, knife, spoon,

glasses, table and chairs to the dining room scene.

To automate the risk assessment of occurring nanoparticles in various environ-
ments as a consequence of man-made processes, which raises concerns about their
impact on the environment and human health, Mill et al. [56] developed an ANN
that segments nanoparticles in imaging techniques such as microscopy and spec-
troscopy. For training the ANN, a synthetic image data generator was developed

due to the lack of annotated training data in such a domain. The synthetic scene

2.3. Tableware Detection and Robotic Grasping Systems

was created and rendered with the software Blender. To model nanoparticles,
statistical information on nanoparticle morphology was extracted with respect to
size, shape, and distribution from high-resolution microscopy images. In addi-
tion, real images of nanoparticles were used as references to reproduce features for
the nanoparticle models. Potential image artifacts, such as dirt, that may arise
from sample preparation procedures, were included for realism. The image data
generator computes a photorealistic synthetic microscopic image of nanoparticles
and potential artifacts, and a subsequent render produces the respective error-free
ground truth label image. The authors concluded that the segmentation accuracy
of their trained ANN is comparable to the segmentations performed by microscopy
experts. In addition, they state that the synthetic data generation pipeline is able
to produce an unlimited number of realistic synthetic images with error-free ground
truth labels that can be used to effectively train a CNN, and is an approach to
solve the lack of image training data and the problems of the manual annotation
process of ground truth labels, such as time, cost and errors. In this thesis, the
rendering process of the presented work is adopted by first rendering a photoreal-
istic synthetic dining room scene and then rendering the corresponding error-free

ground truth label image.

2.3 Tableware Detection and

Robotic Grasping Systems

In the following section, two related works in tableware detection and robotic
grasping systems will be outlined to provide insight into different tableware de-
tection systems that utilize ANNs, their applicability in the domain of the food

service industry and their research gaps.

With the aim of automating processes in the food service industry, Fukuzawa et
al. [30] developed a robotic system consisting of a six-degree-of-freedom (DOF)
robotic manipulator, a robotic hand capable of grasping and suction operations,

and a three-dimensional (3D) camera for tableware recognition. The system is

10

2. Related Works

able to grasp different tableware from a commercial dishwasher. For tableware
classification and orientation detection, an ANN named Faster R-CNN was used.
The dataset for model training was manually collected and annotated. Six types
of tableware were used for data collection. The trained ANN returned a bounding
box, which is used to calculate the grasping points and postures. The authors
concluded that strong reflection and overlap of the tableware significantly affected
the accuracy of the tableware recognition. In addition, they reported that recog-
nition accuracy could be improved by increasing the number of training data. In
future work, they aim to extend the applications of their ANN by including more
types of tableware. With the work of the thesis, the mentioned problems could be
solved. The synthetic data generator is capable of generating an unlimited num-
ber of images and types of tableware to include in a new training dataset. It also
allows to customize the rendered scene such as lighting or overlapping tableware.
Furthermore, the work does not mention any tests with soiled tableware for their

recognition system.

Yue et al. [89] developed a lightweight object detection algorithm based on deep
learning for robots to detect empty tableware and calculate the grasping point
for the various types of dishes in images, so that the robot’s arm can pick them
up. The dataset, used for training their model, were manually collected and an-
notated. Twenty different objects such as coffee, chopsticks, cup, bowl and spoons
were included in their dataset. Like the works presented before, the authors de-
veloped an object detection algorithm to detect empty tableware, but did not test

their algorithm with soiled dishes, which is more based on a real-world application.

11

3. Synthetic Dataset Generation

To answer the research question (1) “Does the recognition of dishes in a CNN
improve when images of soiled tableware are included in the model training pro-
cess?”, a labeled image dataset is required to train the CNN. A dataset to compare
the effects of soiled-based occlusion on tableware detection does not exist or is not

publicly available.

A dataset named “Cleaned vs Dirty V2 Dataset” [18], which is used for training
classification models that classify images as dirty or clean, was found online on
kaggle.com. The dataset contains 764 real images of clean plates and 292 real
images of soiled plates. The dataset cannot be used for this thesis, because of the
low sample size, the required ground truths, the dataset does not contain images
with multiple plates and the plates were photographed from the same top view

perspective, which limits the variability in the data.

As manual collecting and labeling image data can be labor-intensive, time-consuming
or error-prone, a synthetic image data generator was developed that creates im-
ages of randomized dining rooms with clean or soiled plates, and the corresponding

error-free ground truth label.

The generator will be used to create one image dataset that contains clean table-
ware and another image dataset that contains clean and soiled tableware. The
dining room scene was modeled and rendered in the software Blender. The models
and materials of the scene are procedurally generated, which means that the ob-
jects are created algorithmically in subsequent steps, which allows users to adjust
the geometry of the object, such as length or width, or the color of the mate-

rial without manual modeling. In addition, procedural generation allows for the

13

3.1. Blender

randomization of geometry and materials by changing attribute values that are
utilized in the object creation algorithm. Randomization of object characteristics

allows for variability in the dataset.

To execute the data generation pipeline, a Python script was implemented that
interacts with the Blender scene objects through the Blender Python application

programming interface (API).

In the following chapter, the concepts and features for developing procedurally
generated objects and materials, the implementation of the dining room objects,
the used reference and implementation of soil, and the dataset generation pipeline

will be presented in detail.

3.1 Blender

Blender is a free and open-source 3D computer graphics software, which runs
on Windows, MacOS and Linux. It was developed in C and C++4, but offers
an API to interact with Blender scenes through Python scripts. The software
offers features like object modeling, animation, sculpting, texturing, rendering,
video editing, python scripting, compositing and physics simulation such as smoke,
fluid or particles. Due to the variety of features and accessibility, the dining
room scene was modeled and rendered in Blender 4.2.1. Features named Modifiers
and Geometry Nodes were utilized to model and manipulate the geometry in a
procedurally and non-destructive approach, which adjust the appearance of the
object without changing the geometry data of the object. In addition, it allows
users to adjust or randomize object attributes such as height, width or length
without manual modeling. For texturing, Shader Nodes were used to generate

procedural object materials that can be adjusted by attribute values.

14

3. Synthetic Dataset Generation

3.1.1 Modifiers

Modifiers are built-in Blender operations that affect the appearance of the object
without changing and finalizing the object’s geometry data. Multiple modifiers,
which form the “modifier stack”, can be applied to an object. An example of
the modifier stack can be seen in figure 3.1, of the plate object in the dining
room scene. The input of a modifier is the object’s appearance after the effects
of the previous modifier have been applied, which means the order of modifier
stack affect the final appearance of the object. Blender organizes the available
modifiers after their functionality in four categories: Edit, Generate, Deform and
Simulate. FEdit-modifiers adjust object properties that do not directly affect the
geometry of the object, such as the UV map of the object. Generate-modifiers
add or remove geometry of the object. Deform-modifiers change the geometry
of the object without removing or adding geometry. Simulate-modifiers are the
implemented physics simulations such as smoke, fluid or particle simulation. To
generate the dining room objects, only Generate-modifiers were utilized to add

new geometry to the objects.

15

3.1. Blender

=

iy A plate

a7 Add Modifier
Plate Curve Generator YiimE - X
Screw Mm@ v X

Angle 360°
Screw Om

Iterations 1

Axis b Y
Axis Object

Steps Viewport
Render

Merge

Stretch UVs

> Normals
> |O] Subdivision

> ¥g Plate Crumbs

Figure 3.1 Example of a Modifier Stack

3.1.2 Geometry Nodes

Geometry Nodes is an uncategorized modifier due to the different application pos-
sibilities such as object distribution, object modeling or geometry editing. The
modifier executes functions based on a node graph, which is an approach of visual
programming languages that abstracts source code as a graph, where nodes, which

consist of function options, input and output sockets, are source code functions.

The node input and output sockets can have different data types, such as float,
vector, color or geometry, that are differentiated by the color of the socket. The
shape of the sockets defines whether the input or output is a single value, a field or a
temporary single value that can also be a field. A circular socket shape visualizes
a single value and cannot accept a field input. A diamond shape visualizes an

input or output field. A diamond shape with a dot in the center visualizes a single

16

3. Synthetic Dataset Generation

current value, which can also be used as a field. An example of a geometry node

can be seen in figure 3.2.

Vv Extrude Mesh

Vertices

Mesh

© Selection
Offset
-2 OffsetS... 1.000

Figure 3.2 Example of a Geometry Node

A single value can be, for example, an integer or float value. A field, in the
terms of programming, can be compared to a list and, for example, can contain
numeric data types, such as vectors or floats, but also geometric data types such
as vertices, edges or faces. Nodes with input field sockets perform the operation
for each element in the input field, unless only a single value is connected. In this
case, the output is identical for each element, because the single value will be used

for the calculation for each element.

