
Accuracy Analysis of Camera-Inertial Sensor-Based Ball
Trajectory Prediction

Oliver Birbach

Diploma thesis at the Faculty 3: Mathematics and Computer Science,
University of Bremen

February 13, 2008

Supervisor: Dr. ing. Udo Frese
Second reviewer: Prof. Dr. rer. hum. biol. Kerstin Schill

Abstract

The RoboCup initiative formulated its long-term goal as winning against the most recent
champion of the World Cup in 2050 with a team of autonomous robotic soccer players.
At this point of time, the question if the initiative will achieve this goal cannot be an-
swered. Although the progress within the robotic soccer community is remarkable, it is
not known whether it will lead to competitive robotic soccer players until then or not.
Legitimately, one may also ask the question the other way around: Is there an area of
research, in which enough knowledge has already been obtained for the 2050 scenario?
This thesis tries to give an answer to the question with respect to the sensing subsystem
within the domain of soccer playing robots. More precisely, this thesis will reveal if the
accuracy of ball trajectory prediction is sufficient for a hypothetical robotic soccer player
under certain constraints.

The sensor setup for this hypothetical robot is a camera-inertial sensor which allows per-
ception of the environment and tracking of the sensor’s motion relative to itself. To an-
swer the question if the accuracy is sufficient or not, an experimental-based analysis is
performed in the following way: A camera-inertial sensor obtains measurements from
a real soccer field, including the ball’s position and size and relevant points of the field.
These measurements may be used to estimate the state of the ball during each stage of the
flight by fitting the ball’s and sensor’s motion model to the measurements. The accuracy
is determined by estimating all in-flight states of the ball and comparing the bouncing
points of the predicted trajectories with the real bouncing point.

The results of the analysis indicate that trajectories of flying balls can be predicted reliably
over time. Furthermore, under the assumption of certain accuracy constraints that must
hold for a hypothetical soccer player, the results show a sufficient trajectory prediction.
This makes trajectory prediction feasible for the 2050 scenario.

Zusammenfassung

Das langfristige Vorhaben der RoboCup Initiative ist der Sieg eines Teams bestehend aus
autonomen Roboterfußballspielern über den amtierenden, menschlichen Fußballwelt-
meister im Jahr 2050. Bis zum heutigen Zeitpunkt kann die Frage, ob die Initiative mit
diesem Vorhaben Erfolg haben wird, nicht beantwortet werden. Obgleich der Fortschritt
innerhalb der Forschungsgemeinschaft des Roboter-Fußballs beachtlich ist, ist nicht klar,
ob dieser ausreichend ist, um bis zu diesem Zeitpunkt wettbewerbsfähige humanoide
Spieler zu entwickeln. Die Frage darf auch umgekehrt gestellt werden: Gibt es bereits
in einem Bereich der Forschung ausreichend Wissen für das Szenario 2050? Diese Ar-
beit nimmt sich dieser Frage im Bezug auf das Teilgebiet der Wahrnehmung bei fußball-
spielenden Robotern an. Ziel dieser Arbeit ist die Beantwortung folgender, präzisierter
Frage: Ist die Genauigkeit der Flugbahnvorhersage unter gewissen Einschränkungen
ausreichend für einen hypothetischen Roboter-Fußballspieler?

Die Sensorik für diesen hypothetischen Roboter ist ein Kamera-Inertialsensor, welcher
nicht nur die Wahrnehmung innerhalb der Umgebung, sondern auch das Verfolgen der
Bewegung des Sensors relativ zu sich selbst erlaubt. Um die Frage zu beantworten, ob die
Genauigkeit ausreichend ist, wurde folgende experimentell gestützte Analyse durchge-
führt: Das Kamera-Inertialsensorsystem zeichnet auf einem Fußballfeld Daten inklusive
Position und Größe des Balls so wie besondere Punkte des Feldes auf. Diese Messdaten
können genutzt werden, um den Zustand des Balles zu jedem Zeitpunkt des Fluges über
eine Ausgleichsrechnung zwischen dem Bewegungsmodell des Balles und den Messun-
gen zu ermitteln. Die Genauigkeit wird schließlich bestimmt, indem alle Zustände inner-
halb einer Flugbahn geschätzt und die Auftreffpunkte der vorhergesagten Flugbahnen
mit dem realen Auftreffpunkt verglichen werden.

Die Resultate haben ergeben, dass die Flugbahn von fliegenden Bällen über die Zeit
zuverlässig ermittelt werden kann. Unter der Annahme von gewissen Genauigkeits-
bedingungen für einen hypothetischen, fußballspielenden Roboter zeigen die weiteren
Resultate, dass eine ausreichende Flugbahnvorhersage bezüglich dieser Genauigkeitsbe-
dingungen vorliegt. Dies macht den Einsatz der Flugbahnvorhersage im Jahre 2050 zu
einem realistischen Vorhaben.

Erklärung

Hiermit versichere ich, Oliver Birbach, diese Diplomarbeit ohne fremde Hilfe angefertigt
zu haben. Ich habe keine anderen als die angegebenen Quellen und Hilfsmittel benutzt.
Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichungen entnommen sind, sind
als solche kenntlich gemacht.

Unterschrift

Acknowledgements

First of all, I would like to thank Udo Frese for offering me this exciting topic, for tak-
ing the time to discuss problems, answering all my related questions and offering many
useful suggestions. Thank you very much.

I also thank Florian Penquitt for setting up the experiments and co-conducting them with
me on the field. Further, I would like to thank the two helpers who provided the addi-
tional hands that were neccessary for the experiments.

Special thanks goes to the administration of the sport facilities for allowing us to run the
experiments during the holidays.

Finally, I would like to thank my parents, especially my mother, for always supporting
me in every way.

6

Contents

1 Introduction 12

1.1 Motivation . 12

1.2 Goals of the Thesis . 13

1.3 Experimental and Estimation Procedure . 14

1.4 Benefits of Camera-Inertial Sensors . 15

1.5 Related Work . 15

1.6 Guide to the Thesis . 17

2 Stochastic Estimation 19

2.1 Nonlinear Least Squares Estimation . 19

2.1.1 Gradient Descent Algorithm . 21

2.1.2 Gauss-Newton Algorithm . 22

2.1.3 Levenberg-Marquardt Algorithm . 23

2.1.4 Estimation of Orientations . 24

2.1.5 Estimation of Dynamical Systems 26

2.2 Estimation of Dynamical Systems Using Kalman Filters 27

2.2.1 Linear Gaussian Systems . 28

2.2.2 Kalman Filter Algorithm . 28

2.2.3 Unscented Kalman Filter . 29

2.2.4 Filtering Orientations . 31

3 Sensor Calibration 34

3.1 Calibration Principle . 34

3.2 Camera Model . 36

CONTENTS 7

3.3 Rotation Between the Camera Coordinate System and the Inertial Coordi-
nate System . 37

3.4 Least Squares Estimation . 37

3.5 Initial Camera Parameters . 38

3.6 Initial Rotation Between Camera and Inertial Sensor 40

3.7 Calibration Procedure . 41

3.8 Results . 43

4 Modeling a Ball in Flight 45

4.1 System State . 45

4.2 Underlying Dynamic Model . 46

4.2.1 Integration Into the Unscented Kalman Filter 48

4.2.2 Integration Into the Least Squares Method 48

4.3 Measurement Model . 49

4.4 Noise . 50

4.5 Model Parameter Determination . 51

4.5.1 Algorithm . 51

4.5.2 Mathematical Derivation . 53

4.5.3 Counter Example . 54

4.6 Summary . 57

5 Experimental Setup and Implementation 59

5.1 Sensor Setup . 59

5.2 Experimental Environment . 60

5.3 Experimental Procedure . 61

5.4 Image Preprocessing and Field Model . 61

5.5 Measuring Ground Truth . 62

5.6 Estimator Implementation . 63

5.6.1 Relationship Between Measurement Data and States 64

5.6.2 Initial State Determination . 64

5.6.3 Unscented Kalman Filter . 64

5.6.4 Least Squares Method . 65

CONTENTS 8

5.6.5 Prediction . 66

6 Analysis 67

6.1 Analysis Goals and Constraints . 67

6.2 Expected Results . 68

6.3 Analysis Results . 69

6.3.1 Short-Distance Ball Flight Towards the Observer 69

6.3.2 Ball Flight Passing by the Observer 74

6.3.3 Long-Distance Ball Flight Towards the Observer 77

6.4 Estimator Difference . 81

6.5 Summary . 82

7 Conclusion and Outlook 83

9

List of Figures

1.1 Camera-inertial sensor attached to a helmet worn by a human. 14

1.2 Annotated camera image and three-dimensional model of a tracking and
prediction system using a camera-inertial sensor. 16

1.3 Video sequence overlay of a successful catch by the robotic ball-catcher
showing the trajectory of the thrown ball. 17

1.4 Trajectory plot and three dimensional model of the estimation of chip-
kicked balls using a single overhead camera. 18

2.1 The unscented transformation. 31

3.1 Schematic view of a camera observing the checkerboard pattern. 35

3.2 Simplified illustration of the pin-hole camera model. 37

3.3 Two example images of the camera directed to the checkerboard pattern
with annotations of the feature point extraction. 42

3.4 Three dimensional view of the extrinsic parameter obtained through cali-
bration procedure. 43

4.1 Surface plot of the likelihood function with respect to σ1 and σ2. 56

5.1 Used sensor setup for the experiments. 60

5.2 Screenshot of the image processing software and a sketch of a soccer field
showing the landmark points. 62

5.3 Grid overlay created by a homography between points on the image plane
and points on the field plane. 63

6.1 Three dimensional view of estimated ball trajectories and velocity vectors
while the ball is flying towards the observer. 70

LIST OF FIGURES 10

6.2 Predicted positions on the field of the estimated states’ bouncing points as
a function of time. 71

6.3 Error between the predicted bouncing points computed from the estimated
trajectory and the mean of the ground truth measurements over time. . . . 72

6.4 Four frames of the ball trajectory captured by the camera while the ball is
flying towards the observer. 73

6.5 Three-dimensional view of estimated ball trajectories and velocity vectors
while the ball is passing by the observer. 74

6.6 Predicted positions on the field of the estimated states’ bouncing points
over time of a ball passing by the observer. 75

6.7 Error between the predicted bouncing points computed from the estimated
trajectory and predicted bouncing point of the last estimate over time for
a ball passing by the observer. 76

6.8 Four frames of the ball trajectory captured by the camera while the ball
was passing by the observer. 77

6.9 Three dimensional view of estimated ball trajectories and velocity vectors
of a ball that is flying towards the observer from a long distance. 78

6.10 Predicted positions on the field of the estimated states’ bouncing points as
a function of time of a ball approaching the observer from a long distance. 79

6.11 Error between the predicted bouncing points computed from the estimated
trajectory and the predicted bouncing point of the last estimate over time
of a ball approaching the observer from a long-distance. 80

6.12 Four frames of the ball trajectory captured by the camera with additional
annotations while the ball is flying towards the observer from a long dis-
tance. 81

11

List of Tables

2.1 The gradient descent algorithm for solving general minimization problems. 22

2.2 The Gauss-Newton algorithm for solving nonlinear least squares problems. 23

2.3 The Levenberg-Marquardt algorithm for solving nonlinear least squares
problems. 24

2.4 The Kalman filter algorithm. 29

2.5 The unscented Kalman filter algorithm. 32

3.1 The root mean square values before and after the least squares refinement. 44

4.1 Comparision of the length of ball flight trajectories with different starting
velocities. 46

4.2 Iterative algorithm for learning the measurement noise parameters out of
the measurement data. 52

4.3 Tabulated summary of all parameters and variables involved in the pro-
cess of estimating the state of flying ball observed by a camera-inertial sensor. 58

4.4 Comparison of necessary functions and uncertainty parameters for the
Kalman filter and the method of least squares. 58

12

Chapter 1

Introduction

This thesis is about trajectory prediction of soccer balls observed by a free-moving camera-
inertial sensor and whether this trajectory prediction would be sufficient for a hypothet-
ical robotic soccer player or not.

To accomplish this task, a person was wearing a helmet on which the sensor was mounted
so that the field of view of the person and of the camera were nearly identical. This person
was then moving on a soccer field and tracked different trajectories of ball flights with
his eyes while the data of the sensor were recorded. To determine the accuracy of the
trajectory prediction, the predicted bouncing points from the recorded sensor data will
be compared to the real bouncing points.

1.1 Motivation

Robotic soccer established itself as the benchmark for development within the robotic
and artificial intelligence community right after the win of IBM’s Deep Blue over the
world champion in chess in 1997. Deep Blue’s success was quite predictable. Its strength
was the exploitation of the deterministic nature of chess by raw computational power. In
contrast to chess, robotic soccer is by far more complex since the robots must be able to
integrate perception, reasoning and acting within a real soccer environment in real-time.

The idea of soccer-playing robots as a challenge was raised by Sahota and Mackworth [1]
along with the emergence of the Situated Agent approach in 1994. This approach sug-
gests that progress within the field of artificial intelligence is achieved by taking Brooks’ [2]
guiding principles to a specific paradigmatic task domain which allows testing and de-
velopment. Soccer was chosen to be this paradigmatic task domain and the idea of soccer-
playing robots as a standard AI problem led to the formation of the Robot World Cup
Initiative (RoboCup) [3] in 1997. Shortly after its formation, the goal of the initiative was

Introduction 13

stated:

By mid-21st century, a team of fully autonomous humanoid robot soccer play-
ers shall win the soccer game, comply with the official rule of the FIFA, against
the winner of the most recent World Cup.[4]

Since their foundation, world-wide and regional RoboCup competitions, where robotic
soccer systems compete each other, are held annually.

Unlike Deep Blue’s predictable success, it is not known if the RoboCup initiative can
reach its goal within the specified time. Although the progress made in the last decade
during the competitions is remarkable, areas exist, in which the progress is quite slow.
When thinking of a robot’s operation as a series of Sense/Think/Act cycles, the most
obvious lack of technology is within the area of actuators, especially the lack of a
well-crafted humanoid robot. The current state-of-the-art humanoid robot, the Honda
ASIMO [5], is a respectable piece of engineering which is capable of executing simple
human tasks. But when it comes to soccer, the robot fails to provide human-like physical
skills like fast running and shooting.

Regardless of the fact that breakthrough progress is needed, there might be areas where
the substantial knowledge is already obtained or where just a little more research needs
to be done. Obviously, the following question arises within this context: Which areas
within the robotic research community are already mature enough for the 2050 scenario?

1.2 Goals of the Thesis

This thesis tries to give an answer to the above question within the area of sensing. Ac-
tually, the question to be answered here is: Is the accuracy of ball trajectory prediction
sufficient for a hypothetical robotic soccer player when the ball is observed by a camera-
inertial sensor?

Answering the question by simply stating yes or no will not do the job. In this case, the
question implies a set of sub-questions, such as:

• How good is the overall accuracy of trajectory prediction over time?

• Is there a certain moment at which the prediction can be assumed to be sufficient
enough?

• How well does the prediction work for different trajectories?

Answering the question requires the definition of accuracy in a robotic soccer context.
With respect to this definition, answers to the above questions will be given through the
evaluation of various meaningful trajectories obtained by experiments.

Introduction 14

Figure 1.1: Camera-inertial sensor attached to a helmet worn by a human. This setup
was used during the experiments.