Furthermore, nodes are connected through edges to pass data from one node to
another. The edges also visualize the graph’s reading orientation. Node graphs
can have Group Input-nodes, which allows the customization of the modifier result
with a list of inputs, if the inputs are utilized as inputs for node operations, without
manual adjustments to the structure of the node graph. For example, in terms of

programming, the list of inputs in the Group Input-node can be interpreted as the

17

3.1. Blender

input parameters of a function, which is the node graph. The input values can
be adjusted for each object that contains the Geometry Nodes-modifier with the
same node graph in the modifier stack. A Group Output-node must be present in
the node graph to output the result, which is often the changed geometry. In the
example, which can be seen in figure 3.3, the node graph moves the geometry of

the input object by one unit on the x-axis and returns the moved geometry.

~ Group Input ¥ Transform Geometry ~ Group Output

Geometry Geometry Geometry

Components v
Geometry
Translation:
X
Y
Z

Rotation:

Figure 3.3 Example of a Node Graph

For this thesis, Geometry Nodes were used to create the objects of the dining
room scene and for the distribution of objects such as tableware on the table, the
table placement in the dining room or the placement of indoor lights. For creating
the objects, new mesh primitives, such as a cube, cylinder, curve or circle, are
created with nodes and are used as the base geometry. Then, the base geometries
are altered by selecting sets of vertices, edges or faces and apply different node
operations that use the values of a Group Input-node as input. This allows for the
adjustment or randomization of object characteristics without manual modeling.
To distribute objects, the existing geometry of an object is used to determine a
distribution area by selecting a set of faces or using the volume of the object. Points

will be generated on the selected faces or in the object’s volume with constraints

18

3. Synthetic Dataset Generation

such as minimum distance to avoid object clipping. The generated points are
then used to generate the objects on them. The node graphs for creating and

distributing the dining room objects will be explained in detail in section 3.2.

3.1.3 Materials and Shader Nodes

Materials consist of three shaders which define the appearance of the surface, the
volume of the object and the displacement of the surface. The surface shader
controls material properties like color, texture, light interaction or metallic. The
volume shader can be used for smoke, fire, fluid or glass objects. The displacement
shader affects the appearance of the geometry, which can add additional surface

details, without changing the geometry data.

For creating materials, Blender offers the approach named Shader Nodes, which
can also be used for lights and backgrounds. It was developed with the concept
of the node graph, which is used for Geometry Nodes and presented in detail in

section 3.1.2, but offers a different set of nodes for material creation.

For the implementation of realistic materials, physically-based shading was imple-
mented by introducing the following nodes: Principled BSDF, Principled Hair and
Principled Volume shader. To achieve realistic materials, the shaders contain prop-
erties that follow the physics of the real world, such as being energy-conserving,
which means the materials cannot reflect more light than the amount of incoming
light [54]. The materials created for this thesis utilize the Principled BSDF-shader,
which is based on the OpenPBR Surface shading model [3]. For the light inter-
action, the shader uses a bidirectional scattering distribution function (BSDF) [6]
that calculates how the incoming light is scattered by the surface. Light can be

reflected, refracted into the mesh, or absorbed.

To achieve a variety of realistic materials, the Principled BSDF-node has multiple
inputs to customize the material properties such as the base color, roughness,
metallic, index of refraction (IOR), alpha, normals, subsurface, transmission, coat,
sheen and emission. Base Color is the general color of the material. Roughness

determines how sharp or diffuse light is reflected. Metallic determines whether

19

3.1. Blender

the material is metallic or not, which also affects the way light is reflected. IOR
defines how the material bends the direction of incoming light rays passing through
the material. The higher the index, the closer the light ray direction will be to
the surface normal. Alpha sets the transparency of the surface material. Normal
controls the normals of the material. It is often used to add additional details,
such as scratches, to the material without affecting the geometry data of the
object. Subsurface allows for subsurface scattering, which determines how light
scatters below the surface. It could be used for materials such as skin, milk or
wax. Transmission allows the material to reflect the incoming light on the surface
and also transmits it to the interior of the object. This input can be used for
materials like glass or liquids. Coat can be used to add a coating on top of the
material to simulate materials such as clearcoat, lacquer or car paint. Sheen can
be used to simulate small fibers or dust on the material, adding reflection near
the edges like in fabrics. Emission determines how much light is emitted from the
material and ignores the energy-conserving property. The effects of the different
inputs can be seen in figure 3.4. The first row shows the application of the base
color for different types of materials. In the second row, the transition from a
non-metallic to a metallic material can be seen. The third row shows increasing
levels of roughness and thus the difference between sharp and diffuse reflections on
the surface. The fourth row shows the increasing IOR levels, where the reflective
light ray direction approaches the normal direction of the surface. The fifth row

shows the transition from a transparent material to an opaque material.

20

3. Synthetic Dataset Generation

Figure 3.4 Applications of the Principled BSDF-Shader

The input of the Principled BSDF-node can be adjusted by single values or so-
called texture maps, which are images that contain material information in the
form of RGB color data. The advantage of texture maps is that they offer more
material information compared to single values, because RGB color data is saved in
every pixel. They are often used for the base color, metallic, roughness, normals
and displacement input. The RGB color data of each texture map match the
different required inputs of the Principled BSDF-node. For example, color maps

can consist of any RGB value, but the roughness map must be a grayscale image

21

3.1. Blender

in which black-colored pixels determine where the material reflects incoming light
sharply, and white-colored pixels determine where the material reflects incoming
light diffusely. An example of different texture maps such as a base color, metallic,

roughness and normal map can be seen in figure 3.5.

Base Color

Figure 3.5 Examples of Texture Maps

Texture maps can be created manually with a different software such as Adobe
Substance 3D [1]. To utilize the created texture maps, they must be exported
and then imported as images in Blender. A different approach is to procedurally
generate texture maps in Blender with Texture Nodes, which generate different
procedural textures such as brick texture. By combining and modifying these
textures with additional node operations, the different texture maps can be gen-
erated. Texture Nodes can also be used to generate masks to modify only parts of

the material.

To apply and position the texture maps to the surface of the object, texture coordi-
nates must be specified for the texture maps, which can be automatically generated
coordinates from: the vertex positions of the mesh, the object normals, the UV
map of the object, an object, the object itself, the position coordinate in camera
space, the location of the object on the screen or the direction of the reflection
vector. For manually created texture maps, an existing UV map of the object is
required for the correct projection. As the aim of the synthetic data generator is
to automate the data generation process and randomize the dining room objects,
the manual creation of UV maps is not suitable. Automating the creation of UV
maps is time-consuming and complex because of the changing geometry. In addi-
tion, the aim of the data generator is to also randomize material properties such

as color, which cannot be done with manually created texture maps.

22

3. Synthetic Dataset Generation

In this thesis, every material in the dining room scene was generated procedurally
to enable customization and randomization of the material properties. Further-
more, procedurally generated materials do not require UV maps and can use the

object itself as the source for texture coordinates.

3.1.4 Compositor

For this thesis, the compositor is used to generate the corresponding ground truths
of the created images. The compositor allows users to edit rendered images with
Composition-Nodes. For example, the colors of the image, depth of field or expo-
sure can be adjusted after rendering. Like the Geometry- and Shader Nodes, the

compositor was developed with the concept of the node graph.

Blender offers multiple outputs that can be utilized for editing images after ren-
dering, for example, a depth map that visualizes the distance to visible surfaces.
One of the outputs are binary masks of objects or materials in the rendered image.
To create the masks, the objects or materials must be assigned with an index in
the object or material properties. In addition, the option for the output must
be activated in the view layer properties. Activating the option will create an
output socket for the mask in the input node of the compositor named Render
Layers. To read and use the binary mask, the ID Mask node must be used with
the corresponding index for the object or material. The ceramic material, which
is used for the plate object, will also be used to identify the plate objects in the
images and create the binary masks, which are used as ground truth. In addition,
the compositor is used to set the image file formats, name them and to save both

images under a specific path.

3.1.5 Blender Python API

The Blender Python API allows users to interact with Blender scenes through
Python scripts. Tasks such as automating object modeling, analyzing Blender-

specific data, modifying Blender settings, or creating custom user interfaces or

23

3.2. Dining Room

plugins, are possible with the API. Every built-in Blender function can be used in
the Python scripts. In addition, by utilizing Python, the API extends Blender’s
functionality by the available Python packages, which can be imported into the
scripts. To automate and execute the data generation pipeline, a Python script
is implemented that randomizes and logs scene settings and object characteristics
through the Blender Python API. In addition, a custom user interface was imple-
mented for Blender to allow users to use the functions that are executed in the

data generation pipeline, which will be explained in detail in section 3.5.

3.2 Dining Room

In addition to the plate object, which is the focus of this thesis, tables, chairs,
dining rooms and tableware objects such as spoons, forks, knives and glasses were
modeled to add fidelity to the dining room scene, as in the work of Delgado et al.
[19].

All objects are generated procedurally with Geometry Nodes and Shader Nodes,
and allow for randomization of their object and material characteristics for data
variability. The associated node graphs for the creation of the objects and the

materials are created with the approach described in section 3.1.2 and section 3.1.3.