1.3 Experimental and Estimation Procedure

Since no humanoid robot was available, experiments to obtain the required data for
the evaluation were conducted using a human wearing a helmet on which the camera-
inertial sensor was attached to (see figure 1.1). This procedure is legitimate because a
humanoid robot tries to mimic human behaviour. The person was moving on a real soc-
cer field and tracked trajectories of ball flights while the data of the sensor were recorded.
This recorded data included the acceleration and angular velocity measured by the iner-
tial sensor and the images obtained from the camera sensor. Since no automatic image
processing was available, all relevant objects in the images were extracted manually. This
manual vision ensured that all features were extracted reliably from the images. The
objects of interest in the images were the ball and certains landmarks defined by line
intersections on the field and both goals.

The state that is estimated from the measurements is composed out of two components.
First, the ball state is modeled as the ball’s position and velocity with respect to a global
coordinate system. The other component is the sensor’s position, velocity and orientation
with respect to the same global coordinate system.

The estimation of this state is performed using two methods. The first method is the

Introduction 15

method of least squares where a stack of states is estimated at once using all measure-
ments up to this state. The other method is the so-called unscented Kalman filter which
recursively estimates a state from the previously estimated state and the last measure-
ment of the sensors. Because of the free moving sensor in the environment and the
monocular vision the estimation becomes particularly difficult.

1.4 Benefits of Camera-Inertial Sensors

The sensing element in this work is the combination of camera and inertial sensor.

Extracting metric information about the environment using a camera is known as pho-
togrammetry. It relies on methods from optics and projective geometry to map geometric
objects sensed in the environment into the image plane. Cameras as sensors are often
used for self-localization and perception within a known environment. The sensing error
from camera measurements is known to be absolute.

Inertial sensors are used to measure the ego-motion of the object on which the sensor is
attached to. Inertial sensors usually consist of an accelerometer and a gyroscope. The
accelerometer measures linear acceleration, whereas the gyroscope measures angular ve-
locity applied to the object. All sensing occurs in the coordinate system of the inertial
sensor and no external reference is required. Applications of inertial sensors are tracking
of large-scale vehicles such as aircrafts or spaceships, and low-cost, camera-less motion-
capturing. In contrast to the cameras, the sensing error of inertial sensors accumulates
over time which has to be compensated.

Combining both sensors is a relatively new sensing discipline. The benefit of the combi-
nation is the additional information about the camera’s motion from the inertial sensor.
Any application requiring spatial information about the sensor, such as localization, will
become much more robust, especially when no or almost no visual information are avail-
able. Furthermore, the accumulated sensing error problem of the inertial sensor can be
compensated by integrating localization-specific measurements from the camera. But
this combination bears a new problem. Since the camera and the inertial sensor are op-
erating in different coordinate systems, the parameters for transforming measurements
from one system into the other are required. Actually, methods exist for finding these
parameters. They will be part of this thesis.

1.5 Related Work

In [6], Kurlbaum presented a proof-of-concept system for tracking and predicting the tra-
jectory of flying balls within a known environment using a camera-inertial sensor. The

Introduction 16

Figure 1.2: Two images of a soccer ball tracking and prediction system using a camera-
inertial sensor. (Left) Annotated camera image showing the ball and the visible land-
marks. The estimated position of the ball and the landmarks are shown as circles in
image coordinates. (Right) Three-dimensional model of the tracking system. The esti-
mated ball position is shown as a red sphere. The predicted trajectory is depicted as a
series of green spheres. Images courtesy of [6].

tracking relied on an unscented Kalman filter which estimated the state of the ball by in-
tegrating measurements from a color-based vision and an inertial sensor. Although most
of the model parameters such as noise parameters and the transformation between the
sensors were guessed by the author, experiments showed reasonable estimation results
after a couple of measurements. Furthermore, the estimated ball states during the flight
showed a visually accurate trajectory prediction. Two pictures of the system’s software
are shown in figure 1.2.

How to benefit from such a trajectory prediction is shown by Frese et al. [7]. There, a
vision-based soft ball tracker, which uses trajectory prediction as the basis for control-
ling a robotic ball catcher, is presented. Although only a static stereo camera system is
used in their setup, this work is an interesting example highlighting the need of accuracy
during estimation and prediction. In their work, the thrown ball is extracted out of the
images by segmentation based on difference images. The three-dimensional tracking is
performed using the extended Kalman filter. After the filter reports a sufficiently small
covariance, prediction is used to compute the catch-point for the ball catcher, which is
used for controlling the robot’s actuators. Experiments were conducted and the catcher
was successful in the majority of throws. If the catcher failed, most of the faults were
caused by limitations of the experimental setup. A video sequence overlay of a success-
ful throw is shown in figure 1.3.

One usage of trajectory prediction within the context of RoboCup is presented by Simon
in [8] as part of the vision system of the former Small Size team FU-Fighters. A method

Introduction 17

Figure 1.3: Video sequence overlay of a successful catch by the robotic ball-catcher show-
ing the trajectory of the thrown ball. Image courtesy of [7].

for recognizing chipped kicks (kicks, where vertical and horizontal forces are applied to
the ball) along with a method of predicting the bouncing point is implemented using only
the measurements from a single overhead camera. A mapping between the measurement
of the ball in the image plane and the dynamics of the ball in the world is established.
Along with the a-priori information about the height of the camera, three measurements
are sufficient to construct a system of equations which solves the problem uniquely. The
accuracy of the estimation can be increased by incorporating more measurements and
solving the over-determined system. Within their setup, Simon states that ten measure-
ments were sufficient for a good approximation of the trajectory and twenty measure-
ments yielded to an accuracy below 1 cm for the estimated bouncing point. Figure 1.4
shows a plot of the trajectory measured by the overhead camera and the corresponding
three-dimensional model of the actual trajectory on the field.

1.6 Guide to the Thesis

The thesis is structured as follows:

Chapter 1 introduces the general question to be answered, outlines used methods and
shows some related work.

Chapter 2 gives an in-depth introduction of stochastic methods for state estimation used

Introduction 18

Figure 1.4: Two images visualizing the estimation of chip-kicked ball trajectories used
by the FU-Fighters.(Left) Trajectory plot of the ball measured by the overhead camera.
(Right) Corresponding three-dimensional model visualizing the actual ball trajectory on
the field. Images courtesy of [8].

in this thesis. It also describes how to handle orientation representations during estima-
tion.

Chapter 3 describes the problem of calibration between the rigid combination of camera
and inertial sensor. Very high accuracy while transforming measurements between both
sensors is vital for the success of an accuracy analysis. An approach how to calibrate the
rotational difference and the camera calibration in one procedure will be given.

Chapter 4 introduces the necessary models for observing a ball in flight using a camera-
inertial sensor along with the associated noise parameters. An algorithm is introduced to
calculate a certain set of noise parameters from the measurements.

Chapter 5 explains the experimental setup in detail and describes how the estimators
were implemented using the model.

Chapter 6 analyzes the data obtained from the experiments with respect to accuracy for a
hypothetical humanoid robot. A couple of ball flights and their prediction performance
will be evaluated.

Chapter 7 finally concludes the thesis and provides an outlook for upcoming work.

19

Chapter 2

Stochastic Estimation

This chapter introduces the estimation techniques used in this thesis for determining val-
ues of unknown parameters in a statistical model. This statistical model may reach from
a simple function combined with an uncertainty parameter up to complex dynamical
systems involving several functions and uncertainty parameters. Furthermore, some pa-
rameters may not be usual vectors, such as orientation representations. This may cause
problems during the estimation procedure.

The two estimation techniques introduced here are suitable for estimating nontrivial dy-
namical systems such as a ball in flight or a free moving camera-inertial sensor. In the
upcoming sections it will be shown how they work and how they can be extended to
estimate the above mentioned orientation representations as well.

2.1 Nonlinear Least Squares Estimation

The first method is known as nonlinear least squares estimation and is a popular tech-
nique for fitting experimentally obtained data to arbitrary functions (including functions
describing dynamic processes) depending on nonlinear parameters. Based on the histori-
cal work of Gauss’ orbit determination of Ceres, the least squares formulae are nowadays
used for common tasks like curve-fitting and sensor calibration.

Suppose a set of measurement vectors zi is obtained depending nonlinearly on the pa-
rameters x of the model function fi, and a normal distribution of the errors εi and in-
dependence in each observation i is assumed. The relation between measurement and
model can then be written as:

zi = fi(x) + εi (2.1)

With respect to the observation of the flight of a ball using a camera-inertial sensor, the
measurements zi would be the vision and inertial sensor measurements, while the pa-

Stochastic Estimation 20

rameter x contains the set of ball and sensor states of the flight. The dynamics of the ball
and the sensor are modeled by fi.

The difference between a measurement zi and the predicted value fi(x) is known as the
residual ri:

ri = zi − fi(x) (2.2)

The goal of least squares estimation is to find the parameters x of f which minimize the
sum of squared residuals χ2

χ2 =
∑

i

rT
i Σ−1

i ri =
∑

i

(zi − fi(x))T Σ−1
i (zi − fi(x)) (2.3)

weighted by Σi, representing the amount of uncertainty within the measurements zi. Σi

is the so-called measurement covariance.

Besides this quite intuitive way of looking onto the problem, a probabilistic point of view
can be formulated, too (as done in [9]). The question to be answered here is: Given a set
of measurements z, what is the probability that a particular set of parameters x are the
rights ones?

p(X = x | Z = z) (2.4)

Applying Bayes’ rule to this probability distribution under the assumption that no a-
priori information are available leads to:

p(X = x | Z = z) =
p(Z = z | X = x) p(X = x)

p(Z = z)
(2.5)

∝ p(Z = z | X = x) (2.6)

The probability of the measurements z given the parameters x is known as the likelihood
of the parameters x given the measurements z. The most probable parameters are the
parameters that maximize the probability density function p(Z = z | X = x). The
technique of finding parameters in this way is known as maximum likelihood estimation.

Assuming, as above, that all measurement data is independent and normally distributed,
the joint probability density function of all measurements is the product of all individual
probability density functions:

p(Z = z | X = x) =
∏

i

p(Zi = zi | X = x) (2.7)

=
∏

i

p(εi = zi − fi(x)) (2.8)

Stochastic Estimation 21

Substituting the normal density function for

p(εi = zi − fi(x)) =
1

(2π)n/2|Σi|1/2
exp(−1

2
(zi − fi(x))T Σ−1

i (zi − fi(x))) (2.9)

leads to:

p(Z = z | X = x) =
∏

i

1
(2π)n/2|Σi|1/2

exp(−1
2
(zi − fi(x))T Σ−1

i (zi − fi(x))) (2.10)

By minimizing the negative logarithm (which is equal to maximizing the positive loga-
rithm) of the probability density function, we get

− log p(Z = z | X = x) = const. +
n∑
i

(zi − fi(x))T Σ−1
i (zi − fi(x)) (2.11)

This equals equation (2.3), which leads to the conclusion that the method of least squares
is an instance of maximum likelihood estimation.

Note, without loss of generality n = 1 is achieved by stacking z and f and composing Σ
diagonally.

Solving the class of least squares problems is well known. While linear least squares
problems have a closed-form solution [9], general nonlinear problems can be solved us-
ing iterative methods. These methods will be introduced in the following sections.

2.1.1 Gradient Descent Algorithm

One way to solve the problem is to iteratively step in the negative direction of the gradi-
ent. Starting from a guess xi, the next approximation xi+1 is calculated by

xi+1 = xi − γJT Σ−1(z − f(xi)) (2.12)

where

J =
∂f(x)

∂x

∣∣∣
x=xi

(2.13)

is the Jacobian of f at xi and γ is a damping factor controlling the step length. This factor
is necessary because the gradient only provides the search direction, but not the length
of innovation. Usually, a seperate line search is performed to compute the optimal step
length.

While the gradient descent algorithm usually steps fast towards the minimum in the first
few iterations, it tends to converge slowly near the actual minimum. Another drawback
is the need for careful adjustment of the damping factor γ, which often requires addi-
tional function evaluations.

Stochastic Estimation 22

GRADIENT DESCENT ALGORITHM(x0)
1 x← x0

2 while not converged
3 do
4 J ← ∂f(x̃)

∂x̃

∣∣∣
x̃=x

5 g ← −JT Σ−1(z − f(x))
6 γ ← LINESEARCH(x, g)
7 x← x + γ g

8
9 return x

Table 2.1: The gradient descent algorithm. It searches the minimum of χ2 by stepping
iteratively in the negative direction of its gradient.

It should not be left unmentioned that gradient descent is a general purpose optimization
algorithm that is also applicable to least squares problems. However, it usually performs
poorly within this class of problems and is not recommended in practice.

The algorithm is summarized in table 2.1.

2.1.2 Gauss-Newton Algorithm

A better way to find the parameters in a least square sense is the expansion of the function
f as a first order Taylor series as done in [10]. Starting from an initial estimate xi, the
linearization

f(x) ≈ f(xi) +
∂f(x)

∂x

∣∣∣
x=xi

· (x− xi) (2.14)

at xi makes x linear in f and therefore applicable to the linear least squares equations,
where the minimum can be computed explicitly. The equation for the next estimate reads

xi+1 = xi + (JT Σ−1J)−1JT Σ−1(z − f(xi)) (2.15)

where Σ is the amount of confidence assumed for the measurement z expressed as the
covariance. The quality of parameter estimation depends on how linear f behaves in the
neighbourhood of the linearization point xi. Usually, the estimation can be improved by
using the latest estimation as the new linearization point and iterating until the conver-
gence criterion is reached.

The algorithm is named Gauss-Newton algorithm and is known to converge well when
starting from an initial guess near the final minimum but usually fails when starting far
off the final minimum.

Stochastic Estimation 23

GAUSS-NEWTON ALGORITHM(x0)
1 x← x0

2 while not converged
3 do
4 J ← ∂f(x̃)

∂x̃

∣∣∣
x̃=x

5 α← JT Σ−1J

6 β ← JT Σ−1 · (z − f(x))
7 δ ← α−1 · β
8 x← x + δ

9
10 return x

Table 2.2: The Gauss-Newton algorithm. It solves the least squares problem by lineariz-
ing the model function f at x.

The full algorithm is given in table 2.2

2.1.3 Levenberg-Marquardt Algorithm

With both of the above methods in mind, Levenberg [11] and Marquardt [12] developed
a method combining the benefits of the Gauss-Newton algorithm and gradient descent
while avoiding their most serious limitations. A damping-factor λ > 0 is introduced and
the equation for the next estimate i + 1 reads

xi+1 = xi + (JT Σ−1J + λI)−1JT Σ−1(z − f(xi)) (2.16)

where J is the Jacobian of f at xi, Σ the variances of the measurements z and I the identity
matrix.

At each iteration step, λ is adjusted to reflect the success in the previous estimation step
by the following rules [9]:

1. If χ2(xi+1) < χ2(xi), decrease λ by the factor 10 .

2. If χ2(xi+1) ≥ χ2(xi), increase λ by the factor 10 and set xi+1 to xi.

In words, if the newly obtained parameters minimize the object function better than the
ones before, the parameters might be close to the minimum, λ will be reduced and the
algorithm behaves like the Gauss-Newton algorithm. Otherwise, if the new parameters

Stochastic Estimation 24

LEVENBERG-MARQUARDT ALGORITHM(x0)
1 x← x0

2 while not converged
3 do
4 J ← ∂f(x̃)

∂x̃

∣∣∣
x̃=x

5 α← JT Σ−1J

6 β ← JT Σ−1 · (z − f(x))
7 δ ← (α + λI)−1 · β
8 if f(x + δ) ≥ f(x)
9 then λ← λ · 10

10 else λ← λ · 0.1
11 x← x + δ

12
13 return x

Table 2.3: The Levenberg-Marquardt algorithm for solving nonlinear least squares prob-
lems. The algorithm interpolates between the Gauss-Newton algorithm and gradient
descent by adjusting the damping factor λ.

show poor perfomance, λ will be increased and (JT Σ−1J +λI) becomes diagonally dom-
inant acting like gradient descent. Furthermore, the new estimate will be rejected and the
estimate of the new iteration step remains the old one.