The value range for the dimensions of the dining room objects, for example, length
or thickness, are true to scale. Measurements for different parts of an object are
inspired by available online sources, such as dimensions.com [21], or guidelines
and standards. The range of some characteristics were chosen empirically, because
there were no available data or no standards as the design of dining room objects,
such as tables, chairs, glasses or spoons, can be a creative choice. Nevertheless,
the ranges were chosen under the constraint that it allows for data variability,
but it does not alter the object’s fundamental perception. The materials for the
furniture and dining room are implemented based on image references that can be
found online with the search term “dining room” on Google Images. The materials
of the tableware are based on different online sources [84, 49, 10] that discuss the

usage of different materials for tableware.

24

3. Synthetic Dataset Generation

Potentially, the additional objects could also be included for object detection for fu-
ture work. In the following, the creation of each tableware object will be presented
by visualizing the geometry in each step of the generating process and explaining

those steps. The implemented materials will be explained in section 3.3.

3.2.1 Plate

The plate object is used as the detection object for the convolutional neural net-
work (CNN). In this thesis, the plate is limited to a circular shape and white

porcelain as material. This limitation can be addressed in future work.

As can be seen in figure 3.6, which shows a plate’s half of a cross section, a plate
can be divided into components that are named well, lip, rim and base [45]. The
following attributes can be adjusted: plate radius, plate height, plate thickness,
well radius, lip radius, lip height, rim radius, rim height, base, base radius, base
height and base width.

Side Perspective Rim Radius
Lip Radius and Height
and Height ¢

v

Well Radius

l

Plate

Thickness 1
Base Height I
«>
Base Width
< A -
Base Radius
< >
Plate Radius

Figure 3.6 Plate Attributes

25

3.2. Dining Room

Plate Generator

The procedural generating process of a plate object can be seen in figure 3.7. For
the base geometry, the plate generator creates a flat curve object with the length
of the plate radius input. Next, the curvature of the object will be adjusted by the
well radius, lip radius, lip height, rim radius and height input. In the third step,
thickness is added to the curve object. Adding thickness can result in intersecting
geometry in the corners of the plate curvature, which can be seen in figure 3.7d. As
the geometry is connected, the intersecting geometry will be removed by selecting
the indices of the vertex before and after the intersection point and deleting the
vertices with the indices in range of the indices of the selected vertices. Then, the
selected vertices are merged on the intersection point. To generate the plate base
(see figure 3.7e), geometry of the bottom side of the curve will be removed between
the points set by the base radius and base width. The points are then extruded
and merged to create the plate base with the base height input. Afterward, the
plate object will be centered to the origin point and placed on the ground. The
current generated geometry is a half of the cross section of a plate. For the final
step, the plate object will be generated by using the Screw-Modifier, which can

generate circular objects with a cross section of the object (see figure 3.7h).

26

3. Synthetic Dataset Generation

Side
A Perspective
= -
/ g
/

(o

/ I
E

oo 1 A
Top

¢ Perspective

3.2.2 Fork

Figure 3.7 Generating Process of the Plate Object

A fork can be divided into tines, roots, the back, the neck and the handle [29]. The

adjustable attributes can be seen in figure 3.8 and are length, thickness, amount

27

3.2. Dining Room

of tines, tine length, tine curvature, root curvature, back length, back width, neck
length, neck height, handle length, handle width, handle end height, handle end

width and handle end curvature. The material of the fork object is stainless steel.

28

3. Synthetic Dataset Generation

Top Perspective

Amount of
Tines

Tines Tines Tip
Length Curvature
Root
Curvature
Back
Length
Neck | :
Length :
Length
Handle End
Handle Ct:Jrvature
Length
Dy
‘Handle :
- Width -
“Handle”
End
Width
e
Back
Width

Side Perspective

Thickness

—

Handle
End Height

Figure 3.8 Fork Attributes

29

3.2. Dining Room

Fork Generator

The process of creating the fork object can be seen in figure 3.9. The base geometry
is a plane with inner edges. The edges of one side of the plane are alternatively
selected, extruded to the length of the tine length. For the curvature of the tines,
the edges are moved toward the horizontal center of the object. The back of the
fork is created by selecting the edges on the opposite side of the tines and extruding
them to the back length. The edges are then horizontally scaled so that the length
corresponds to the width of the handle. For the fork shape, the back is vertically
curved. Next, the edges are extruded three times to create the neck, the handle
and the end of the handle and adjusted using the corresponding attribute inputs.
Like in the spoon generation process, the Solidify-Modifier will be used to generate
geometry to add thickness to the geometry, and the Bevel-Modifier will be used
to smoothen the edges of the object by generating additional edges.

30

3. Synthetic Dataset Generation

Isometric
Perspective

c Pers-I;)oepctive D
DR — 1]
(N L T
I R T
I — S
E F Perssrljiitive

G H

Figure 3.9 Generating Process of the Fork Object

3.2.3 Kiife

A knife consist of a blade and a handle. To customize the knife geometry, the

following attributes are implemented: width, length, thickness, blade thickness,

31

3.2. Dining Room

blade length, blade tip intensity, blade tip curvature, blase base intensity, blade
base curvature, handle length, handle width, handle end curvature and handle
end width. The material of the knife object is stainless steel. An overview of the

different knife attributes can be seen in figure 3.10.

Side Perspective

Th?(lig:ss L] 1 Thickness
Top Perspective
Blade Tip Blade Base)
Intensity Intensity Handle width
I | Handle End
...y Width Width

Blade Tip Blade Base Handle End
Curvature Curvature Curvature

Blade Length Handle Length

Length

Figure 3.10 Knife Attributes

Knife Generator

The procedural generating process of a knife object can be seen in figure 3.11. The
generator creates a cube, that will be the knife handle, with an inner edge, which
is used for the handle end curvature. Next, the cube is adjusted according to the
handle end curvature, handle length and handle width input. For the width of the
handle end, the face of the end of the handle is scaled horizontally. Extruding and
scaling the face on the opposite side of the handle end, creates the blade base. It
can be adjusted by the blade base intensity and curvature input. The intensity
attributes adjust the curvature of the knife blade. Furthermore, the face of the

blade tip is extruded two times to create the rest of the blade and the blade tip,

32

3. Synthetic Dataset Generation

which can also be adjusted by the corresponding inputs.

Isometric Top + Side
A . B :
Perspective Perspective
]
c Top D Top + Side
Perspective Perspective
—]
Top
E Perspective F

Figure 3.11 Generating Process of the Knife Object

3.2.4 Spoon

As can be seen in figure 3.12, a spoon can be divided into bowl, neck and han-
dle [80], and the components can be adjusted by the following attributes: length,
thickness, bowl width, bowl length, bowl depth, neck length, neck height, handle
length, handle width, handle end height, handle end width and handle end curva-
ture. The curvature attributes add inner geometry, that does not affect the shape

of the base geometry, to adjust the smoothness at corners of the geometry such

33

3.2. Dining Room

as the connection between the handle and the spoon bowl. The material of the

spoon is stainless steel.

Side Perspective
{ Thickness
Handle End
Height
Bowl I v 7.
Depth Height
Top Perspective
Thickness HSSEJ;ET
Bowl] | | """""" Handle Handle End
Width | \ \ A 1) Width Width
Bowl Length Neck Handle Length
Length
Length

Figure 3.12 Spoon Attributes

Spoon Generator

For generating a spoon object, which can be seen in figure 3.13, a sphere object
is created as base geometry. It is then cut in half and shaped to the spoon bowl
with the bowl length, bowl width and bowl depth input. To create the neck and
handle, two vertices are created at the upper edge of the spoon bowl, with the
distance between the two vertices being the neck width. The two vertices are then
connected with an edge and extruded three times to create the neck, the handle
and the end of the handle. The position of the three components are adjusted
by the corresponding input attributes. Last, the Solidify-Modifier will be used to
generate geometry to add thickness to the geometry, and the Bevel-Modifier will

34

3. Synthetic Dataset Generation

be used to smoothen the edges of the object by generating additional edges.

A Perssgifztive B
_
c D Pers-lg—aoepctive
7 C):‘
E Perssgifztive F
p— "
G Pers-ly—aoepctive H
~—
G: 7
:) —

Figure 3.13 Generating Process of the Spoon Object

35

3.2. Dining Room

3.2.5 Glass

The different components of a glass are called base, rim and bowl [26]. To generate
a variety of drinking glasses, the following attributes, which are visualized in fig-
ure 3.14, are implemented to customize glasses: height, thickness, base diameter,
base curvature, mid curvature height, mid curvature diameter, rim curvature, rim

diameter and bowl curvature. For the material, glass is implemented.

Side Perspective

Rim Diameter

Thickness +

Rim Curvature
>

Mid Curvature

Diameter
N / Height
S &
. Q@ s
Mid Curvature (.?
Height
Base
Thickness +
Curvature

Base Diameter

Figure 3.14 Glass Attributes

Glass Generator

The glass generating process, which can be seen in figure 3.15, starts by creating a
circle with the base diameter. In the next step, the edges are extruded toward the
center and merged to close the circle and form the base. Afterward, the outer edges
are selected and extruded upward three times for the base thickness, mid curvature
height and general height of the glass. For the glass thickness, the upper edges

are extruded with the desired thickness toward the center. To create the glass

36

3. Synthetic Dataset Generation

bowl, the upper edges are extruded downward four times, considering the different
diameters of the base, mid curvature and rim, to ensure the glass thickness and
to add the bowl curvature. Last, the hole in the glass bowl is closed by extruding
the edges toward the center and merging them at the center, as in the generating

step, which can be seen figure 3.15b.

Isometric

A Perspective B
Side
c Perspective D
|
E F

Figure 3.15 Generating Process of the Glass Object

3.2.6 Table

A table consists of the table top, table legs and the apron [24], which is the
supporting structure under the table top. To adjust the different parts of a table,

the following attributes, which can be seen in figure 3.16, are implemented for

37

3.2. Dining Room

the table generating process: height, width, depth, round/rectangle table top,
round /rectangle apron, table top thickness, table top curvature, apron thickness,
apron size reduction, leg width, leg thickness and leg angle. In this thesis, the table
size was limited to a table for four people, the shape of the table was limited to a
rectangle or a circle, and the shape of the table legs are also limited to a rectangle.
The material of the table top can be wood, wood planks, marble, veined marble,
plastic or ceramic. The material of the table legs and the apron can be metal
or wood. In addition, the colors of the material are randomized by random RGB
values or different color palettes. The materials and color palettes will be explained

in detail in section 3.3.

Side Perspective
Width
Top
Apron l ' Thickness
Thickness
Height
Leg Angle Leg Width
Top Perspective
Apron Size
Reduction
Depth
Thickness
Top Curvature

Figure 3.16 Table Attributes

38

3. Synthetic Dataset Generation

Table Generator

Figure 3.17 shows the generating process of a table object. First, the table top
will be created by generating a rectangle or circle, which will then be extruded
vertically to create the thickness. Next, the surface area that does not protrude
over the edges of the table top will be calculated to determine the maximum size of
the apron (see figure 3.17c). A second rectangle or circle with the maximum apron
size will be created and vertically extruded to create the table apron. Like the table
top, the shape of the apron can be a rectangle or a circle (see figure 3.17e). The
maximum size of the apron is reduced so that the table legs can be generated at
the corners of the apron without protruding over the edges of the table top. Last,
the bottom faces of the table legs are selected and moved away from the center
to angle the table legs. The maximum angle of the table legs is reached when
the bottom faces reach the edge of the table top. After the generating process, a

Bevel-Modifier is used for smooth edges.

39

3.2. Dining Room

Isometric
Perspective

c Top D Side
Perspective Perspective
c—)
[]
Top
E Perspective F
Side
G Perspective H
C_) C_)

Figure 3.17 Generating Process of the Table Object

3.2.7 Chair

In this thesis, the chair object is limited to slat and ladder back chairs. These

types of chairs consist of a top rail, back posts, cross rails, slats, a seat, a seat rail

40

3. Synthetic Dataset Generation

and chair legs [57]. In addition, the shape of the seat and seat rail is limited to a
rectangle and a circle. The shape of back posts, cross rails, slats and chair legs is
also limited to a rectangle. To customize the different components of the chair ob-
ject, the following attributes, which are visualized in figure 3.18, are implemented:
height, width, depth, curved/straight back post, back post angle, back post width,
back post thickness, top rail height, top rail thickness, amount of cross rails, cross
rail height, cross rail thickness, amount of slats, slat width, slat thickness, rect-
angle/round seat, seat height, seat thickness, seat curvature, rectangle/round seat
rail, seat rail reduction, seat rail thickness, leg width, leg thickness and leg angle.
A visualization of the different attributes can be seen in figure 3.18. The material
of the seat can be wood, wood planks and plastic. The material of the top rail,
cross rails, back posts, slats, seat rail and legs is wood, which has different color

palettes to randomize the material color.

41

3.2.

Dining Room

Front Perspective

Top Perspective

Amount of
Cross Rails Bavi}?d?r?m
Slat Width Back Post
Top_Ra\I s I ThicknessI
Height T Seat Rail
H & H Reduction
Height Seat i
Height Seat Rail
r Thickness c -,
urvature
LegAngle Leg Width
Width
Side Perspective
Top Rail o
Thickness Thid‘(’ness
Cross Rail Back Post
Thickness Angle

Amount of
Cross Rails

Leg Thickness

Thickness

Seat
Height

Figure 3.18 Chair Attributes

Chair Generator

The seat, the seat rail and the chair legs are created using the same approach as
for the table object (see section 3.2.6). The corresponding attributes are adjusted
so that the chair components are true to scale. To create the chair object, the top

rail, back posts, cross rails and slats were added, which is visualized in figure 3.19.

42

3. Synthetic Dataset Generation

First, the back posts with the desired length, width and thickness are generated
on the corners of the upper face of the seat, such that they do not protrude over
the edge of the seat. The upper faces of the back posts are selected and moved
horizontally to angle the back posts. Next, vertices on the upper part of the
back posts are copied to create the top rail that has the same shape as the back
posts, because the back posts can also be curved and different shapes can result
in intersecting geometry. By extruding the copied vertices, the top rail is created
with the desired height and thickness. The same approach is used to create the
cross rails. For the positions of the cross rails, vertical edges of the back post from
the seat to the lower edge of the top rail are copied and realigned for even space
between the cross rails. Back post vertices at the cross rail position and vertical
adjacent vertices are copied and extruded to create cross rails with the desired
height and thickness. To create the slats, a line with evenly spaced vertices is
generated that has the same length as the distance between the inner edges of the
back posts. To create the slats, the vertical edge, where the vertices are used to
position the cross rails, is copied and extruded to the desired width and thickness.

Last, a Bevel-Modifier is used to smooth the edges of the chair object.

43

3.2. Dining Room

Side Top
Perspective Perspective

Side Front + Side
Perspective Perspective

Figure 3.19 Generating Process of the Chair Object

3.2.8 Room

For the background of the generated images, a dining room was implemented. It

consist of a floor, baseboard, windows and a ceiling. In addition, the dining room

44

3. Synthetic Dataset Generation

object is used to randomize the position of the table, the lighting of the scene and
the camera position. The lighting distribution and camera placement will be ex-
plained in detail in section 3.2.10 and section 3.2.11. The size of the room area was
limited to forty square meters, which is a recommended size from multiple sources
[32, 88, 39]. The room can be customized with the following attributes: room
area, dining room circulation space, wall height, wall thickness, baseboard height,
baseboard width, amount of windows, vertical window position, window height,
window width, window frame thickness, window frame depth, window depth, win-
dow thickness and glass thickness. The different attributes are visualized in fig-
ure 3.20. The material of the floor can be carpet, wood planks, checkered marble,
rectangular stone tiles, square stone tiles or marble tiles. For the wall material,
brick, plaster and concrete is implemented. The material of the baseboard and

window frames is plastic. Glass material was used for the window glass.

45

3.2. Dining Room

Front Perspective

Amount of
Windows

Window
Thickness

Window

Height
Wall Height Window
l-| Frame
Thickness
Window Width Vertical Window
Position
IBaseboard
Height
Top Perspective
Window -
Frame Depth | ,.-l Wall
L] Thickness
¢Baseboard
Glass Thickness Width
Window
Depth

Figure 3.20 Room Attributes

Room Generator

For randomized room layouts, the room construction function [64] of the Python
package Blenderproc2 [20], which offers a procedural Blender pipeline for photo-
realistic rendering, is implemented. The function creates a room floor layout with
the desired area size, the number of extrusions and floor sections. First, a squared
floor is created with sixty to eighty percent of the desired area size. Next, the
generated area is randomly cut by the number of floor sections. Last, the outer
edges are randomly selected and extruded. This step is repeated according to the

number of extrusions. The extrusions make up the remaining forty to twenty per-

46

3. Synthetic Dataset Generation

cent of the desired area size. The described steps and the remaining generating
process of the dining room object are visualized in figure 3.21. Next, the walls are
created by extruding the outer edges of the floor upward. To create the rectangular
baseboard, the outer edges of the floor are copied and extruded. For the windows,
holes in the wall are created by removing geometry of the wall that intersects with

the bounding box of the windows.

Top
A Perspective B
c D Isometrl_c
Perspective
E F

Figure 3.21 Generating Process of the Room Object

The windows are created by generating a cube and removing the back and the
front face. The edges are then extruded toward the center of the selected edges
to create the window frame. For the window, the edges of the window frame are

extruded forward to create thickness. The window edges are then extruded toward

47

3.2. Dining Room

the center of the edges and then moved backward to create the window inset. In
the last step, the window glass is created by using the edges of the window to

create a face.