The algorithm therefore combines the ability of gradient descent to approach the final
minimum from starting far away and the ability of the Gauss-Newton algorithm to con-
verge rapidly once the parameters are near the final minimum. This robustness made
the Levenberg-Marquardt algorithm a popular choice for solving nonlinear least squares
problems.

The full algorithm is described in table 2.3.

2.1.4 Estimation of Orientations

Estimation of orientation poses a special problem. An orientation is a member of the so-
called rotation group SO(3). SO(3) is a 3-manifold, meaning that an orientation can be
locally parameterized with three numbers. However, there are no global parameteriza-
tions in R3 without discontinuities, so-called singularities. Singularity free parameteriza-
tions of rotations are achieved by leaving R3 as done by unit quaternions, which form a
sphere S3 in R4, or 3× 3 special orthogonal matrices SO(3) in R9.

Stochastic Estimation 25

Applied to the method of least squares, the intuitive idea is to represent the orientation as
a vector with nine elements, representing a rotation matrix, or as a vector containing four
elements, representing a quaternion. But this bears a substantial problem: the algorithm
does not know anything about the underlying constraints of the vector containing the ori-
entation representation. Since the optimization expects parameters in Euclidean space,
the resulting parameters in the optimization steps might not be valid rotations. The vec-
tors of the rotation matrix might not be unit vectors or orthogonal to each other anymore.
When using unit quaternions, the length of the quaternion might not be 1 anymore.

Since the estimation of the sensor’s orientation is required for a ball trajectory estimation,
a way to handle this problem is needed. One way is to represent the rotation as a singu-
larity free parameterization in parameter space, which is only changed by small locally
defined R3 rotations [13] [10]. The idea is to let the algorithm operate on the small lo-
cally defined R3 parameterization only. This locally defined parameterization originates
from the singularity free parameterization. The algorithm is then instructed to find the
R3 rotation which changes the singularity free parameterization so that the orientation
becomes optimal.

These changes are applied by the operator ⊕, which adds a small rotation from vector
space Rn to parameter space S. Formally the operation ⊕ : S × Rn → S reads

s⊕ d =

{
sR + dR , if vector part

sSO(3) · Rot(dR3) , if rotational part
(2.17)

where Rot() defines a valid SO(3) or S3 rotational representation out of the R3 vector
which is part of d. Since the R3 vector only holds small locally defined rotation changes,
its representation is free from singularities. Therefore, Rot can be applied to compute the
corresponding singularity free representation of the vector which is then added to the
orientation in the parameter space.

As it can be seen from the definition, the operator performs an ordinary vector addition
to the vector portion and only applies the locally defined R3 rotation to the singularity
free rotation representation in the parameter space S.

With the introduction of the ⊕-operator, the least squares optimization of a model func-
tion f with respect to its parameters s ∈ S can be reformulated. An additional function g

and a mapping from g to the model function f is introduced

gi(di) = f(si ⊕ di) (2.18)

where si ∈ S is the current parameter estimate, di belongs to Rn and i represents the iter-
ation step. The optimization problem now reduces to the problem of finding the vector
d which minimizes g, or, in the context of f , of finding the vector d which minimizes f

when applied to f along with s using ⊕.

Stochastic Estimation 26

Applied to the Levenberg-Marquardt algorithm (see table 2.3), the change di at iteration
i is calculated by altering lines 5-7

α ← JT Σ−1J (2.19)

β ← JT Σ−1 · (z − gi(0)) (2.20)

di ← (α + λI)−1 · β (2.21)

where J is the Jacobian of gi at 0.

The test if the current step was successful is performed between gi(0) and gi(di). Finally,
if the test was actually successful, the new estimate at i + 1 is computed by applying the
computed change di to the current estimate si using ⊕

si+1 = si ⊕ di (2.22)

resulting in the new parameter estimate si+1.

2.1.5 Estimation of Dynamical Systems

A dynamical system is a formalization of how a state xt−1 develops into another state
xt over time. A state x consists of a set of real numbers. As mentioned earlier, the pose
and velocity of the sensor and the ball and the sensor’s orientation are represented by the
state. Over the time of the ball’s flight the state changes. Describing this change of state
is done by dynamical systems.

Estimating the state of a dynamical system using the method of least squares requires to
estimate a stack of states up to the current state. For every new measurement at time t,
the parameters that need to be estimated are

p =


x0

...
xt−1

xt

 (2.23)

where xt is the state at time t.

The dynamics are modeled by a function which is applied to each adjacent state pair out
of this stack. Written as the sum of the squared residuals, a least square optimization
with dynamics in mind looks like:

χ2 =
t∑

i=1

(xi−1 − g(xi, zi))T Σt(xi−1 − g(xi, zi)) (2.24)

Here, the function g models the dynamics by performing an inverse state transition (com-
puting the state at t−1 from the state t and an eventually known dynamic measurement)

Stochastic Estimation 27

to calculate the predicted state at t− 1 which is compared to the actual state xt−1 from p.
Since none or only partial measurements are involved, this function will be called virtual
measurement function.

A simple example to illustrate the behaviour of equation (2.24) with respect to the exper-
iments of this thesis will be given. For this example, the sensor’s state over time should
be estimated while its motion is modeled using Newtonian mechanics. The acceleration
and angular velocity of the sensor is known from inertial sensor measurements. With
respect to the equation x would be the sensor state (position, velocity and orientation),
the model function g would represenent inverse state transition function (incorporating
Newtonian mechanics) and z would represent the inertial measurements. By obtaining
a couple of measurements up to time t from the inertial sensor, it is possible to compute
all states of the sensor from time 1 to t using the method of least squares. Similarly, this
technique is also applicable for the estimation of a ball flight trajectory.

Since the method of least squares estimates the full dynamical path incorporating all
measurements up to the current state, it performs a so-called full estimation.

2.2 Estimation of Dynamical Systems Using Kalman Filters

The class of Kalman filters are stochastic state estimation techniques for dynamical sys-
tems. They were introduced in [14] to estimate the state (in this case the state of the ball
and the camera) of time-discrete linear systems from measurements which are corrupted
by noise (for this work, the measurements of the vision and the inertial sensor).

Kalman filters work recursively. Given the input of the last state at time t−1, the observed
measurements zt and control data ut, the state at time t will be computed. No other
information is used throughout the recursive estimation, it does not access past states
or measurements because every information provided by them is already incorporated
in the current state. Because of its recursive nature, Kalman filters perform an online
estimation of the state which is computationally superior compared to the method of least
squares. This property makes Kalman filter capable of estimating the state of the system
in real time.

As with the method of least squares, the estimation problem can be formulated in a prob-
abilistic context. The question to be answered here is: What is the probability distribu-
tion over the state xt given all previous measurements z1:t and previous controls u1:t?
Formally written:

p(xt | z1:t, u1:t) (2.25)

The underlying algorithm of all Kalman filters is the so-called Bayes filter. Along with
the Markov assumption, which states that the current state is itself a complete summary

Stochastic Estimation 28

of the past, the Bayes filter provides the rules to compute this probability recursively at
time t out of the probability at time t − 1, the current measurement and current control
data.

2.2.1 Linear Gaussian Systems

As mentioned above, the Kalman filter is an implementation of the Bayes filter. The key to
Kalman filtering is the usage of Gaussians. This means that the filter represents the state
of a system at time t as a normal distribution with the mean µt along with the covariance
Σt. To ensure that a state is always a valid Gaussian, certain properties of the system
must hold.

First, Kalman filters assume linear dynamics. That is, the state transition from t − 1 to t

must be linear in its arguments plus some Gaussian noise. Formally, it reads

xt = Atxt−1 + Btut + εt (2.26)

where xt and xt−1 are the state vectors, At is the state transition matrix and Bt is the
matrix that relates the eventually known control vector ut into the state transition. εt is
a random variable that models the uncertainty that results from the state transition. It is
distributed with zero mean and covariance Rt.

Secondly, Kalman filters also assume linearity for the relation between state and mea-
surement. Here, a matrix Ct maps the state xt into a measurement zt plus Gaussian noise
δt:

zt = Ctxt + δt (2.27)

As with the distribution of εt, the distribution in this equation has zero mean but the
covariance is given by Qt.

Finally, the initial state of the system must be a valid Gaussian.

2.2.2 Kalman Filter Algorithm

With these three requirements in mind, the Kalman filter algorithm (see table 2.4) can be
formulated. The algorithm updates a valid Gaussian state at time t − 1 with mean µt−1

and covariance Σt−1 to another valid Gaussian at time t with mean µt and covariance Σt

using the current measurement zt and control ut.

The algorithm works in a predict/update manner. First, a predicted state with mean µ̄t

and covariance Σ̄t is computed from the state transition function using the previous state
µt−1,Σt−1 and control ut (line 1-2).

This predicted state is now the basis for the update step. Here, the Kalman gain is com-
puted in line 3. This value determines how much the measurement zt should be incor-

Stochastic Estimation 29

KALMAN FILTER ALGORITHM(µt−1,Σt−1, ut, zt)
1 µ̄t = Atµt−1 + Btut

2 Σ̄t = AtΣt−1A
T
t + Rt

3 Kt = Σ̄tC
T
t (CtΣ̄tC

T
t + Qt)−1

4 µt = µ̄t + Kt(zt − Ctµ̄t)
5 Σt = (I −KtCt)Σ̄t

6 return µt,Σt

Table 2.4: The Kalman filter algorithm. The algorithm updates a state at time t − 1 to
a state at time t using the measurement zt and the control ut along with the linear state
transition and measurement equations.

porated into the updated state. By computing the measurement residual by subtracting
the predicted measurement Ctµ̄t from the actual measurement zt, the new mean µt is de-
termined by adding the product of Kalman gain and residual to the predicted mean µ̄t

(expressed in line 4). Finally the covariance Σt of the new state xt is adjusted in line 5.

2.2.3 Unscented Kalman Filter

Since linear systems rarely exist while observing physical phenomena and because han-
dling nonlinearity was desired, the Kalman filter was extended allowing the estimation
of states within a system with underlying nonlinear models. These derivates are known
as the extended Kalman filter (EKF) [15] and as the unscented Kalman filter (UKF) [16].

All Kalman filters require that the underlying system is a linear Gaussian system. This re-
quirement ensures the transformation from one valid Gaussian state into another. When
nonlinear models are used to describe the dynamics, the transition and measurement
equations become

xt = g(xt−1, ut) + εt (2.28)

zt = h(xt) + δt (2.29)

where the nonlinear function g replaces At and Bt and the function h replaces Ct.

The idea of nonlinear filtering is to approximate a linear transformation by linearizing the
nonlinear functions g and h. A common linearization technique is the Taylor expansion
(which has already been introduced within the Gauss-Newton algorithm in section 2.1.2)
and is used by the extended Kalman filter. The drawback of this linearization technique
and therefore of the EKF is that the filter might perform poorly, especially when using
functions which behave highly nonlinear.

Stochastic Estimation 30

A better approach, by using a special transformation, is used by the unscented Kalman
filter. This filter linearizes a nonlinear function g at the current Gaussian state by applying
a so called unscented transformation. Here, a set of deterministic chosen sample points
(also known as sigma points), which represent the mean and the covariance of the Gaus-
sian, are computed. These points are then propagated through the nonlinear function g

and recombined to a valid Gaussian state.

In detail, the sigma points of state x with mean µ and covariance Σ are computed by

X0 = µ wm =
1

2n + 1
(2.30)

Xi = µ + (
√

Σ)i wc =
1
2

(2.31)

Xi+n = µ− (
√

Σ)i (2.32)

for i = 1, . . . , n resulting in 2n + 1 sigma points. The values wm and wc are the weights of
the sigma points and are used for the recombination of the propagated sigma points to a
transformed mean and covariance. Note that the actual values of wm and wc may differ
from application to application, but here all sigma points are weighted equally. The used
square-root

√
Σ denotes the matrix square-root (Cholesky factorization) of the positive

semidefinite covariance matrix Σ.

After obtaining all sigma points, these are propagated through the nonlinear function:

X̄i = g(Xi) for i = 0, . . . , 2n. (2.33)

The mean µ̄ and covariance Σ̄ for the new Gaussian are calculated by a weighted mean
and covariance of the propagated sigma points:

µ̄ =
2n∑
i=0

wmX̄i (2.34)

Σ̄ =
2n∑
i=0

wc(X̄i − µ̄)(X̄i − µ̄)T (2.35)

The transformation of the sigma points using the nonlinear function is visualized in fig-
ure 2.1.

Applying the unscented transformation to the Kalman filter algorithm results in the un-
scented Kalman filter, which is described in table 2.5. First, sigma points of the previ-
ous state are determined as mentioned above (line 1). These points are then propagated
through the nonlinear state transition function g in line 2. The predicted mean µ̄t and
covariance Σ̄t are then computed by recombining the propagated points where the noise
Rt is added to the covariance to resemble the uncertainty in the dynamic process (line 3
and 4).

Stochastic Estimation 31

g(x)

Figure 2.1: The unscented transformation transforms a set of deterministically obtained
points by propagating them through the nonlinear function g. Image taken from [6].

In line 5, a new set of sigma points is extracted from the newly obtained predicted state.
These sigma points, called X̄t, are propagated through the nonlinear measurement func-
tion h and the resulting values are recombined to a predicted observation z̄t and its un-
certainty St (line 6-7). In line 8 and 9, the cross covariance is computed from which the
Kalman gain is determined. From here, the computation of the new state is straightfor-
ward using the equations from the original Kalman filter.

2.2.4 Filtering Orientations

Similiar to the estimation of orientations using the method of least squares mentioned
in section 2.1.4, a way to handle the 3-manifold of orientations during filtering needs to
be established. The problem remains the same: The filter does not know anything about
the singularity-free orientation and that it cannot be handled like a vector. Actually, this
problem can be solved (as described in [10] and [6]) in a similar way as the least squares
orientation estimation.