A Isometr!c B
Perspective

Figure 3.22 Generating Process of the Window Object

3.2.9 Table Distribution

To distribute tableware on the table top, randomly distributed points, which are
used to position the tableware, are generated on the table top surface with a
minimum distance to each other that corresponds to the maximum radius of all

tableware objects. The tableware objects are then generated with random rotation.

To distribute and position the chairs, four points are generated on each side of
the table. The distance between the points and the table is random. Like the
tableware, the chairs are generated with random rotation, but is limited so that
the chair backrests will not intersect with the table. A possible distribution of

tableware and chairs can be seen in figure 3.23.

48

3. Synthetic Dataset Generation

©

d

‘o

o, []]
\Aa%d/

BN
© o

Figure 3.23 Tableware and Chair Distribution

3.2.10 Lighting

The lighting of the scene is separated into outdoor and indoor lighting. For out-
door lighting, a node graph (see figure 3.24) is implemented that utilize the Sky
Texture-Node, which creates a procedural HDRI that can simulate the sky. The
Sky Texture-Node can simulate the sun and change attributes such as size, inten-
sity, elevation and rotation to simulate the day and night cycle. In addition, the
density of air, dust, water droplets and ozone can be adjusted to simulate different
atmosphere conditions such as clear atmosphere, high pollution, haze or city-like

atmosphere.

For randomized outdoor lighting, every input of the Sky Texture-Node is random-
ized for each image except the sun size and altitude. To affect the dining scene,
windows were generated with randomized measurements and placed randomly on
the walls.

49

3.2. Dining Room

v Sky Texture v Background v World Output

Color .\ Background @ All

Nishita v ® Color ® Surface
¥ Sun Disc ® Strength 1.000 ® Volume

Sun Size A
Sun Intensity 310.000

Sun Elevation 19°

Sun Rotation
Altitude

Air

Dust

Ozone

Figure 3.24 Procedural HDRI Node Graph

For indoor lighting, the volume of the room is used to randomly distribute light ob-
jects to imitate lamps and ceiling lights. An example of the light object distribution
can be seen in figure 3.25. The bounding box of the table and an area around the
table called dining room circulation space [22], which is the recommended walk-
ing space around the table, are removed from the volume of the room to avoid
lights intersecting the dining room objects. In addition, the recommended height
of lights above the dining table was taken into consideration for the distribution
of lights.

The amount of light objects is calculated considering the recommended lumen per
square meter [7], the square meter of the floor area and the light bulb strength
[50]. The following formula was used to determine the amount of recommended
light bulbs:

Floor Area [m?] * Recommended Lumen per m?

A t of Light Bulbs =
mount ol Lig wibs Light Bulb Strength [Lumen per m?]

Last, the light bulb temperature, which ranges from cold to warm lighting, was
chosen at random and corresponds to the recommended range of light bulb tem-
perature for dining rooms [28]. The light bulb temperature can be adjusted in

Kelvin and was implemented as node graph.

50

3. Synthetic Dataset Generation

r o

R .

o! R
gl ¥

Figure 3.25 Indoor Lighting Distribution

3.2.11 Camera

For camera placement, an area around the table called dining room circulation
space [22], which is the recommended walking space around the table, was imple-
mented to generate points that are used for possible positions for the camera. One
of the points is randomly selected and used to place the camera in the dining room.
The height of the camera is chosen randomly and the height range corresponds to
the heights of cameras in robots. To align the camera, the surface of the table top
is used to create points, one of which is randomly selected for the camera to focus

on. An example of the camera placement is illustrated in figure 3.26.

o1

3.2. Dining Room

Wall —

Baseboard

Dining Table

Bounding Box ©

Dining Room
Circulation Space

Figure 3.26 Example of Camera Placement

Camera settings such as focal length, camera sensor size, depth of field, exposure
and aspect ratio can also be adjusted. The focal length is chosen randomly and
ranges from 35mm to 85mm, which matches the focal length of standard camera
lenses [25]. The camera sensor size was kept at 36mm, which is the size of full frame
sensors and is the most common sensor implemented in consumer model cameras
[13]. An aperture of f/4 was selected for the depth of field, which is recommended
for indoor photography [82]. For the images, an aspect ratio of 4:3 was chosen,
which is common for cameras implemented in robots. For exposure, the Blender

add-on named Photographer 5 [60] was used to automatically adjust the camera

92

3. Synthetic Dataset Generation

exposure to the current lighting of the scene. For the automatic adjustment [61],
the addon calculates the exposure based on the average brightness in the scene by
analyzing the viewport render, which is a low-resolution render for previewing the
scene. Last for realism, the Photographer 5 add-on was used to add film grain to

the images.

3.3 Dining Room Materials

All the materials for the dining room are generated procedurally with Shader
Nodes and the associated node graphs are created using the approach described in
section 3.1.3. It allows the adjustment of the materials such as color, roughness,
rotation, scale, surface imperfections, or tile size for materials such as brick or
stone tile. Procedurally generated materials also do not require UV maps for the
correct projection of material on objects. However, the different characteristics of
the materials were empirically created except the IOR values, which correspond
to reference values [53, 41, 42] that are found online. For variability, the rotation
of the material is randomized. The colors of the materials are also randomly
selected. The color of materials, that require one color, are chosen by randomized
RGB values. For materials that require multiple colors, color palettes are created
that are based on image references that are found online by searching the material

name with Google Images.

3.3.1 Tableware Materials

Ceramic

The ceramic material [8] is used for the plates and table tops. The ceramic material
can be seen on the left in figure 3.27. The applied IOR value corresponds to a
reference value [53]. For the table tops, the color of the ceramic was changed
by randomly selecting RGB values. The color of the plates did not change and

remained white during data creation.

93

3.3. Dining Room Materials

Glass

The glass material [4, 59] was implemented for the drinking and window glass. To
create the glass material, Blender implemented a shader node named Glass BSDF.
In addition, the node Volume Absorption, which absorbs light that passes through
the volume and is recommended for colored glass or water [85], was used to create
the material. The color of the glass, which is white, did not change in the creation

of the data. The glass material can be seen on the left of figure 3.27.

Stainless Steel

The stainless steel material [74] is used for forks, spoons, and knives. The stainless
steel material can be seen in the middle of figure 3.27. For fidelity, texture as
in brush metal was generated. In addition, small scratches are added as surface
imperfections. The color of the tableware did not change and remained gray during

data creation.

Figure 3.27 The Ceramic, Glass and Stainless Steel Material

3.3.2 Furniture and Floor Materials

Wood and Wood Planks

To create wood material [48], details such as wood grain and wood knots are
implemented. In addition, four different types of scratches were added for surface

imperfections. Three colors are required for the material, for the base color, the

o4

3. Synthetic Dataset Generation

wood grain and the scratches. For the data creation, eight different color palettes,
that are randomly chosen for each image and object, were added. In addition,
the rotation was randomized for each object. The wood material is used for all

components of the table and chair object.

The wood plank material [71], which is used for the table top, chair seat and
floor, was created using the same approach as the wood material, with the addi-
tion of plank texture that can be adjusted in width and length. Like the wood
material, the rotation and color of the wood plank material is randomized in the
data creation. The same color palettes are used for this material as for the wood

material.

Both wood materials with all color variations can be seen in figure 3.28.

Figure 3.28 The Wood and Wood Plank Material

95

3.3. Dining Room Materials

Marble, Veined Marble and Marble Tile

Three different types of marble material, which differ in their marbling pattern,
was implemented for this thesis. The marble and veined marble material is used

for the table top. The marble tile material is used for the floor.

The marble material [72] requires two colors, for the base color and the marbling.
For surface imperfections, the marbling pattern was used. For variety, four different
color palettes were added for this material. The marble material can be seen in
figure 3.29.

Figure 3.29 The Marble Material

The veined marble material [68] requires three colors for two base colors and the
marbling. The veins can be adjusted by the scale, amount of distortion, visibility
and detail. For this material, six color palettes were added. The veined marble
material with the six color variations can be seen on the the top and middle row
in figure 3.30.

The marble tile material uses the veined marble material as a base and implements
a tile texture. In addition, the rotation of the material is randomized for the data
creation, but the same color palettes are used as for the veined marble material.
The marble tile material with one color variation can be seen on the bottom row
in figure 3.30.

o6

3. Synthetic Dataset Generation

Figure 3.30 The Veined Marble and Marble Tile Material

Plastic

The plastic material [77], which can be seen in figure 3.31, is implemented for table
top, chair seat, window, window frame and baseboards. For details, four different
types of scratches are added as surface imperfections. The color of the material is
randomly selected from RGB values in the data creation. In addition, the rotation

of the material is randomized.

o7

3.3. Dining Room Materials

Figure 3.31 The Plastic Material

Metal

The metal material [76] is used for the table apron and table legs, and requires two
colors for two base colors. In addition, randomly generated surface imperfections

are implemented. For variety, three color palettes were added that can be seen in

figure 3.32.

Figure 3.32 The Metal Material

Stone Tile

The stone tile material [79], used for the floor, requires three colors for two base

colors and one for details. The tiles can be customized by scale, length and width.

o8

3. Synthetic Dataset Generation

The material was implemented twice. Once with square tiles and once with rect-
angular tiles. For details, the bricks have an uneven surface generated by random.
For data creation, six color palettes were added and the rotation of the material

is randomized. The material with the color variations can be seen in figure 3.33.

Figure 3.33 The Stone Tile Material

Checkered Marble

The checkered marble material [70] alternates between black and white marble
tiles, so four colors are required for the two base colors and the two marbling
patterns. For variety in the data creation, six color palettes were added and the
rotation of the material is randomized. In addition, the tile scale, tile rotation,
marble scale and marble distortion can be adjusted. The material was implemented

for the floor and can be seen in figure 3.34.

99

3.3. Dining Room Materials

Figure 3.34 The Checkered Tile Material

Carpet

The carpet material [44], which was implemented for the floor, requires three colors
for the base color, color variation in the carpet and dirt. In addition, the dirt can
be adjusted by scale and amount. For variety, eight color palettes were added and
the rotation of the material is randomized. The material and the color variations

can be seen in figure 3.35.

60

3. Synthetic Dataset Generation

Figure 3.35 The Carpet Material

3.3.3 Wall Materials

Concrete

For the concrete material [78], multiple small imperfections were implemented,
such as small bumps, holes, and pebble. The imperfections can be adjusted by
intensity and scale. The material requires two colors for two base colors, but the
colors were not changed for the data creation and remained two shades of gray.

The concrete material can be seen on the left in figure 3.36.

Plaster

The plaster material [75] requires one color for the base color, which is randomly se-
lected by RGB values in the data creation. For details, small bumps were added as

surface imperfections. The plaster material can be seen on the right in figure 3.36.

61

3.3. Dining Room Materials

Figure 3.36 The Concrete and Plaster Material

Brick

The brick material [69] was created with the Brick Texture-node. The bricks can
be customized by scale, width and length. For details, erosion and bumps are
added as surface imperfections that can be adjusted by scale and intensity. The
material requires four colors for two different bricks, dirt and erosion. Six color

palettes were added for variety and can be seen in figure 3.37.

62

3. Synthetic Dataset Generation

Figure 3.37 The Brick Material

3.4 Food Soil

To implement the soil, the defining characteristics of the soil must be identified.
For reference, images of soiled plates were analyzed from the dataset “Cleaned
vs Dirty V2 Dataset” [18], online image databases such as Shutterstock, Flickr,
Unsplash, iStock, and image results from Google Images. For Google Images and
the image databases, the following search terms were used to find soiled tableware
images: dirty dish/es, dirty plate/s, dirty tableware, dirty cup/s, dirty cutlery,
dirty flatware, food smear/s, food stain/s, food crumbs, food spot/s. Only real
high-resolution images, in which soil or soiled tableware is visible and not blurred,
were selected as a reference. Examples of the chosen references can be seen in
figure 3.38.

63

3.4. Food Soil

Figure 3.38 Examples of Food Soil

3.4.1 Soil Definition

Based on references (see figure 3.38), this thesis focuses on two aspects of soiled
dishes, namely the type of food residue and soil patterns based on the charac-
teristics of food and the way people consume food. The reference images include
sauces, food residues, crumbs from baked foods and oil or fat from fried foods.
Sauces are also divided into low-viscosity and high-viscosity sauces. Low-viscosity
sauces behave more like water, for example, soy sauce, and high-viscosity sauces
behave more like honey, for example ketchup. The different types of food pro-
duce different soil patterns on the plates. Low-viscosity sauces accumulate and
form splatters or droplets. High-viscosity sauces do not accumulate and can form

smudges, smears or streaks if the sauce is picked up with flatware during the meal.

64

3. Synthetic Dataset Generation

Eating baked foods such as bread or cakes produces crumbs, which can also be
considered a soil pattern. Food prepared by frying tends to be greasy and results
in splatters of oil on the plate. The oil can increase the complexity of tableware
detection in terms of reflection. In this thesis, food residues are not considered as

they depend on the food and are therefore too broad to be implemented.

3.4.2 Implementation

Splatters, droplets, smears and smudges of low- and high-viscosity sauces and oil
spots are implemented with Shader Nodes. Crumbs are generated and distributed
with Geometry Nodes. A procedurally generated pastry material [67] is imple-
mented for the crumb material. Two examples of the soil tableware material can

be seen in figure 3.39.

For the different sauces and oil splatters, a combined material [43, 62, 73] was im-
plemented that uses the ceramic material as the base material and adds randomly
generated soil. The combined material implements two different node graphs for
low- and high-viscosity sauces. Oil spots are added for both types of sauces and
are generated on unoccupied surfaces. Both sauce types can be adjusted by the
material scale, sauce scale, droplet scale, oil scale, sauce coverage, oil coverage and
color. For data creation, a random variable is implemented that randomizes the
inputs for both sauce types and also randomizes which sauce type will be gener-
ated. In addition, the colors of both types of sauce are chosen by randomized RGB

values.

For the crumbs, cubes are generated as base geometry. For the variety in crumb
shapes, the geometries of the cubes are changed by randomizing the position of the
vertices. The amount of different crumb shapes can be adjusted by the input. The
minimum and maximum size of the crumbs can also be adjusted. To distribute
and position the crumbs, randomly placed points are created on the top of the
plate. In addition, a mask is implemented that defines random areas on the plate,
where the crumbs are to be generated, in order to make the crumb placement more

varied and to avoid crumbs being generated on the entire surface. The density of

65

3.5. Dataset Generation Pipeline

the crumbs and the mask shape can be adjusted.

Figure 3.39 The Soiled Tableware Material

3.5 Dataset Generation Pipeline

In the following, the Blender settings, the hardware, the data generation process

and the computational cost of the data generation are presented.

3.5.1 Blender Settings

The scene was rendered in the engine named Cycles and uses the OptiX option
in the settings, which activates GPU and CPU usage. For color management, the

display device setting was set to sRGB and the view transform setting was set to
AgX.

Each image was rendered with a maximum number of 512 samples and a noise
threshold of 0.0001. When rendering images, visual artifacts can occur in the
image, which are referred to as noise. To remove noise, the lighting of the scene
or the maximum number of samples for rendering can be increased, or the feature

named denoiser, which utilizes Al to remove noise, can be used. For this thesis,

66

3. Synthetic Dataset Generation

the denoiser and the option that the denoiser utilizes the GPU for calculations
were activated with the settings: OpenlmageDenoise for the denoiser, Albedo and
Normal for the passes, Accurate for the prefilter and High for the quality. In the
settings for the light paths, all maximum bounces that influence the light behavior
were set to 32. The clamping options were set to 0.0 for direct light and 10.0 for
indirect light.

For a second denoising in the compositor, the Denoising Data-Option, which is
found in the view layer properties under passes, was activated in the scene for the
image. To save the ground truth, the Material Index-Option, which is also found
in the view layer properties under passes, must be activated in the scene for the

ground truth.

3.5.2 Data Generation Process

To execute and automate the data generation pipeline, a Python script is imple-
mented. In addition, the script contains a custom user interface for Blender that

allows users to use the functions that are executed in the data generation pipeline.

Before starting the pipeline, the shading mode of the 3D viewport, which is used
to interact with the 3D scene, must be set to Rendered. The mode renders the
3D viewport to provide a low-resolution preview of the final result. Enabling the
Rendered-shading mode is a requirement for the automatic adjustment of exposure
of the Blender add-on Photographer 5.

The data generation process starts by randomizing the scene settings, the objects
and their materials, presented in section 3.2 and section 3.3, with the corresponding
value ranges of the individual features and inputs. The process is then paused
for twenty seconds, so that the low-resolution preview of the final image can be
rendered for the automatic exposure adjustment. The preview was rendered with
a maximum number of fifty samples and a noise threshold of 0.1. In addition,
the denoiser activates after twenty samples. After the twenty seconds time limit,
the rendering of the image of the dining room is started. If the rendering of the

image is finished, the corresponding ground truth is rendered with five samples.

67

3.5. Dataset Generation Pipeline

Afterward, the image and the ground truth are named with a random seed number
and saved under a specific path using the compositor (see section 3.1.4). Last, all
values of the randomized attributes and random seed values of the dining room

scene are saved as an entry in a CSV-file.

3.5.3 Computational Cost of the Dataset Creation

An NVIDIA GeForce RTX 2060 GPU and an AMD Ryzen 7 2700X eight-core

processor CPU were used to render the images.

For this thesis, 2201 images with clean tableware were generated. The median
rendering time was approximately four minutes and 38 seconds. It took about 198

hours and 18 minutes to render all the images with clean tableware.

2201 images with soiled tableware were generated and the median rendering time
was approximately five minutes and 33 seconds. The total rendering time for all

images with soiled tableware were 225 hours and 50 minutes.