In addition to the ⊕ operator, the inverse operator 	 is needed:

⊕ : S × Rn → S (2.36)

	 : S × S → Rn (2.37)

The following property holds for both operators:

s1 ⊕ (s2 	 s1) = s2 (2.38)

Here, the operator 	 is defined as

s1 	 s2 =

{
s1 − s2 , if vector part

aRot(s−1
1 · s2) , if rotational part

(2.39)

Stochastic Estimation 32

UNSCENTED KALMAN FILTER ALGORITHM(µt−1,Σt−1, ut, zt)
1 Xt−1 = (µt−1 µt−1 +

√
Σt−1 µt−1 −

√
Σt−1)

2 X̄ ∗
t = g(ut,Xt−1)

3 µ̄t =
2n∑
i=0

wmX̄ ∗[i]
t

4 Σ̄t =
2n∑
i=0

wc(X̄ ∗[i]
t − µ̄t)(X̄ ∗[i]

t − µ̄t)T + Rt

5 X̄t = (µ̄t µ̄t +
√

Σ̄t µ̄t −
√

Σ̄t)
6 Z̄t = h(X̄t)

7 ẑt =
2n∑
i=0

wmZ̄ [i]
t

8 St =
2n∑
i=0

wc(Z̄ [i]
t − ẑt)(Z̄ [i]

t − ẑt)T + Qt

9 Σx,z
t =

2n∑
i=0

wc(X̄ [i]
t − µ̄t)(Z̄ [i]

t − ẑt)T

10 Kt = Σx,z
t S−1

t

11 µt = µ̄t + Kt(zt − ẑt)
12 Σt = Σ̄t −KtStK

T
t

13 return µt,Σt

Table 2.5: The unscented Kalman filter algorithm uses a deterministic transformation
using samples to linearize the nonlinear transformation functions g and h.

where s1, s2 ∈ S are states containing rotational representations in SO(3). The function
aRot() is the opposite of the Rot() function mentioned earlier and computes the corre-
sponding R3 rotational representation from a SO(3) representation. The result of this
operation is the difference of two states s1 and s2, while their rotational difference is pa-
rameterized as a three-dimensional vector.

Both operations integrate almost transparently into the unscented Kalman filter. Only
the calculation of the mean out of the propagated sigma points needs to be handled in
a special way because adding within S is not possible. Solutions to this problem can be
found in [10] and [6].

Since unit quaternions are used for orientation representation throughout this work and
angle-axis vectors have been chosen as the locally defined three-dimensional rotation
representation, the formulae for both operators can be defined.

The definition of ⊕ for the rotational part is

q = qs ·
(

cos(
|r|
2

), sin(
|r|
2

)
r

|r|

)
(2.40)

Stochastic Estimation 33

where qs is the quaternion from the state S and r is the three-dimensional axis-angle
rotation representation.

The resulting rotational portion of the 	 operation is

θ = 2 arccos(q0) (2.41)

ω =
[q1q2q3]
sin(θ/2)

(2.42)

whereas q is the result of a previous quaternion multiplication q = s−1
1 · s2 with s1, s2

representing the quaternions in the state S. The scale θ and the axis ω are combined to a
single vector r by multiplication: r = θ · ω.

34

Chapter 3

Sensor Calibration

Combining the data from two sensors requires not only calibration of each sensor itself
but also a calibration between them. For the sensors used in this thesis, an inertial sensor
coupled to a camera, the calibration goal would be a proper translational and rotational
representation of the difference between the coordinate systems of camera and inertial
sensor.

Obtaining the translational displacement of both sensors is not a trivial task. Therefore,
we simplify the problem by neglecting the translational difference. This is a legitimate
option when the physical distance between both sensors is small and the system is not
rotating fast.

Two approaches that cope with the problem of finding the rotational displacement should
be mentioned. First, in [17] the relation between both coordinate systems is established by
moving the coupled sensor and fitting the measured rotational differences of each sensor
to a rotational representation. The second approach [18] is static and uses gravity as
vertical reference. Here, the inertial sensor measures the gravity using its accelerometers
and the camera measures the gravity by performing a camera calibration procedure on
a vertically placed checkerboard pattern. The resulting vector pairs are then used to
compute the rotational transformation as a closed-form solution.

3.1 Calibration Principle

The calibration technique used here shares the principle with the second approach: grav-
ity will be used as a vertical reference. But instead of separating the procedure into two
distinct steps, the camera calibration and the calibration between both coordinate sys-
tems is performed simultaneously by fitting the data into a combined model using least
squares estimation. Two advantages appear with this approach in contrast to [18]. First,

Sensor Calibration 35

Og
X

Z

Y

g

Figure 3.1: Schematic view of a camera observing the checkerboard pattern in its coordi-
nate system (marked as red within the camera) whereas the plane of the checkerboard is
aligned orthogonal to gravity g. The feature points on the plane are extracted to deter-
mine the camera-centric gravity. The attached inertial sensor measures the gravity g in its
coordinate system (marked as red within the inertial sensor). Using these measurements
at different poses is sufficient to compute the rotation between both sensors.

the least squares estimation does take the measurement noise into account. This leads to
much better estimation results than closed-form solutions provide. Secondly, due to the
combination of the camera and the rotational displacement model, not only the measure-
ment noise of the inertial-sensor has impact on the estimation of the rotational difference,
but also the uncertainty of the extraction of the camera calibration features. Of course,
the estimation of camera parameters during calibration is another welcomed side effect.

The required initial parameters for the estimation are obtained by computing the camera
calibration parameters as a closed-form solution. The resulting extrinsic parameters are
then used along with the accelerometer measurements to compute the initial rotational
difference of both coordinate systems in another quasi-linear closed-form computation.

The calibration principle is visualized in figure 3.1.

Sensor Calibration 36

3.2 Camera Model

Before using a camera to extract information about the environment, a model represent-
ing the optical behaviour of the camera is needed. A common way to model this be-
haviour is using the geometry of a pinhole camera with radial distortion [19] [20]. Here,
a relation between 3D-coordinates of a point in the world and coordinates of its corre-
sponding projection onto the image plane is known as perspective projection.

If we represent the world coordinates space in 3D-coordinates as X = [X Y Z]T and the
points on the image plane as m = [u v]T , this projection can be written as:

 x

y

z

 = qr (0

 X

Y

Z


T

)T q−1
r + t (3.1)

(
x′

y′

)
=

(
x

y

)
/z (3.2)(

u

v

)
=

(
fx

fy

)
·

(
x′

y′

)
+

(
u0

v0

)
(3.3)

The first equation transforms the world point into camera space according to the quater-
nion qr and the vector t. These values are known as the extrinsic parameters since they
describe the camera pose in the world. Equation (3.2) is the actual perspective projection,
where the three-dimensional point is projected onto the image plane as a line that passes
the camera center. The parameters in the last equation are the so-called intrinsic parame-
ters and transform points from the camera coordinate system to the image plane. fx and
fy represent the effective focal distance and u0 and v0 the image center for both axes. The
geometric relationship between the parameters in the last two equations is depicted in
figure 3.2.

The distortion of the camera is taken into account by assuming a rotationally symmetric
distortion originating from the optical axis. Each circle with radius r2 = x2+y2 is mapped
to a circle with radius r′ according to the following equation:

r′ = 1 +
a2r + a3r

2

1 + b1r + b2r2 + b3r3
(3.4)

In this model, the distortion will be calculated after the transformation to the camera
coordinate system but before the transformation to image coordinates, since the effect of
distortion is only caused by the lens.

Sensor Calibration 37

CO
CZ

CY

CX

pc

px

py

X

m

Camera center

Image plane

Principal axis

C Z

Y

f

f Y/Z

Figure 3.2: Simplified illustration of the pin-hole camera model. (Left) A point X in
camera space is projected onto the image plane p at m as a line that passes the camera
centre CO. (Right) The pose on the image plane p is computed by dividing the camera
coordinates of the point (here just the Y coordinate) by its depth Z and multiplying it
with the focal length f . These illustrations were redrawn from [20].

3.3 Rotation Between the Camera Coordinate System and the In-
ertial Coordinate System

As mentioned in the beginning of the chapter, we neglect the translational difference
and try to minimize the transformation error by reducing the physical distance between
camera and inertial sensor. The rotational difference between both coordinate systems is
modeled as a unit quaternion.

The transformation from the coordinate system of the camera to the coordinate system of
the inertial sensor reads

(0 vT
inert)

T = q (0 vT
cam)T q−1 (3.5)

where q is the quaternion defining the rotational difference between their coordinate sys-
tems, vinert is a three dimensional vector in inertial sensor coordinates and vcam a three
dimensional vector in camera coordinates.

3.4 Least Squares Estimation

Assuming that all image points are corrupted by the same but independent noise σvis

and all inertial sensor measurements are corrupted by another constant but indepen-

Sensor Calibration 38

dent noise σacc, nonlinear least squares estimation techniques can be used for parameter
estimation. The target function Q, which has to be minimized, is defined as a sum of
quadratic deviations between the measurements and the values which are predicted by
the measurement functions p and t.

Q =
∑

i

 1
σ2

vis

∑
j

(mi,j − p(fx, fy, u0, v0, k, qr,i, ti,Mj))
2 +

1
σ2

acc

(gi − t(qr,i, q, g))2


(3.6)

Here, p is the function that projects the world point Mj of image i onto the image plane
according to equations (3.1)-(3.4) and mi,j is the corresponding point on the image plane.
Note that the distortion parameters are combined in the vector k.

Function t represents the transformation of the constant gravity vector g = [0 0 − 9.81]T

from the world coordinate system to the inertial coordinate system. First, g will be trans-
formed to camera coordinate space using qr,i of image i. After that, the result will be
transformed to the inertial sensor space using equation (3.5). gi is the measured gravity
by the inertial sensor belonging to image i.

Due to the iterative nature of nonlinear least squares estimation techniques an initial
guess is required. The methods to obtain these values will be described in the following
sections.

3.5 Initial Camera Parameters

First, the initial parameters of the camera parameters need to be calculated. The method
used here was first presented in [21] and will be applied to the camera model introduced
above.

Representing the world and image points as homogenous vectors, e.g. M = [x y z 1]T

for the world points and m = [x y 1]T for the image points, the projection can also be
written as

s m = A [R t] M (3.7)

where s is an arbitrary scale factor, R a rotation matrix, t are the extrinsic parameters
defining the camera coordinate system in world coordinates and

A =

fx 0 u0

0 fy v0

0 0 1

 (3.8)

contains the intrinsic parameters.

Sensor Calibration 39

By observing that all the world points lie on a plane with Z = 0, equation (3.7) reads u

v

1

 = A [r1 r2 t]

 X

Y

1

 (3.9)

The term A[r1 r2 t] can also be expressed as a homography H (see [20]) between the
image plane and the plane in the world leading to

H = λA [r1 r2 t] (3.10)

where λ is a scale factor.

By exploiting the fact that r1 and r2 are orthonormal, two constraints out of equation (3.9)
can be deduced for each image:

hT
1 A−T A−1h2 = 0 (3.11)

hT
1 A−T A−1h1 = hT

2 A−T A−1h2 (3.12)

(3.13)

Denoting A−T A−1 as the symmetric matrix B leads to

B = A−T A−1 =

 f−2
x 0 −(f2

xu0)−1

0 f−2
y −(f2

y v0)−1

−(f2
xu0)−1 −(f2

y v0)−1 u2
0

f2
x

+ v2
0

f2
y

+ 1

 (3.14)

for our camera model. Knowing that hT
i B hj = vT

ijb, where b = [B11B12B22B13B23B33]
T

and vij = [hi1hj1, hi1hj2 + hi2hj1, hi2hj2hi3hj1 + hi1hj3, hi3hj2 + hi2hj3, hi3hj3]
T ,allows

to form two equations for each image of the world plane:(
vT
12

(v11 − v22)T

)
b = 0 (3.15)

By stacking up 2n equations of all n images, the solution for b is the right singular vector
of the stacked up equation matrix belonging to the smallest singular value.

With the knowledge of b, it is now possible to compute the intrinsic parameters according
to equation (3.14):

Sensor Calibration 40

v0 = −b2,3

b2,2
(3.16)

u0 = −b1,3

b1,1
(3.17)

λ = b1,3 u0 + b2,3 v0 + b3,3 (3.18)

fx =

√
b1,1λ

b1,1
(3.19)

fy =

√
b2,2λ

b2,2
(3.20)

(3.21)

Assembling the intrinsic matrix A out of these values makes it possible to deduce the
extrinsic parameters from (3.10):

r1 = λA−1h1 (3.22)

r2 = λA−1h2 (3.23)

r3 = r1 × r2 (3.24)

t = λA−1h3 (3.25)

(3.26)

with λ = 1
|A−1h1| .

Q = [r1r2r3] might not necessarily be a valid orthogonal matrix due to measurement
noise. One way to compute the best rotation matrix R for Q is to find the smallest Frobe-
nius norm of their difference. Decomposing Q to UΣV T using singular value decompo-
sition and multiplying

R = UV T (3.27)

leads to the desired result. Finally, R is converted to a quaternion qr according to [22].

In contrast to [21], no initial guesses will be computed for the distortion parameters. In
practice, setting the distortion parameters to zero will be sufficient for the least squares
method to obtain the actual distortion coefficients.

3.6 Initial Rotation Between Camera and Inertial Sensor

Out of the extrinsic parameters of each observed plane, the quaternion which minimizes
the error between the gravity in camera coordinates and the measured gravity of the
sensor can be computed using the method provided by [23].

Sensor Calibration 41

First, the constant gravity g is transformed into camera coordinate space using the extrin-
sic parameter qr for every image.

After that, the problem of finding the quaternion, which rotates from camera to inertial
space by minimizing the error between inertial measurements vacc and the rotated grav-
ities from camera space vvis to inertial space, can be written as finding the maximum of
the sum of their products

max
∑

i

(q vvis,i q−1) · vacc,i (3.28)

in which the vectors are augmented by a preceding 0. This term can also be written as:

max
∑

i

(q vvis,i) · (vacc,i q) (3.29)

By writing the quaternion product as a matrix-vector multiplication

q v =


0 −vx −vy −vz

vx 0 vz −vy

vy −vz 0 vx

vz vy −vx 0

 q = V q (3.30)

v q =


0 −vx −vy −vz

vx 0 −vz vy

vy vz 0 −vx

vz −vy vx 0

 q = V q (3.31)

the sum can be written as:

max qT

(∑
i

Vvis,iVacc,i

)
q . (3.32)

The unit quaternion that maximizes this expression is known to be the eigenvector cor-
responding to the largest positive eigenvalue of the sum of Vvis Vacc multiplications.

A better way to compute this sum is possible by exploiting certain properties of the ma-
trices and is given in [23].

3.7 Calibration Procedure

The calibration procedure that was used for calibration of the used sensor can be de-
scribed in five distinct steps:

Sensor Calibration 42

Figure 3.3: Two example images of the camera directed to the checkerboard pattern with
annotations of the feature point extraction. The green crosses show an estimated pro-
jection established from a homography which was estimated out of the pattern’s four
corner points. These points were fed to the feature point detector algorithm, resulting in
the set of purple crosses which were used for the calibration. This procedure was inspired
by [25].

1. Multiple images of a checkerboard pattern lying orthogonal to gravity were taken
(see figure 3.3) and the accelerometer measurements along with the corresponding
image files were saved.

2. The feature points were extracted using [24], and a homography between all feature
points on the image plane and the world plane was estimated for every image.

3. These homographies were then used to determine the initital camera parameters.
In contrast to the described camera model above, the model was slightly simplified.
Only one parameter for the focal length of both axes is estimated. This simplifica-
tion is based on the fact that the focal length for the used camera in this procedure
should have the same value for both axes.

4. Once the extrinsic parameters were obtained, the initial quaternion representing
the rotation between camera space and inertial sensor space was computed.

5. After obtaining all initial parameters, a nonlinear least squares estimation using the
Levenberg-Marquardt algorithm was performed to refine the results.

Sensor Calibration 43

0

200

400

600

0

200

400

600

800

1000
0

100

200

300

400

500

600

700

Y
grid

66
77

1010

99

44
553388

X
grid

11

22

Z
gr

id

Figure 3.4: Three dimensional view of the extrinsic parameter results obtained through
the calibration procedure. The ten different poses of the camera, which were used for the
calibration, are shown in the coordinate system of the checkerboard grid originating at a
corner of the pattern. The unit of the axes is milimeters.

3.8 Results

The calibration procedure has been successfully applied to the used camera-inertial sen-
sor. The results of the extrinsic parameters are shown in figure 3.4 to give an impression
how the system was positioned while the calibration data were obtained.

Since the actual values of the parameters depend on the chosen sensor and calibration
setup (and therefore will not be mentioned here), the calibration perfomance can be mea-
sured by evaluating the root mean square. The root mean square of the residuals for both
the projection of the feature points and the rotation of the gravity into inertial sensor
coordinates are shown in table 3.8.

As expected, the least squares estimation improves the initial estimation considerably.
While the vision results speak for themselves, the root mean square of the rotation corre-
sponds to a mean rotational difference of 0.26◦ between measurements of gravity by the

Sensor Calibration 44

RMS Vision [pixel] Rotation [m/s2]

initial estimate 15.8843 17.0174 1.2326 1.0543 0.1708
least squares estimate 0.2128 0.2119 0.0307 0.0315 0.0386

Table 3.1: The root mean square values before and after the least squares refinement.

inertial sensor and the earth’s gravity rotated into the coordinate system of the inertial
sensor using the estimated parameters.

45

Chapter 4

Modeling a Ball in Flight

This chapter describes the fundamental models that are used to estimate the state within
the dynamic system of a ball in flight which is observed by a free moving camera-inertial
sensor.

Starting with a description of the to-be-estimated state, this chapter will explain the un-
derlying dynamic and measurement models and their representation in both estimators.
Futhermore, a brief description of the noise parameters within the model will be given
and an algorithm for computing these parameters from sensor data will be presented.
Finally, the variables and parameters of the model and the differences in the models for
the unscented Kalman filter and the least squares estimation will be summarized.

4.1 System State

The state of a flying ball observed by a free moving camera-inertial sensor is modeled as
a combination of ball and sensor state. With respect to a global coordinate system, the
ball state is given by position and velocity

~xball = (xb, yb, zb)
T (4.1)

~vball = (vxb, vyb, vzb)
T (4.2)

while the sensor state is given by

~xsensor = (xs, ys, zs)
T (4.3)

~vsensor = (vxs, vys, vzs)
T (4.4)

qsensor = (q0, q1, q2, q3)
T (4.5)

(4.6)

Modeling a Ball in Flight 46

denoting position, velocity and orientation of the sensor. The orientation is encoded as a
unit quaternion which avoids singularities. This makes a total number of 16 components
in the state, from which four are not in Euclidean space. However, using the techniques
from section 2.1.4 and 2.2.4, small changes can be applied to the state by ⊕ with d, in
which d is a R15 (the orientation is represented in R3) vector. In this way, the problems of
estimating orientations are hidden from the estimation algorithms.

4.2 Underlying Dynamic Model

The dynamic model describes the change of state in a system over time. Here, the used
state contains two parts, the ball’s state and the sensor’s state.

The dynamics of the ball state are described by classical mechanics along with the con-
sideration of air drag, which influences the ball in flight. This rather precise model is
necessary since the quality of tracking and predicting a flying ball relies on how well the
model reflects the actual properties of the flight.

The dynamics of the ball in flight can be expressed as two first order differential equa-
tions [7]:

~̇v = ~g − α |~v| ~v (4.7)

~̇x = ~v (4.8)

with g representing the gravity. α represents the effect of air drag and is composed of α =
cdAρ
2m , where cd is the characteristic drag of the object moving in a fluid (also known as the

drag coefficient), A is the cross-sectional area of the moving object, ρ is the density of the
fluid in which object is moving, and m is the object’s mass. From [26], the actual values
for a flying soccer ball are A = 0.039 m2 for the cross-sectional area, ρ = 1.2 kg m−3 for
the density of air, cd = 0.2 for the drag coefficient of a sphere and m = 0.43 kg resulting
in α = 0.011 m−1.

Table 4.1 shows how important it is to incorporate air drag into the dynamic model of
the ball. Here, flights at different initital velocities with and without consideration of air
drag are compared.

Initial velocity [m/s] 5 7 10 15 20 30 40
Length in [m] with α = 0 m−1 2.51 4.95 10.12 22.90 40.70 91.67 163.04
Length in [m] with α = 0.011 m−1 2.45 4.78 9.32 19.22 30.59 53.85 74.65

Table 4.1: Comparision of the length of ball flight trajectories with different starting ve-
locities. The initial release angle is 45◦.

Modeling a Ball in Flight 47

At lower ball speeds, the air drag might be negligible, but the higher the speed the more
significant the drag becomes. At an initial velocity of 40 m/s, which is comparable to
the initial velocity of a common goal kick, the lengths of the flights differ by more than
the double. Therefore, state estimations and predictions of fast flying balls without this
phenomenon in mind would become excessively incorrect. This makes the incorporation
of air drag a vital requirement for the precision of model and prediction.

It should not be left unmentioned that the model might be extended by integrating the
Magnus effect [27], which describes the interaction of a spinning ball with the air, result-
ing in a curved flight. Practically, this effect would be hard to integrate since measuring
the spin of the ball with a simple sensor setup would be very inaccurate and additional
dynamic equations modeling this spin would be required, which would make the model
as a whole quite complex.

Unlike the ball, the dynamics of the sensor are not influenced by the environment. The
dynamics are again obeying classical mechanics, which are coupled to the measurements
of the inertial sensor. The only trick here is to rotate the accelerometer measurements
into world coordinates before applying them since all inertial measurements are made in
local coordinates.

According to [28], the change of the orientation forward in time is expressed as the map-
ping of the angular velocity into the tangent space of the used parameterization. For a
quaternion parameterization, the mapping is expressed as

q̇ =
1
2
(0, ωT)T · q (4.9)

where q is the quaternion and ω represents the angular velocity measured by the inertial
sensor.

With the updated orientation, the accelerometer values of the sensor are used to update
velocity and position. First, the above mentioned rotation into world coordinates is per-
formed. After that, the gravity of earth is subtracted from the measured acceleration,
resulting in the geometric acceleration of the moving sensor.

Therefore, the differential equations expressing the relation between velocity, position
and measured acceleration read

~̇v = ~g + q · (0,~aT)T · q−1 (4.10)

~̇x = ~v (4.11)

where ~x is the position, ~v is the velocity, ~a is the measured acceleration and ~g is the gravity
vector.

Modeling a Ball in Flight 48

4.2.1 Integration Into the Unscented Kalman Filter

Nonlinear Kalman filters require the dynamic model to be a function, which is usually
denoted as g. This function serves as the state transition function and predicts the actual
state at time t from the previous state at time t− 1.

This prediction is performed by integrating the differential equations over time. Assum-
ing constant measurements during a certain time interval δt, a simple although not too
accurate but computationally efficient way to compute this integration is Euler’s method.
Here, the solution for a first order differential equation is approximated by a first order
Taylor expansion.

Using Euler’s method, the state transition from time t− 1 to t for the ball reads

~vt = ~vt−1 + (~g − α |~vt−1| ~vt−1)δt (4.12)

~xt = ~xt−1 + ~vt−1δt (4.13)

where ~x is the position and ~v is the velocity. Their subscripted indices denote the timestep
whereas δt is the elapsed time between both timesteps.

The equations for the state transition of the sensor based on the differential equations
read:

qt = qt−1 · Rot(ω · δt) (4.14)

~vt = ~vt−1 + (~g + qt−1 · (0, ~aT
t)T · q−1

t−1)δt (4.15)

~xt = ~xt−1 + ~vt−1δt (4.16)

The transition to ~vt and ~xt follows right out of the differential equations. The calcula-
tion of the quaternion at time t is done by a quaternion multiplication. The first factor is
the quaternion qt−1 from the previous state. The second factor is the quaternion result-
ing from applying Rot() to the multiplication result of the measured angular velocity ω

and the temporal difference δt between both states. The function Rot() is known from
section 2.2.4. The solution for this integration was taken from [17].

4.2.2 Integration Into the Least Squares Method

Based on the function g of the unscented Kalman filter, the functions for the least squares
method are obtained by rearranging the integrated function equations to obtain the in-
verse state transition function. For the ball, the virtual measurement function hdynB

reads:

~vt−1 =
−vt + g δt

−1 +
1
2
− 1

2

√
1−4 α δt|−~vt+g δt|

δt

(4.17)

~xt−1 = ~xt − ~vt−1δt (4.18)

Modeling a Ball in Flight 49

The first equation looks quite complicated in contrast to its counterpart in the forward
dynamic function of the Kalman filter. Because norm and vector of the velocity exist
within the differential equation 4.7, rearranging is not trivial and makes the equation
look deformed.

The semi-virtual measurement function for the sensor dynamics hdynS can be expressed
as

~xt−1 = ~xt − (~vt − ~vt−1)δt (4.19)

~at = q−1
t−1 · [0, (~vt − ~vt−1)T δt− gT]T · qt−1 (4.20)

ω =
aRot(q−1

t−1 · qt)
δt

(4.21)

where ~xt−1 is the position of the sensor at time t − 1 and a and ω are the predicted ac-
celeration and angular velocity at time t. The predicted angular velocity is computed
using the function aRot, which calculates the the three dimensional representation of the
rotational difference of the quaternions qt−1 and qt. Dividing the rotational difference by
δt results in the predicted angular velocity between both states at t− 1 and t.

In contrast to the virtual measurement function for the ball dynamics, this function is not
completely virtual since measurements are involved. These measurements are not suffi-
cient since each measurement of the inertial sensor provides six degrees of freedom, but
the dynamics are described by nine parameters. The missing three degrees of freedom
are gained by computing the predicted position of the sensor out of the state variables at
time t− 1 and t, which makes the function semi-virtual.

4.3 Measurement Model

For the purpose of estimating the state of a flying ball using a camera-inertial sensor,
model functions for the non-dynamical measurements done by the camera need to be
defined. First, the measurement of the ball within the camera image has to be included
into the estimation process. Furthermore, one might want to stabilize the sensor pose
estimation by evaluating known points of the environment within the image. This is
necessary since the error in position from the inertial sensor accumulates over time.

These functions are known as measurement functions and are the same for both estima-
tors. The functions are based on the projective geometry-based camera model, which was
introduced in section 3.2, and were taken from the work of [19]. Here, the measurement
function for the ball calculates the center point and diameter of the ball’s circle in the im-
age from the current system state and the always known ball diameter. This function is
denoted as hmeasB . The second measurement function, the relation between the known
landmark points in the environment and their corresponding position in the image, is

Modeling a Ball in Flight 50

modeled by a transformation of three-dimensional world coordinates into image coordi-
nates using the equations given in the projective camera model. This function is denoted
as hmeasS .

Within this work, the orientation of the inertial sensor with respect to the field is used as
the orientation in the state. To incorporate the measurement functions of the camera cor-
rectly, the orientation needs to be transformed into the camera coordinate system. Here,
the estimated rotational difference between both sensors estimated from the calibration
procedure comes into play. The orientation in the camera coordinate system is computed
by applying this rotational difference to the inertial sensor orientation.

4.4 Noise

So far, the state transition and measurement process are handled deterministically as the
functions xt = g(xt−1) and zt = h(xt) respectively. In order to get the above model
functions to work within both estimators, it is necessary to expand this deterministic
approach.

From equations (2.1), (2.28) and (2.29) it is known that the state transition and the mea-
surements need to be modeled with noise in mind. For the unscented Kalman filter, the
noise of the system is given by three covariance matrices R, QmeasS and QmeasB . R is
known as the process noise, and its diagonal contains the squared standard deviations of
the uncertainty in the state transition (given in the corresponding units of the state). The
other covariance matrices, QmeasS and QmeasB , represent the uncertainty of their corre-
sponding measurement functions in each timestep. The diagonal contains the squared
standard deviations of the assumed error in pixels.

Similar to Kalman filters, the uncertainty in the least squares method is represented by
a set of covariance matrices. Here, every measurement function hn has a corresponding
covariance matrix Σn. Since four measurement functions exist in the model to describe
the system, the four covariance matrices ΣdynS , ΣdynB , ΣmeasS and ΣmeasB need to be
defined within the least squares estimation.

It is clear that if one wants to compare both estimators, the same values must be used
in the various covariance matrices of both estimators. In the modeled system here, all
but two classes of covariances have exactly the same values. The difference between the
two variance classes is due to the difference of the dynamic model functions between
Kalman filter and least squares estimator. The Kalman filter models the sensor dynamics
as a state transition function incorporating the inertial measurement zt into the state xt−1.
Therefore, the uncertainty in this process is expressed as a covariance using the units of
the state (m/s and rad). In contrast to the Kalman filter, the dynamic functions of the least
squares estimator are inverse state transition functions. The predicted measurement zt is

Modeling a Ball in Flight 51

computed out of the states xt and xt−1. Therefore, the uncertainty is expressed in units of
the sensor measurements (m/s2 and rad/s). Conversion of these noise parameters into
parameters of the Kalman filter is done by multiplication with δt.

4.5 Model Parameter Determination

In the preceding sections, various parameters within the model were introduced. These
parameters include the intrinsic parameters of the camera, the rotational displacement
of camera and inertial sensor, the degree of air drag influencing the ball in flight and
the noise of the dynamic and measurement process. For some of those parameters, the
computation of the actual values were already shown along with their introduction.

It is known that the camera parameters and the rotational difference may be computed
from the calibration procedure. Furthermore, the value determining the air drag of a
flying ball was mentioned in the introduction of the ball dynamics. The only parameters
left unmentioned are the various noise parameters within the model.

Actually, a-priori knowledge may be used to set some of the noise parameteres to rea-
sonable values. First, the noise parameters influencing the dynamics of ball and sensor
may be held constant. These values are actually known quite well prior to the evalua-
tion. Under the assumption that the whole dynamics error is only caused by the error
in the velocity, the translational error may be set to a very small value (e.g. (1 mm)2 for
the ball and (2 cm)2 for the sensor). Zero would be the optimal value for the ball but
the assignment of zero to the covariances causes numerical problems. The value for the
error in velocity in each timestep models disturbances of the assumed physical model.
In this evaluation, the covariance of the velocity ranged from (1 cm/s)2 for rather short
to (2.5 cm/s)2 for longer flights (to model the effects of wind and ball spin). The noise
parameters regarding the measurements of the inertial sensor can be computed from ob-
serving and analyzing the noise of a resting sensor.

How to obtain suitable values for the remaining parameters of the measurement uncer-
tainty will be addressed in the upcoming section by introducing a parameter learning
algorithm.

4.5.1 Algorithm

Having obtained a dataset by observing the flight of a ball in a known environment, the
noise parameters of the model can be calculated from the likelihood of the probability
density distribution

p(Z | X, θ) (4.22)

Modeling a Ball in Flight 52

LEARN MEASUREMENT NOISE PARAMETERS(Z,ΣmeasB,ΣmeasS)
1 ΣdynS ← set manually to a reasonable value
2 ΣdynB ← set manually to a reasonable value
3 while not converged
4 do
5 compute optimal X out of Z and Σ’s
6 Zmeas = ZmeasB ∪ ZmeasS

7 σmeas ←
√

1
|Zmeas|

∑
i (Zmeas,i − hmeas(X))

8 ΣmeasB ← σ2
meas

9 ΣmeasS ← σ2
meas

10 return ΣmeasB,ΣmeasS

Table 4.2: Iterative algorithm for learning the measurement noise parameters out of the
measurement data.

where Z are the obtained measurements, X are the states of the system associated with
the measurements and θ denotes the set of unknown noise parameters. By maximiz-
ing this likelihood with respect to θ, the answer to the problem of finding suitable val-
ues for the parameters can be given. The algorithm that performs this maximization for
the model used here computes the optimal values of the ball measurement uncertainty
ΣmeasB and the landmark measurement uncertainty ΣmeasS using their measurements
ZmeasB and ZmeasS out of Z and is presented in table 4.2.