The ground truth for the images with clean and soiled tableware took about 10

seconds to generate.

68

4. Tableware Datasets

For the training of the artificial neural network (ANN), two datasets that contains
images of clean and soiled tableware were created. The two datasets are presented

in the following chapter to provide an insight into them.

For the clean tableware dataset, 2201 images with clean tableware were created
with the corresponding ground truth images, which are binary masks of the plate
objects. For the soiled tableware dataset, 2201 images with soiled tableware were
created with the corresponding ground truth images, which are also binary masks
of the plate objects, but the soil is included in ground truth labels. For both
datasets, images were rendered with the aspect ratio of 4:3 and the image size of
1920 x 1440. Examples of the images of the clean and soiled tableware datasets

can be seen in figure 4.1.

69

Figure 4.1 Examples of the Generated Tableware Images

To visualize the variety in the image data of both datasets, the principled compo-
nents analysis (PCA) was performed on the continuous attributes of the objects
of the dining room scene for each dataset. The analysis did not consider eighteen
discrete object attributes and included 135 continuous object attributes to create
two principal components. The PCAs for the clean and soiled tableware datasets

are visualized in figure 4.2.

70

4. Tableware Datasets

PCA of the Clean Tableware Dataset

PCA of the Soiled Tableware Dataset

© Samples (5} Samples
1.0 - W= Principle Component 1 ' Principle Component 1
s Principle Component 2 %QQ 1.0 o mem Principle Component 2
a2l @
0.5
0.5 1
0.0
0.0 1 L 4
_05 4
—-0.5
-1.04 °u)
e -1.0 1
-1.0 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 15

Figure 4.2 PCA of Cleaned and Soiled Dataset

Heatmaps were created to visualize the pixel distribution of ground truth labels in

both datasets by combining all ground truth images into one image. The heatmaps

for both datasets can be seen in figure 4.3.

1.0
Heatmap of the Clean Tableware Dataset

0.0

Figure 4.3 Heatmaps

Percentage of Occurence

Heatmap of the Soiled Tableware Dataset

of the Ground Truth Images

1.0

0.0

Percentage of Occurence

71

5. Convolutional Neural Network

A convolutional neural network (CNN) model was implemented to be trained on
the clean and soiled tableware dataset to analyze the effects of soiled-based occlu-
sion on tableware detection models. In the following chapter, the architecture of

the model, the training of the model and the results of the training are presented.

5.1 Architecture

The CNN, implemented for this thesis, is based on the encoder-decoder archi-
tecture. The encoder reduces the amount of input data, in this case the image
resolution, and extracts semantic information that is used to solve the given prob-
lem, which is dependent on the input data. In the case of this thesis, the encoder
could extract characteristics of a plate such as material, color or shape to identify
and detect plates in the images. The output of the pixel-wise detection of plates
are low-resolution heatmaps. The decoder utilizes the extracted semantic infor-
mation of the encoder and reconstructs the heatmaps in the original size of the

input data.

Due to the complexity of image data, transfer learning is used to provide the imple-
mented model with a general understanding of images by using the MobileNetV2
model, that is pre-trained on ImageNet, as backbone for the encoder. The last
three layers of the MobileNetV2 model have been removed and replaced by a head
that uses the sigmoid activation function in the output layer, since in this thesis the

detection of plates in images is a pixel-wise binary classification task. The encoder

73

5.1. Architecture

outputs whether a pixel is part of a plate or not. The decoder was designed to
output the heatmap in the original image resolution of the input. In addition, the
architecture implements shortcut connections between the encoder and decoder.
The shortcut connections, which can be seen in figure 5.1 as red arrows, provide
the image data in the different image resolutions from the encoder to the decoder
to improve the reconstruction of the heatmap in higher resolutions without adding
parameters or computational complexity. The complete architecture is visualized

in figure 5.1.

74

5. Convolutional Neural Network

Encoder Head

Batch Normalization
[3x3Conv,1 |
[1xi1-Conv,5 |
[BN+RelUs |

3x3-DW-Conv, 30
[BN+RelUs |
[1xi1-Cony, 30]
[BN+RelUs |
[1x1-Conv,5 |

Pool-IRes-Block

Batch Normalization

[ixi-Convc |

Stride Pooling
Stride-Pooling
3x3-DW-Conv, 15
[BN+RelUs |
[1xi-Conv,ite]

Encoder

Backbone

Head

Encoder

Decoder Head, 5

IRes-Block, 320

IRes-Block

2x

A,

%

Upsampling

_/Pool-IRes-Block, 160

IRes-Block, 96
%
IRes-Block E
» Upsampling
Pool-IRes-Block, 64 %
Y A | custom Block, 16 |
) IRes-Block |& v
» Upsampling
%, /Pool-IRes-Block, 32 » W
» * Custom Block, 8 ﬁ
IRes-Block | v .,
» Upsampling

Pool-IRes-Block, 24

1*1-Conv.+BN, 16

Y

[3*3-DW.+BN+ReLU, 32 |

* Custom Block, 6 7

Stride Pooling Upsampling
A |
[a2
w*w.Oo:<.+mZ+»m_.C. wm_ * Custom Block, 8 *
Input Image 3*3 Conv.+BN+Sigmoid
(1920x1440)

Decoder

[ixiConv.c |
[BN+RelUs |
[1x1-Conv, 15 |
| BN+RelUs |

3x3-DW-Conv, 15
BN + ReLU6
[1x1-Conv,c]

.1 The CNN Architecture

5

Figure

75

5.1. Architecture

In the design process of the encoder head and decoder, the rule of thumb named
“One in Ten Rule” [34, 58] was taken into consideration. The rule can be used to
estimate the number of parameters a model should have based on the training data
to reduce the likelihood of overfitting. It states that there should be ten examples

of each output for each model parameter.

In case of the tableware detection task, the number of pixels that are labeled as
tableware in the ground truth images must be taken into consideration. Pixels that
are not labeled as tableware can be omitted, as more pixels are used to display
the background of the scene than the tableware. The image resolution must also
be considered in the calculation, as a lower resolution of the image reduces the
number of pixels and therefore reduces the number of pixels that are labeled as
tableware in the ground truth images. The encoder reduces the image resolution
five times because of the five stride pooling layers. The number of pixels is reduced
by a factor of four for each pooling layer. The maximum number of parameters
are calculated with the clean and soiled tableware datasets, which can be seen in
figure 5.2. The calculation shows that the number of parameters of the encoder
head and the decoder are below the recommended maximum number of parameters

for each image resolution.

76

5. Convolutional Neural Network

Parametersgueoder Head = 2418
32780

Parameters pecoder

Amount_of Ground Truth Pirels .
10#[d« Resolution_Level)

3.974.445.591
10k { 4%}

397.444.859

Mazximum_Parameters e, =

lle

Mazimum_ Parameters oo

2nd_Resolution_Level g = T = 99.361.215
3rd_Resolution_Level jeqn Mozimum Parametersou =~ 24,840,304
4th_Resolution_Level y.un Mﬂn"mm—‘:mmﬂmsdm =~ 6.210.076
5th_Resolution Level oy = -2 “””“”m—i:é amelersdem =~]1.552.519

Amount_of Ground Truth_ Fizels g .q

Mazximum_Parameters qied

10

_ L.063.785.005

= 10

= 106.378.501
2nd_Resolution_Level g = Slermumtarancersees ~ 26 .504.625
3rd Resolution Leﬂelsgﬂed — Mrui:rrmm_f:uﬁrﬂfm:temm—g,,,i ~ 6.648.656
4th_Resolution_Level peq = —lotimum P&‘"“‘"‘f‘*""*"'ﬁ“"“ =~ 1.662.164
5th_Resolution_Level yeg = ~losimum I;%“““’tmﬂ =~ 415.541

Figure 5.2 Maximum Model Parameters Calculation

5.2 Training Setup

The CNN was trained twice, once with images of clean tableware and once with

the images of clean and soiled tableware. The model was trained on Google Collab

77

5.3. 'Training Results

and an NVIDIA Tesla T4 GPU was used.

For the first training of the model, all 2201 generated images of the clean tableware
dataset were used. In the second training of the model, the clean and soiled
tableware dataset were combined and 2201 images were randomly selected. The
mixed dataset contained 1107 images with clean tableware and 1094 images with
soiled tableware. The datasets for both trainings were divided into 80% for the
training set, 10% for validation set and 10% for the test set. Before the training
of the model, the images were scaled, so that the pixel values of the images range
from minus one to one, because this is a prerequisite for using the MobileNetV2

architecture.

The model was trained in four steps with each tableware dataset. First, the encoder
head was trained. In the second step, the encoder head and the backbone will be
trained together. The encoder was trained with ground truth images that were
downscaled to fit the output size. It outputs heatmaps with 1/32 of the image
resolution of the original ground truth image resolution. Next, the decoder will be
trained on the images with the original image resolution. After the training of the
decoder is finished, the backbone, the encoder head and the decoder will be trained
together. In every step, the model was trained with fifty epochs. The metrics
precision, recall and Intersection over Union (IoU) was used for the evaluation.
The Adam algorithm was chosen as optimizer and the Binary Cross Entropy was

used as the loss, because the task is a binary classification problem.