The algorithm executes the following three steps until the convergence criterion is reached.

1. Compute the optimal X for the measurements Z using all necessary covariances
(line 5). The optimal X may be found using the method of least squares.

2. Unify the measurement classes ZmeasB and ZmeasS into one class Zmeas (line 6).
Compute the root mean square of the residuals, resulting from the subtraction of
hmeas(X) from Zmeas, where hmeas is either the measurement function of the ball or
the landmark (line 7). The result of this operation is a scalar.

3. Set the diagonals of the covariance matrices of the ball and landmark measurement
to the obtained value. (lines 8-9).

After the convergence criterion is reached, the resulting values for ΣmeasB and ΣmeasS are
the covariances that maximize the probability density function from the equation 4.22.

Please note that the computed scalar is assigned to all diagonal components of both co-
variance matrices. Why this has to be the case will be explained in the derivation below.

Modeling a Ball in Flight 53

4.5.2 Mathematical Derivation

This section provides a mathematical derivation of the algorithm. As it is known from
above, the problem is to maximize the probability density function 4.22 with respect to
the model parameters θ.

The iterative structure of the algorithm is based on the Expectation-Maximization algo-
rithm [29]. It is used for computing the maximum likelihood estimates of the parameters
X in probabilistic models which depend on unknown variables (ΣmeasB and ΣmeasS in
this case). The maximization is performed by computing an expected value from the
measurements and an initial guess of the variables (this computation is found in line 5).
The maximum likelihood of the parameters is then computed by adjusting θ in such a
way that the expected likelihood becomes a maximum (performed in line 7). By assign-
ing the values found in the last step as the new variable estimates, the overall maximum
likelihood is found by iteration.

For the calculation of the parameters that maximize the likelihood, the split-up of the
whole problem into several sub problems should be considered first. The measurements
Z and the optimal states X are being held fixed, so the problem reduces from the maxi-
mization of one complex function to the maximization of the individual probability den-
sity function of each measurement class:

p(Z | X, θ) =
∏

i

p(Zi | X, θi) (4.23)

Here, Zi contains the measurements of measurement class i (e.g. ball measurement
through computer vision) and θi are the noise parameters belonging to this class.

Denoting a set of measurements belonging to a certain measurement class as Z and repre-
senting the uncertainty in the measurement as σ, the to be maximized function becomes

p(Z | x, σ) =
∏

i

p(zi | x, σ) (4.24)

=
∏

i

1√
2πσ2

exp(−(zi − f(x))2

2σ2
) (4.25)

where f is the function computing the expected measurement from the optimal state X .

By computing the positive logarithm, which preserves the maximum of the function, the

Modeling a Ball in Flight 54

function then reads

log p(Z | x, σ) =
∑

i

(
−1

2
log 2πσ2 − (zi − f(x))2

2σ2

)
(4.26)

= −n

2
log 2πσ2 −

∑
i

(
(zi − f(x))2

2σ2

)
(4.27)

= −n log 2π

2
− n log σ − 1

2σ2

∑
i

(zi − f(x))2 (4.28)

from which the first derivative with respect to σ is:

d

dσ
log p(Z | x, σ) = −n

σ
+

1
σ3

∑
i

(zi − f(x))2 (4.29)

The maximum of the function is then obtained by setting the first derivative to zero and
solving the resulting equation for σ:

σ =

√
1
n

∑
i

(zi − f(x))2 (4.30)

Therefore, given a set of measurements and the corresponding optimal state of the sys-
tem, the maximum of the initial probability density distribution is found by computing
the σ of the individual measurement classes. But only one single σ is computed for the co-
variances of different measurement functions within the algorithm. To explain this fact,
a simple example involving two measurements will be given, which shows interesting
properties regarding the computation of different covariances at once.

4.5.3 Counter Example

This counter example will show why the estimation of two covariances at once will give
paradoxical results.

Considering two measurements of a state X denoted as z1 = 0 and z2 = 1 with the
covariances σ2

1 and σ2
2 , what does the probability density function

p(z1 = 0, z2 = 1 | X, σ1, σ2) (4.31)

look like with respect to σ1 and σ2 with X optimal?

To answer this, the optimal X is first computed from the function by applying Bayes’ rule
and omitting the denominator and second factor:

p(X | z1 = 0, z2 = 1, σ1, σ2) ∝ p(z1 = 0, z2 = 1 | X, σ1, σ2) (4.32)

(4.33)

Modeling a Ball in Flight 55

By assuming a Gaussian distribution and independence between all measurements, the
function may be written as the product of two Gaussian distributions.

p(z1 = 0, z2 = 1 | x, σ1, σ2) (4.34)

= p(z1 = 0 | x, σ1, σ2) p(z1 = 1 | x, σ1, σ2) (4.35)

=
1√
2πσ2

1

exp
(
−1

2
(0− x)2

σ2
1

)
· 1√

2πσ2
2

exp
(
−1

2
(1− x)2

σ2
2

)
(4.36)

Again, this can be solved by calculating the logarithm of the function:

log p(z1 = 0, z2 = 1 | x, σ1, σ2) (4.37)

= − log σ2
1 −

x2

σ2
1

− log σ2
2 −

(1− x)2

σ2
2

(4.38)

Since the goal is to find the maximum likelihood of the function, computing the first
derivative

d

dx
log p(z1 = 0, z2 = 1 | x, σ1, σ2) = − x

σ2
1

+
(1− x)

σ2
2

(4.39)

and setting this derivate to 0 leads to the desired optimal state:

x =
σ2

1

σ2
1 + σ2

2

(4.40)

From here, calculating the distribution of the two measurements using the newly ob-
tained optimal state is obvious:

p(z1 = 0, z2 = 1 | σ1, σ2) (4.41)

=
1√
2πσ2

1

exp(−1
2

(0− σ2
1

σ2
1+σ2

2
)2

σ2
1

)
1√
2πσ2

2

exp(−1
2

(1− σ2
1

σ2
1+σ2

2
)2

σ2
2

) (4.42)

Unlike the previous two occasions, the negative logarithm is computed (because of cos-
metic purposes for the visualization) . This will inverse the outcome of the function val-
ues and therefore the minimum of the resulting function will be its maximum likelihood.
Please note that the preceding factor is just for the elimination of the 1

2 .

−2 log p(z1 = 0, z2 = 1 | x, σ1, σ2) (4.43)

= const.+ log(σ2
1) + log(σ2

2) +

σ2
1

σ2
1+σ2

2

σ2
1

+
1− σ2

1

σ2
1+σ2

2

σ2
2

(4.44)

Modeling a Ball in Flight 56

Figure 4.1: Surface plot of the likelihood function with respect to σ1 and σ2. The black
line illustrates the function value for σ1 = σ2.

By expanding and reducing the latter fractions and ignoring the preceding constant term,
the function finally becomes:

− 2 log p(z1 = 0, z2 = 0 | x, σ1, σ2) = log(σ2
1) + log(σ2

2) +
1

σ2
1 + σ2

2

(4.45)

By looking at the function (a surface plot is shown in figure 4.1), it can be seen that there
is no minimum but only a saddle point at σ1 = 0.5 and σ2 = 0.5.

Besides this, the problem that may occur for the algorithm is that if one covariance is ap-
proaching zero during the iteration the other covariance may have a significantly larger
value, whereas the function value still becomes minimal. It seems that putting all the cer-
tainty only into one measurement while ignoring the certainty of the other measurement

Modeling a Ball in Flight 57

is the maximization of the likelihood.

Of course, within this two measurement example, putting all certainty into one measure-
ment while ignoring the other does not make sense. Practically, this makes the problem
of finding the maximum likelihood, in which the covariances still make sense, difficult.
Explaining this behavior in detail and its impact to any mixed Gaussian is not part of this
thesis, but since all measurements that are obtained from the sensors should be used for
the estimation purposes of this thesis, a way to handle this problem is required.

A simple solution preventing the algorithm of finding its way into this area is achiveved
by combining all single covariances and expressing them as one covariance. For the two-
measurement example above, combining the covariances into one (σ1 = σ2) leads to the
black line in figure 4.1. As can be seen, this constraint solves the problem of misdirection
within this example and the minimum of the function is σ1 = σ2 = 0.5.

The behavior of this example might easily be expanded to any other function involving
several covariances. Therefore, the uncertainties of the ball and landmark measurements
are expressed as a single covariance to prevent the computation of wrong values in the
algorithm. Actually, finding the real maximum likelihood of mixed Gaussian distribu-
tions with respect to real measurement data will fail due to this constraint. Nevertheless,
the likelihood found by the algorithm above should reflect the maximum with respect to
the constraint of the unified covariances.

4.6 Summary

After describing what is necessary to model a ball in flight which is observed by a camera-
inertial sensor, the involved variables and parameters neeeded for the estimation are
presented in table 4.3. It can be seen that all model parameters are obtained prior to the
estimation process. Of course, the measurement data are gained from the sensors during
the experiments in which the flight of a ball is observed. The state is computed during
the actual estimation process.

Modeling a Ball in Flight 58

Model variable Obtained from

Measurements
Inertial: zdynS Sensors

Vision landmark: zmeasS during
Vision ball: zmeasB experiments

State x
Ball: ~xball, ~vball Estimation at

Sensor: ~xsensor, ~vsensor, qsensor runtime

Noise

Dynamic: ΣdynB and part of ΣdynS Manual guess
Inertial measurement: Observation of

part of ΣdynS a resting sensor
Vision measurement: Measurement noise
ΣmeasB and ΣmeasS determination algorithm

Further parameters

Camera parameters and Sensor
rotation between sensors calibration

(used by hmeasB and hmeasS) procedure
Air drag α Manual computation

Table 4.3: Tabulated summary of all parameters and variables involved in the process of
estimating the state of flying ball observed by a camera-inertial sensor.

To clarify the differences between the necessary model functions of the unscented Kalman
filter and the method of least squares, these are summarized in table 4.4.

Kalman Filter Least squares

Dynamics
Forward dynamics Virtual measurement

function g for functions hdynB (ball)
sensor and ball and hdynS (sensor)

Measurements
Measurement function hmeasB for ball

and hmeasS for sensor

Dynamic noise
Covariance matrices

Covariance matrix R ΣdynB (ball)
and ΣdynS (sensor)

Measurement noise
Covariance matrices Covariance matrices

QmeasB (ball) ΣmeasB (ball)
and QmeasS (sensor) and ΣmeasS (sensor)

Table 4.4: Tabulated comparison of the needed functions and uncertainty parameters for
a Kalman filter and the method of least squares to estimate the state of a flying ball using
a camera-inertial sensor.

59

Chapter 5

Experimental Setup and
Implementation

In the previous chapters, all vital parts to implement a system that is capable of estimat-
ing the state of a flying ball using a camera-inertial sensor by two different estimators
were described. Since the goal is to analyze the quality of prediction during a ball flight,
comprehensible experiments needed to be performed which served as input data for the
estimators.

This chapter deals with how and where the experimental data for the evaluation were
obtained. Furthermore, it explains how the actual ball bounce point on the field was
calculated from the camera image of the ball bounce, how both of the estimators were
implemented using the model functions of the previous chapter and how the upcoming
states of the ball can be predicted.

5.1 Sensor Setup

The sensors used in this experiments were a Basler A310f Firewire camera paired with a
4.2 mm wide angle lens and a XSens MTx inertial sensor. Both sensors were mechanically
combined on a common bicycle helmet (see figure 5.1). First, the inertial sensor was
attached directly onto the top of the camera, so that the distance between both sensor
coordinate system origins became as minimal as possible. After that, camera and inertial
sensor were mounted onto the helmet so that the view of the camera corresponded to the
view of the person wearing the helmet.

Both sensors sent their measurement data at a rate of 54 Hertz to a portable computer
which was held by another person who was attending the experiment (alternatively, the
computer might be stored in the helmet wearer’s backpack). Additionally, the camera

Experimental Setup and Implementation 60

Figure 5.1: Used sensor setup for the experiments. (Left) The sensor setup viewed from
the side. The photograph shows how the inertial sensor is mounted on top of the camera,
the connection cable of each sensor and the synchronization cable between both sensors.
(Right) The sensor setup shown from the front. The camera is mounted inclined onto the
helmet so the view of the person wearing the helmet matches the view of the camera.

and the inertial sensor were connected to each other through a synchronization cable.
This cable ensured that each inertial sensor measurement corresponded to a single im-
age captured by the camera, which made the recombination of data at a later date more
reliable.

Three processes were running on the portable computer during the experiments to col-
lect the incoming measurement data. The first process, the camera-server, recorded the
incoming images from the camera and saved them onto the disk using the timestamp
as the filename. The second process, the inertial-server, accepted all the arriving mea-
surement data on the serial bus from the inertial sensor and sent them over to the third
process, the logger, which saved each measurement along with the current timestamp to
a file. Therefore, the resulting data of an experiment was a set of images on the hard disk
and a set of inertial sensor data stored in a file, which were coupled by timestamps. The
software implementation used for controlling and accessing the setup was based on the
implementation by Kurlbaum [6].

5.2 Experimental Environment

All experiments were performed on a real-size synthetic turf soccer field. The dimension
of the field, the dimension of the lines defining the different areas of the field and the
width and height of the goals were measured for the creation of a model of the field
which was used by the vision based localization.

Experimental Setup and Implementation 61

The used balls in this experiments were standard soccer balls with a diameter of 0.22 m

and a weight of 0.43 kg.

5.3 Experimental Procedure

The experiments were performed along the following procedure:

1. The sensor setup was calibrated using the sensor calibration procedure.

2. The noise of the inertial sensor was determined by observing the noise of a resting
sensor.

3. The helmet with both sensors was then worn by a person who was moving around
the soccer field. On this field, the person observed various ball flights which were
initiated by another person. The observed ball flights were part of common soccer
situations like corner kicks, shots on goal and passing.

In fact, the determination of the noise parameters of the inertial sensor was done at a
much later date, which may have lead to inaccurate results, since the measurements de-
pend on environmental conditions such as the temperature. Better results may be ob-
tained when the noise parameters are obtained directly after or shortly before the exper-
iment.

5.4 Image Preprocessing and Field Model

Before the experiments could be evaluated, the images had to be preprocessed. For this
evaluation, the relevant features of the environment needed to be extracted out of the
images so that they could be fed to the estimators.

Here, the extraction of features out of the images was done manually. A software (fig-
ure 5.2 left) read the set of images of a ball flight scene, and the location and size of
the ball were extracted through user interaction. Similarly, the location of relevant field
points was obtained by marking their position in the image manually.

The relevant points on the field are defined by a model, which was created from the
measurement of the line and goal dimensions of the field. These points, which are also
called landmarks, are: all intersections of two lines on the field, the lower end of the goal
posts, the intersections of the goal post and the crossbar and the penalty spot. Every
landmark is identified by a unique number. The whole set of landmarks on the field is
depicted in the right subfigure in figure 5.2.

Experimental Setup and Implementation 62

�� �� ��

��

��

��

��

����

��

����

����

��

��

��

��
��

��

��

��

��

��

����

����

����

����

��

�� ��

��

�� ��

Figure 5.2: Extracting the image information using a field model. (Left) Screenshot of the
software used for extracting the ball (marked as black circle) and the landmark points
(marked as purple crosses) out of the camera images. (Right) Sketch of a soccer field
showing the used landmark points as dots.

Because of this manual image processing, all measurements for the extracted balls and
landmarks are given in integers.

5.5 Measuring Ground Truth

In practice, acquiring the real bouncing point of a ball is not that easy to accomplish.
Actually, there is no way to measure the real point, since the ball leaves no permanent
mark on the field which would allow a manual measurement.

For the evaluation of these experiments, the actual bouncing point of the ball was deter-
mined using an estimated homography H between at least four landmarks on the field
plane X (given in world coordinates) and their corresponding undistorted points in the
image m

m = H X (5.1)

where X and m are given in homogenous coordinates.

With this homography, the world coordinates of any point on the field plane can be com-
puted from measurements within the image plane. For the experimental setup here, the
temporarily raised dust caused by the ball’s bounce is extracted manually from the im-
age. After that, the corresponding position on the real field is calculated using the esti-
mated homography.

The accuracy of this technique depends highly on the extraction accuracy of the chosen
landmarks and the raised dust from the camera. Furthermore, the accuracy depends on

Experimental Setup and Implementation 63

Figure 5.3: Grid overlay created by a homography between points on the image plane
and points on the field plane. The four points chosen for the homography estimation are
marked by red circles. The space between the lines is 1 m. It can be seen (especially near
the front line of the goalkeeper’s area), how well the grid resembles the actual plane on
the field. The image here shows a ball right after it bounced off the ground. The position
of the raised dust is used to determine the actual bouncing point of the ball on the field.

the quality of the estimated distortion parameters from the camera calibration. Actually,
no quantitive value for the accuracy of this method can be given, but as it can be seen
from figure 5.3, which displays a grid created out of a homography of four points on
both planes, the grid aligns well to the actual field lines. Measuring a point in image co-
ordinates and transforming it into the field coordinates using a homography is therefore
assumed to be quite close to the actual point on the field for the upcoming evaluation.

5.6 Estimator Implementation

The implementations of both estimators were based on the algorithms of chapter 2. It will
now be described how the model functions from chapter 4 integrate into both algorithms
and further implementation details will be considered. MATLAB / GNU Octave was
used for the implementation of the estimators.

Experimental Setup and Implementation 64

5.6.1 Relationship Between Measurement Data and States

Since both sensors are synchronized and collect their data in discrete time, the relation-
ship between sensor measurements and the to-be-estimated states is simple. Every pair
of measurements from the inertial sensor zdynS,t and from the vision, which measures the
landmarks zmeasS,t and the ball zmeasB,t, at time t belongs to exactly one state xt at time t.

5.6.2 Initial State Determination

Both estimators require an initial state x0 so that the first dynamic functions can be ap-
plied to determine the state of the system after the measurement.

To obtain the initial state for the sensor and ball pose, a least squares estimation was
performed using the landmark and ball measurements of the camera image right before
the first image of the ball flight. A function Q, which had to be minimized, was defined as
a sum of quadratic deviations between the predicted ball and landmark measurements
(obtained from the measurement function hmeasB and hmeasB and the to be estimated
state x0) and the actual measurements zmeasB,0 and zmeasS,0,j :

Q =
∑

j

(
1

ΣmeasS
(zmeasS,0,j − hmeasS(x0))2

)
+

1
ΣmeasB

(zmeasB,0 − hmeasB(x0))2 (5.2)

Since absolute accuracy was not required at this stage of the estimation, the required
uncertainty parameters for this optimization were chosen manually.

Once Q was minimized, the resulting x0 was used as the initial pose for the ball and
sensor. The velocities of the ball and sensor in the initial state were set to zero.

5.6.3 Unscented Kalman Filter

The UKF implementation is straightforward. The dynamic function for the Kalman fil-
ter g and both measurement functions hmeasB and hmeasS integrate seamlessly into the
prediction and the correction step respectively. The dynamic noise is modeled using the
covariance matrix R. The measurement noise of the manual vision is represented by the
covariance matrices QmeasS for the landmark measurements and by QmeasB for the ball
measurements. All values of the covariance matrices are obtained using the model pa-
rameter determination method from section 4.5. The obtained standard deviation from
the algorithm was at about 1 pixel for the experiments.

Finally, the initial covariance of the dynamic system needs to be chosen. These values de-
pend on the quality of the initial pose estimation and the actual dynamics of the system.

Experimental Setup and Implementation 65

Since the estimation of the initial pose is usually quite accurate, the initial covariance for
the sensor position and rotation are set to the value (0.05 m)2 and (0.035 rad)2. The co-
variance for the velocity of the sensor is assumed to be (5 m/s)2. For the uncertainty of
the initial ball position, the fact that the ball is lying on the field at the initial state can
be exploited. Therefore, the z-coordinate of the covariance is set to a quite small value
of (0.075 m)2, whereas the x and y coordinate are set to (1 m)2. The initial covariance
of the ball’s velocity ranged from (10 m/s)2 to (20 m/s)2, depending on initial velocity
applied to the ball in the experiment. The implementation of the filter was based on the
implementation by Kurlbaum [6].

5.6.4 Least Squares Method

As it is known from section 2.1.5, modeling a dynamic system using the method of least
square is not as elegant as in the Kalman filter. Here, the estimation of the state at time
t is done by minimizing the target function Qt. This function is defined as the sum of
quadratic deviations between the predicted measurement (in which some are virtual)
and the actual measurement for all the states from 1 to t. Formally, the function reads

Qt =
t∑

i=1

(
1

ΣdynS
([zdynS,i, xs,i−1]− hdynS(xi−1, xi))2 +

1
ΣdynB

(xi−1 − hdynB(xi−1, xi))2

+
∑

j

(
1

ΣmeasS
(zmeasS,i,j − hmeasS(xi))2

)
+

1
ΣmeasB

(zmeasB,i − hmeasB(xi))2
)

where [zdynS,i, xs,i−1] is the inertial sensor measurement augmented by the sensor posi-
tion at time i − 1, hdynS is the measurement function for the sensor dynamics and ΣdynS

is the assumed uncertainty in the measurements. The other subscripted symbols in the
equation are defined in the same way, where dynB subscribes the virtual measurement
function and the uncertainty of the the ball dynamics. measS and measB subscribe the
measurement function, uncertainty and actual measurement of the landmark and the ball
respectively.

In contrast to the Kalman filter, there is no initial covariance since all states up to t are
estimated at once. In order to integrate the known fact of the lying ball at the start of
the flight, another measurement function needs to be integrated into the to be minimized
function:

Q′
t = Qt +

1
ΣinitB

(xball,init − hinitB(x0))
2 (5.3)

Here, xinit denotes the initial state, hinitB is the measurement function which simply
returns the ball state at time 0. ΣinitB represents the uncertainty in the determined initial
state. As with the initial covariance, the information that the height of the ball on the field

Experimental Setup and Implementation 66

is known at the initial state is encoded here and the covariance values from the Kalman
filter may be used.

The least squares optimization was performed using the Levenberg-Marquardt algorithm
from section 2.1.3. The initial parameter guesses were calculated from a preceding state
estimation of the unscented Kalman filter. The required calculation of the first derivative
was obtained through numerical differentiation.

5.6.5 Prediction

Once the state of a ball in flight is estimated, this state may be used to predict the next
states and therefore to predict the trajectory of the ball flight up to the point where the
ball hits the ground.

While evaluating the data from the experiments, the prediction of the next state from a
state x at time t was performed using the forward dynamic function g which is also used
in the Kalman filter.

67

Chapter 6

Analysis

In order to answer the question how well the flight of a ball observed by an camera-
inertial sensor can be estimated and predicted, three ball flights recorded during the ex-
periments will be analyzed. The goal of this analysis is not only to find out whether or
not the accuracy of the methods presented in this thesis are sufficient for a hypothetical
robotic soccer player to interact with the ball. Furthermore, it is also of interest how the
performance of prediction behaves over time.

To accomplish the analysis, it is first defined what is needed to successfully interact with
a ball on a soccer field with respect to accuracy. After that, the three flights will be eval-
uated. Finally, the differences between both estimators will be addressed briefly and the
obtained evaluation results will be summarized.

6.1 Analysis Goals and Constraints

Interacting with the ball on the field is a quite demanding task for a soccer playing hu-
man. The player not only has to anticipate the trajectory of the ball but also needs to
position himself to accept or intercept the ball. For the goalkeeper, this task becomes un-
equally harder since he has to predict ball flights shot by highly skilled players within his
range movement which only covers the goal partially.

For the evaluation of these experiments it is assumed that the quality of estimation and
prediction is independent of the robot’s position. Furthermore, it is assumed that the
robot is always in the right position for ball interaction. For the analysis of accuracy
with respect to a hypothetical humanoid robot, mental chronometry (i.e. the temporal
sequencing of cognitive actions starting from the perception and ending in an action) of
humans might be used as an indicator of requirements for ball estimation and prediction.
Actually, mental chronometry measurements for the task of playing soccer are not avail-

Analysis 68

able. For this analysis, the critical time that is allowed to elapse between the point where
the cognition is finished and the point when the motor related actions take place (e.g. the
player moves his foot) is 500 ms. This value is very conservative and it is assumed that
skilled players will actuate faster. Estimation and prediction are assumed to be accurate if
the distance between the predicted bouncing point and the real bouncing point is below
0.3 m. This value was chosen as a trade-off between the size of the foot, head and chest,
the three most commonly used parts of the human body in soccer.

Therefore, for this evalution, ball flight prediction is assumed to be accurate for a hypo-
thetical robotic soccer player if the accuracy is below 0.3 m during the last 500 ms before
the ball hits the ground.

This appears to be enough for accepting a common ball kick. Other tasks than accepting,
such as volley kicking, will probably require higher accuracy. However, this is impossi-
ble to evaluate with this experimental setup because no ground truth with the required
higher accuracy is available.

6.2 Expected Results

From the experiments of Kurlbaums work and the general theory of estimation within
dynamic systems, the following behavior during the estimation and prediction process
is expected:

• Since both estimators are getting enough information about their motion through
inertial and landmark measurements, localization of the sensor itself should not be
problematic.

• Due to the integer based values of the image processing, the estimation of the ball’s
position during the first couple of frames should be quite inaccurate. This applies
to the estimation of the velocity of the ball, too. Therefore, the prediction should
perform poorly in the first couple of frames.

• The estimation of the ball’s position and velocity should improve the longer the
ball flies, since more measurements are processed and the physics of the ball flight
determines the trajectory.

• The unscented Kalman filter and the Levenberg-Marquardt algorithm should per-
form almost identically. Averaging their performance over many ball flights, the
Levenberg-Marquardt algorithm should outperform the Kalman filter slightly. If
there is a difference in their trajectory estimation, it should be rather at the begin-
ning of the trajectory.

Analysis 69

6.3 Analysis Results

Three types of ball flights will be analyzed:

• A ball is moving from a short distance towards the observer and the prediction
accuracy is determined with respect to ground truth. This flight should be an ade-
quate example for short passes directed to the player.

• A ball is passing by the observer. Assuming that the last estimate has only mini-
mal deviation, the prediction accuracy is determined with respect to the predicted
bouncing point of the last estimate at the end of the flight. This flight should be an
example for the observation of ball flights which may lead to an interception.

• A long distance, banana-shaped flight of a ball towards the observer. The prediction
accuracy is determined as in the flight above. This ball flight should represent a
long pass, a cross or a corner kick.

6.3.1 Short-Distance Ball Flight Towards the Observer

The first observed trajectory is used to determine the system performance compared to
ground truth. For this, a ball flying about 3 m (reaching an maximum height of 1.6 m)
towards the observer from about 7 m away was chosen. The ball is flying almost spin-less
and the impact of the side wind to the ball at this range of flight and speed is minimal.

To obtain the ground truth of the ball’s bouncing point, five images following the bounce
were chosen and the image position of the raised dust caused by the ball is determined
manually. The actual ground truth for this ball flight is then obtained by computing the
mean of the five field positions from the image positions and the homography describing
the transformation between image plane and field plane.

Estimated trajectory

The estimated trajectory of the ball flight by the unscented Kalman filter and the
Levenberg-Marquardt algorithm is depicted in figure 6.1. As expected, both methods
estimate almost the same set of states for the whole flight and the degree of similarity
increases over time. What directly catches the eye of the viewer is that the trajectory of
the estimated ball positions is not as smooth as an actual physical flight of a ball. This
behavior can be explained by points 2 and 3 from the list of the expected results. The
ball diameter is only given in integer values, making the real depth of the ball difficult to
estimate, which leads to this strange looking trajectory.

Analysis 70

Figure 6.1: Three dimensional view of estimated ball trajectories and velocity vectors
while the ball is flying towards the observer. As can be seen, the estimated trajecto-
ries of the Unscented Kalman Filter (UKF), shown as orange balls, and the Levenberg-
Marquardt algorithm (LM), shown as green balls, differ in the beginning but approach
each other as the flight progresses. The purple ball represents the initial ball state.

The unscented Kalman Filter and the Levenberg-Marquard algorithm show another in-
teresting property while estimating the states within this trajectory. In the first few
frames, until the diameter of the ball increases by one, reflecting the fact that the ball
is moving towards the sensor, the ball is estimated behind the initial ball position. This
results in a velocity vector pointing away from the sensor into the opposite direction.
Again, this phenomenon can be explained by the integer values of the ball measure-
ments. The inaccurate circle diameter measurement leads to a state estimate in which the
ball is wrongly estimated behind the initial ball position. This is not suprising since the
monocular camera defines the ball’s distance by the ball’s diameter. Within the first few
frames the diameter is 16±1 pixels, leading to an expected error of 6.25% in the distance.

Prediction performance

To determine the accuracy of the ball state estimation during the flight, the ball states are
being predicted until the ball hits the ground of the field. For the estimated states in this
flight scene, the predicted ball bouncing points of the states are shown in figure 6.2 as a

Analysis 71

34 36 38 40 42-2

-1

0

1

2

3

4

5

6
UKF
LM
GT

37.2 37.3 37.4 37.5 37.6 37.7 37.80.5

0.6

0.7

0.8

0.9

1.0

1.1
UKF
LM
GT

Figure 6.2: Predicted positions on the field of the estimated states’ bouncing points as a
function of time with respect to the positions determined by the ground truth measure-
ments of the whole trajectory (shown left) and a zoom in near the assumed bouncing
point (shown right). The initial ball position was at about 38.5 m in the x-axis and 3.5 m

in the y-axis.

function of time along with the five points on the field that were obtained through the
ground truth determination using homographies. Comparing the predicted ball bounc-
ing point with the assumed real bouncing point, it can be seen that the accuracy starts
poorly in the first few frames but then drastically improves. The poor start is due to the
fact that the first estimated states are behind the initial ball position, leading to predicted
ball bouncing points which are far away from the actual ball bouncing point. The more
information about the depth is gained from the sensor the better the estimation becomes.
For the states at the end of the trajectory the predicted ball bouncing points are becom-
ing more accurate. The discrepancy shrinks until the sixth last estimated state of both
methods almost reaches the mean of the five ground truth measurements. The upcoming
predictions are slightly beyond this mean and the accuracy is therefore decreasing.