5.3 Training Results

In the following the loss and metrics of the model is presented after training the
model with all layers and with the clean and soiled tableware dataset. The model
that were trained on the clean tableware dataset will be called “clean model” and
the model that were trained on the soiled tableware dataset will be called “soiled

model”. All loss and metric values are rounded to the third decimal place.

78

5. Convolutional Neural Network

5.3.1 Loss

The Binary Cross Entropy Loss was used in the training of the CNN. In figure 5.3,
the loss curve of the model can be seen. The left graph shows the loss curve after
training the model on the clean tableware dataset and the right graph shows the

loss curve after training the model on the soiled tableware dataset.

After training the model with fifty epochs on both datasets, the “clean” model
achieved a training loss of 0.017 and a validation loss of 0.067. The lowest training
loss was achieved in the 43rd epoch with a value of 0.004 and a validation loss of
0.174. In the 22nd epoch, the model achieved the lowest validation loss of 0.031

and a training loss of 0.005.

The “soiled” model achieved a training loss of 0.006 and a validation loss of 0.307
after fifty epochs. In the 49th epoch, the lowest training loss was achieved with
a value of 0.003 and a validation loss of 0.168. The lowest validation loss was
achieved in the 31st epoch with the value of around 0.307 and a loss of around
0.005.

Clean Model Loss Curve Soiled Model Loss Curve

0.35 1 train 12 —— train

validation validation

0.30 A
1.0 1
0.25 4
0.8
0.20

Recall
Recall
o
o

0.15 4

0.4
0.10 4

0.05 4 0.2

0.00

(I) 1‘0 2‘0 3‘0 4‘0 5‘0 0 10 20 30 40 50
Epoch Epoch

Figure 5.3 Loss Curves of the Model

5.3.2 Metrics

The figure 5.4 shows the Binary Insection-over-Union (IoU) metric curve of the

model after being trained on the clean and soiled tableware dataset. On the left

79

5.3. 'Training Results

of the figure is the IoU curve of the “clean” model and on the right of the figure is

the IoU curve of the “soiled” model.

The “clean” model achieved an IoU value of 0.691, which is the highest achieved
value, in the training and a validation IoU of 0.5 after being trained for fifty epochs.
The highest validation IoU value was achieved in the 22nd epoch with 0.7717 and
an IoU value of 0.6738 in the training.

After fifty epochs, the “soiled” model achieved an IoU value of 0.663 in training
and a validation IoU value of 0.271. The highest IoU value was achieved in the
49th epoch with 0.756 and a validation IoU value of 0.5. The highest validation
IoU value was achieved in the 31st epoch with 0.693 and a IoU value of 0.657 in

training.

Clean Model Binary loU Curve Soiled Model Binary loU Curve

—— train —— train

—— validation —— validation
0.7 4

0.7 1

o
o
L

0.6

Binary loU
Binary loU
o
w

=]
o
L

0.4
0.3 1

0.31

0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch

Figure 5.4 Binary IoU Curves of the Model

In figure 5.5, the precision curve of the “clean” model (left) and the “soiled” model

(right) was visualized.

After fifty epochs, the “clean” model achieved a precision value of 0.9949 in training
and a validation precision value of one. For the “clean” model, the highest precision
value in training was achieved in the 43rd epoch with 0.9952 and a validation
precision value of 0.999. The highest validation precision value of the “clean”

model was achieved in the third epoch with one and a training precision value of

0.984.

80

5. Convolutional Neural Network

In the final epoch, the “soiled” model achieved a precision value of 0.992 in training
and a validation precision value of one. In the 49th epoch, the highest precision
value was achieved with 0.995 in training and a validation precision value of one.
The highest validation value was achieved in the 38th epoch with one and a pre-

cision value of 0.987.

Clean Model Precision Curve Soiled Model Precision Curve
1 ! 104 o -
NIRRT\ YV VY \Y ||

0.8

Precision
o o o o =
o o o o o
N = = © 1)
Precision
o o
» [=)]

o
©
o

4
©
®

0.2 Il

o
®
o

—— train —— train |
validation 0.0 1 validation

o
®
=

0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch

Figure 5.5 Precision Curves of the Model

The figure 5.6 shows the recall curve of the “clean” model (left) and the “soiled”
model (right).

In the last epoch, the “clean” model achieved a recall value of 0.982, which is
the highest value, in training and a validation recall value of 0.406. The highest
validation recall value was achieved in the second epoch with 0.948 and a recall

value of 0.9795.

The “soiled” model achieved a recall value of 0.983 in training and a validation
recall value of 0.018 in the last epoch. The highest recall value was achieved in
the 49th epoch with 0.9886 and a validation recall value of 0.5223. For validation,
the highest recall value was achieved in the sixth epoch with 0.8934 and a recall

value of 0.9359 in training.

81

82

5.3. 'Training Results

Clean Model Recall Curve
1.0
. r\vf\v/\v/\ A
061 T
'
&
044
0.2 |
' —— train
—— validation
0 10 20 30 0 50
Epoch

Figure 5.6 Recall Curves of the Model

NATATS T P

0.4

i
ol [Y|

Recall
—
<
I
—
|
L]

—— train V \/ V
0.0 4 — validation

0

6. Evaluation

Considering the training results in section 5.3, the evaluation of the model will
be performed with the model weights after the 22nd epoch for the “clean” model
and the 31st epoch for the “soiled” model, because the model is overfitting after
the chosen epochs. In addition, the model with the weights of the chosen epoch
achieved the lowest validation values for the loss and the IoU metric. The decision
was made, because the evaluation will be performed on the test set of each dataset,
which means the model should be able to generalize as good as possible on new
data to analyze the effects of soiled-based occlusion in tableware detectors. In the
following chapter, the model will be evaluated on the test data and the results will
be presented. In addition, a qualitative analysis will be performed by analyzing

the segmented images of the test set.

6.1 Quantitative Analysis

For the quantitative analysis, the model performance was evaluated with the test
set of 221 images for both approaches. The results can be seen in table 6.1. It
shows the loss and the Binary IoU, Precision and Recall of the model for each
evaluation approach. First, the “clean” model is evaluated on images of clean
tableware. The results can be seen in the first row of the table. Next, the “clean”
model is evaluated on images of soiled tableware. The results can be seen in the

second row of the table.

The “soiled” model were evaluated twice on two different test sets to examine if

83

6.2. Qualitative Analysis

the performance of the “soiled” model is dependent on the test set. Each test set
contained a random mixture of 221 images of clean and soiled tableware. The

results can be seen in the third and fourth row of the table.

Evaluating the “clean” model on images with soiled tableware worsened the loss
and the values of the metrics. Evaluating the “soiled” model on two separate test
sets with images of clean and soiled tableware, did not change the loss or the values

of the metrics.

Evaluation Approach Loss Binary IoU | Precision | Recall

Clean Model +
0.066624 | 0.598130 0.999084 | 0.741356

Clean Test Images

Clean Model +
0.229499 | 0.456875 0.997014 | 0.298518

Soiled Test Images

Soiled Model +
0.171003 | 0.422707 0.999970 | 0.230109

Soiled Test Images

Soiled Model +
0.176132 | 0.449973 0.999878 | 0.261309

2nd Soiled Test Images

Table 6.1 Loss and Metric of Model Evaluation

6.2 Qualitative Analysis

For the qualitative analysis, the model predicted heatmaps for the images in the
test sets for each evaluation approach. In the following, observations of the gener-

ated heat maps of the model will be presented.

The “clean” model is able to detect clean tableware in the images of the test set. It

is able to detect plates and bowls, which can be seen in the upper row of figure 6.1.

84

6 . Evaluation

In addition, the model can detect plates that are partially visible near the border
of the image, which can be seen in the bottom row of figure 6.1. The “clean”
model tends to misclassify reflections, which can be seen in figure 6.2. Reflections
on the plate can cause the part of the plate to be misclassified as not being part
of a plate and reflections of the plate on background objects can cause the part of
the background object to be misclassified as plate. Furthermore, the model tends

to misclassify large plates or plates that are near the camera (see figure 6.3).

20

100

o
20
20
oo
20

o o
20 o
1200 1200
o 250 500 750 1000 1250 1500 w50 o 250 500 750 1000 250 1500 w50
20 o
o 1000
1200 100
o 250 500 0 1000 1250 1500 50 o 250 00 750 1000 125 1500 50

Figure 6.1 Clean Model: Detection of Clean Plates

85

6.2. Qualitative Analysis

Figure 6.3 Clean Model: Misclassification of Large Plates

The evaluation of the “clean” model with images of soiled tableware resulted in
the model not recognizing some plates in the images. Either all plates were not
detected in the image or some plates were not detected, while other plates were
detected in the same image. Some examples of the describ