However, the visual information contained in figure 6.2 is quite limited. As a represen-
tation of the estimator’s accuracy, the overlapping estimation results make the actual
accuracy hard to extract. To show how the accuracy changes during the estimation of the
states over time, the distance between the mean of the five ground truth measurements
and the predicted states is plotted in figure 6.3. The plot shows the already observed im-
provement of accuracy over time more clearly. Starting with the estimation of ball states
behind the initial ball position, which lead to very inaccurate ball predictions as described
above, the difference between the assumed real bouncing point and the predicted points
from both estimates decreases significantly after 7 frames (or about 129 ms), reaching
a surprisingly good estimate with a difference of just 0.4 m. After that, the accuracy

Analysis 72

0 200 400 600 800 1000 1200
Time (ms)

0.0

0.5

1.0

1.5

2.0
E

rr
o
r

(m
)

LM
UKF

Figure 6.3: Error between the predicted bouncing points computed from the estimated
trajectory and the mean of the ground truth measurements over time.

decreases rapidly for a couple of frames before it reaches a next good estimate after 16
frames (297 ms) with a error between 0.1 and 0.15 m. From here, the estimates seem
to be quite reliable and the prediction performance improves in a wave-like shape with
decreasing peaks over time.

Within this wave-like shape, there seem to be certain recurring estimates where the pre-
dicted ball bouncing point is very close to the assumed bouncing point. Interestingly,
over time the recurring good estimates are the minima of these waves. The reason for
this behavior is the integer based image processing: The peaks of the waves in the figures
are caused by a change of the ball’s measurement of the circle diameter. As time pro-
gresses, the ball moves towards the sensor and the diameter increases, representing the
visual information about the ball’s distance. Intuitively, the integer based depth informa-
tion is resulting in inaccurate states after and right before a peak, whereas somewhere in
between two peaks the estimated state should match the circle diameter exactly, leading
to a minimum. Over time, the drawback of the integer based image processing values
diminishes as the physical properties of the flight dominate the ball’s state estimation.

As can be seen in this figure, the accuracy requirement is fullfilled in this flight. Within
the last 500 ms, the predicted bouncing point was always within 0.3 m. Actually, the
predicted trajectory was already sufficiently accurate 670 ms before the ball flight ended.

Analysis 73

Figure 6.4: Four frames of the ball trajectory captured by the camera while the ball is
flying towards the observer. The predicted trajectory from this state is shown in purple
circles.

In-Image Visualization

In order to get an impression of the observed trajectory, the scene of the ball flight is
summarized using four images from the whole series describing the flight. In addition to
the raw images, the result of the ball position estimation of the unscented Kalman filter
and the predicted trajectory from this state is projected to image coordinates and drawn
into the image. Only the estimation of the unscented Kalman filter is shown, since the
difference in the estimation result of both methods is barely visible in image coordinates.
Obviously, this visualization does not contribute anything to the accuracy analysis and is
just for the reader’s convenience.

It can be seen from the series how the estimation of the trajectory is inaccurate in the
first image but becomes better in the second snapshot and finds the upcoming trajectory
quite accurately in the third image. This is confirmed by the fourth image, in which the

Analysis 74

Figure 6.5: Three-dimensional view of estimated ball trajectories and velocity vectors
while the ball is passing by the observer. Similar to the previous flight, the estimated tra-
jectories of the unscented Kalman filter (UKF), shown as orange balls, and the Levenberg-
Marquardt algorithm (LM), shown as green balls, do not agree in the beginning but come
closer to each other as the flight progresses. The purple ball represents the initial ball
state.

predicted trajectory visually does not change with respect to the third camera image.

6.3.2 Ball Flight Passing by the Observer

The second flight evaluated here is a ball passing by the observer at a distance of about
5 m. The flight itself is about 5.5 m long and the ball reaches a maximum height of 1.5 m.
In contrast to the first flight, no ground truth measurements are available due to the lack
of significant landmarks within the images. Because of the quite good prediction results
of the previous flight’s last states, the predicted bouncing point of the last state in this
flight is assumed to be the actual bouncing point. Again, this ball flew almost spin-less
and the impact of sidewind was negligible.

Analysis 75

30 35 40 45 50-20

-15

-10

-5

0
UKF
LM

33.5 34.0 34.5 35.0

-6.4

-6.2

-6.0

-5.8

-5.6

-5.4

-5.2

-5.0
UKF
LM

Figure 6.6: Predicted positions on the field of the estimated states’ bouncing points over
time of a ball passing by the observer. The whole trajectory predictions are shown in the
left and a zoom in near the assumed bouncing point is shown in the right subfigure. The
initial ball position was at about 36.2 m in the x-axis and −0.3 m in the y-axis.

Estimated trajectory

Figure 6.5 shows a three-dimensional view of the estimated ball trajectory and velocity
vectors. Similar to the trajectory of the previous flight, the estimation performance is
poor within the first few frames due to the difficult determination of the ball’s depth.
As expected, after these couple of frames the estimation becomes more reliable and the
unscented Kalman filter and the Levenberg-Marquardt algorithm almost estimate the
same set of the states for the remaining trajectory.

Prediction performance

The predicted positions of the estimated states’ bouncing points are shown in figure 6.6.
As can be seen, the direction of the flight is estimated well and the error seems to lie on
the line between starting and bouncing point.

Again, the visual information contained in figure 6.6 is hard to extract. Therefore, the
change of the accuracy during the state estimation over time is plotted as the distance
between the bouncing point of the last estimated state and the predicted bouncing points
from the trajectory’s state in figure 6.7. The plot shows similarities to the plot of the pre-
viously observed trajectory. The error in the first few frames is large but after 9 frames the
Levenberg-Marquardt algorithm made a suprisingly good estimate, in which the error in
prediction is just about 0.13 m. Both estimators agree at an estimate with an error ranging
from 0.5 − 0.7 m at about frame 15 when 278 ms were elapsed. From here, the accuracy

Analysis 76

0 200 400 600 800 1000 1200
Time (ms)

0.0

0.5

1.0

1.5

2.0
E

rr
o
r

(m
)

LM
UKF

Figure 6.7: Error between the predicted bouncing points computed from the estimated
trajectory and predicted bouncing point of the last estimate over time for a ball passing
by the observer.

decreases once but recovers right afterwards, resulting in an almost gradually increasing
accuracy over time. Obviously, the predicted trajectories of the last states show perfect
accuracy since the last state’s trajectory was used as the assumed actual bouncing point
of the ball.

As with the previous ball flight, the accuracy requirements are fullfilled in this flight.
Within the assumed movement-time of 500 ms the ball is always estimated accurately
in the defined sense. The sufficiently accurate predicted trajectory was obtained 595 ms

before the bounce occured.

In-Image Visualization

Figure 6.8 shows four frames of the captured vision data with additional geometric anno-
tations representing the estimated ball state and the predicted trajectory of the unscented
Kalman filter. Similar to the previous flight, the estimation in the first frame is poor, lead-
ing to a visually incorrect trajectory prediction. The second frame shows a significant
improvement of the predicted trajectory. In the third frame, the predicted trajectory is re-
fined and seems to be quite accurate since it visually does not change much in the fourth

Analysis 77

Figure 6.8: Four frames of the ball trajectory (from the top-left to the bottom-right) cap-
tured by the camera while the ball was passing by the observer. The predicted trajectory
from this state is shown in purple circles.

frame.

6.3.3 Long-Distance Ball Flight Towards the Observer

The last of these three ball flights is somewhat special and is primarily presented to reveal
the limits of the underlying model. This flight is a corner kick directed to the goal with
the observer near the goal. The length of the flight was 40 m and it reached its peak
at 5.5 m. While shooting, a spin was applied to the ball so it bended towards the goal,
resulting in a banana-shaped flight trajectory. As with the previous example, no ground
truth measurements were available and the bouncing point of the ball was assumed to
be the predicted bouncing point of the last estimated state.

Analysis 78

Figure 6.9: Three dimensional view of estimated ball trajectories and velocity vectors of a
ball that is flying towards the observer from a long distance. The estimated trajectory of
the Unscented Kalman Filter (UKF) is shown as orange spheres. The trajectory estimated
by the Levenberg-Marquardt algorithm (LM) is shown as green spheres.

Estimated trajectory

The trajectory of the ball flight estimated by both methods is shown in figure 6.9. Again,
in the first few frames the estimate does not resemble the actual trajectory of this flight.
The reason for this behavior is similar to the behavior of the state estimation in the first
few frames of the first evaluated ball flight, but this time it is the other way around.
Due to the quite inaccurate integer-based values of the ball’s diameter measurements,
the ball is estimated several centimeters in front of its actual position. The accompanying
estimated velocity resulting from this position is quite large and does not correspond in
any way to the actual velocity during this stage of flight. Once enough information is
gained, better estimates by both methods are obtained and the banana-shaped trajectory
is estimated quite well. Since the model does not take the Magnus effect into account, the
augmented noise parameters of the ball dynamics take care of the bended trajectory.

Prediction performance

Both of the described behaviors during the state estimation within the trajectory are
clearly visible when predicting the estimated state up to the point the ball hits the ground
(shown in figure 6.10). At first, the estimation of the ball’s position up to 5 m in front of its
starting point leads to predicted bouncing points far beyond the position of the observer.
Since the estimation becomes more reliable a few frames later, the predicted bouncing

Analysis 79

20 30 40 50 60 70-20

-10

0

10

20

30
UKF
LM

40 41 42 43 44 45 46

-10

-9

-8

-7

-6

-5

UKF
LM

Figure 6.10: Predicted positions on the field of the estimated states’ bouncing points as a
function of time of a ball approaching the observer from a long distance. The initial ball
position was at about 45.7 m in the x-axis and 30 m in the y-axis.

points settle themselves at a much more plausible position. Secondly, since the underly-
ing dynamic model of the ball does not take the spin and the resulting interaction with
air into account, the predicted trajectories are not bended. This results in an inaccuracy
during prediction which reduces over time since the effect of bending becomes less sig-
nificant as the ball progresses in flight. This effect is clearly visible in the right plot of
figure 6.10.

Figure 6.11 shows the accuracy over time as the distance between the predicted bouncing
point and the predicted bouncing point of the last estimate. The plot is limited to a
deviation of 10 m so the huge inaccuray of over 20 m during the first few frames is not
visible. The accuracy increases as more information is processed: The prediction only
deviates 4.4 m after 9 frames for the UKF and 4.7 m after 10 frames for the LM, decreases
in the upcoming framess until it settles between 4.3−4.6 m for a couple of frames starting
from frame 15 at about 279 ms. From here, the prediction becomes only more accurate.
This effect is due to the bended trajectory as described in the paragraph above, and as
can be seen in the figure, the accuracy increases gradually as the ball moves towards its
bouncing point.

Obviously, the accuracy requirements for the hypothetical robot are not met in this flight.
The necessary 0.3 m are not achieved during the 500 ms before the ball hits the ground.
At this point of time the predicted bouncing point is about 0.73 m away. About 186 ms

before the actual bounce occurs the required accuracy is reached.

It should not be left unmentioned that the wave-like shape of the change in accuracy over
time, which was observerd in the plot of the first evaluated ball flight (see figure 6.3), is
also present in this ball flight. At the balls’ peak in the three-dimensional visualization

Analysis 80

0 500 1000 1500 2000 2500
Time (ms)

0

2

4

6

8

10

E
rr

o
r

(m
)

LM
UKF

Figure 6.11: Error between the predicted bouncing points computed from the estimated
trajectory and the predicted bouncing point of the last estimate over time of a ball ap-
proaching the observer from a long-distance.

two small peaks are visible, which resemble changes in the ball’s diameter measurement.
The effect of the ball’s diameter change can easily be seen in the right subfigure of fig-
ure 6.10, in which it causes the change in the length of the estimation. Paired with the
decrease of the effect caused by the curve of the flight, the predicted bouncing points
approach the assumed bouncing point in a zigzag-shape for a couple of frames.

In-Image Visualization

In figure 6.12, four frames of the captured vision data with annotations visualizing the
estimated ball state and the predicted trajectory of the unscented Kalman filter are given.
As with both of the previous flights, the prediction starts poorly in the first frame, be-
comes significantly better in the second frame, seems to be robustly estimated in the
third frame and shows a visually accurate prediction in the last frame.

Analysis 81

Figure 6.12: Four frames of the ball trajectory (from the top-left to the bottom-right) cap-
tured by the camera while the ball is flying towards the observer from a long distance.
The predicted trajectory from this state is shown in purple circles.

6.4 Estimator Difference

There is a discrepancy in the estimated states and their associated predicted trajectories of
the unscented Kalman filter and the Levenberg-Marquardt algorithm. Especially during
the first few frames the difference is clearly visibile.

This behavior is not uncommon. It is assumed to be the result of the performed lineariza-
tion during each estimators nonlinear function approximation. Furthermore, the initial
covariances given to the unscented Kalman filter before the computation may lead to a
large amount of uncertainty in the estimation during the first few frames. Detailed in-
vestigation of this behavior is out of the scope of this thesis but may become the subject
of further research.

Analysis 82

6.5 Summary

Two out of three evaluated ball flights fulfilled the required accuracy constraint. Al-
though the tracking of the third flight seemed to be correct and the trajectory was esti-
mated quite well, the lack of the model to predict bended trajectories prevented an accu-
racy within the defined constraint. This result was expected and it is clear that the inte-
gration of the Magnus effect into the model will compensate this inaccuracy. Therefore,
the question if the accuracy of trajectory prediction is sufficient for a hypothetic robotic
soccer player can be answered with yes, provided that only ball flights are observed that
are correctly modeled by the system.

The answers for the other questions are found by comparing the results of all three eval-
uated ball flights. The performance over time can be separated into three distinct phases:

1. As expected, due to the monocular setup all ball flights show inaccurate predictions
during the first few frames. All three flights showed a suprsingly good predicted
trajectory after 8 − 10 frames. But these predictions lasted only for one or two
frames, showing that there is still a large amount uncertainty in the estimation pro-
cess. Only the information about the direction of the ball flight seems to be useful.

2. The second phase shows a first accurate indication of the predicted bouncing point
after a constant time. All examined flights agree that about 15 − 16 frames (278 −
296 ms) have to be processed to achieve this indication. These number of frames
seem to be the point in time in which the modeled physical properties of flight
determine the most of the ball’s trajectory.

3. In the last phase, the accuracy usually improves gradually over time until the ac-
curacy of the predicted trajectories almost reaches the actual bouncing point at the
end of the flight.

Another interesting observation is that the accuracy constraint of the two successfully
predicted trajectories was fulfilled about 95 and 170 ms earlier than required.

With respect to the question how well the prediction works for different kinds of trajec-
tories, it should be mentioned that these flights do not represent the whole set of possible
ball flights that might occur on a soccer field. But the results are convincing and suggest
that the prediction of most ball flights would behave like the ones evaluated here.

83

Chapter 7

Conclusion and Outlook

Trajectory predictions for three different ball flights were performed and evaluated within
this thesis. The results clearly show that prediction can be performed sufficiently for a
hypothetic humanoid soccer player if the observed ball flight is correctly modeled within
the underlying dynamic system used by the estimators. Although the third flight failed
to achieve the accuracy goal, the prediction indicated the area of the bouncing point.

Vital parts that contributed to the achieved accuracy are the sensor calibration and the pa-
rameter learning algorithm. The sensor calibration ensured that measurements obtained
in the different coordinate systems could be transformed between each other almost
error-free. The parameter determination algorithm computed the most optimal noise
parameters of the visual sensor from a set of already obtained measurements. Without
this automated process the parameters would have been guessed manually making the
parameter determination error-prone.

Although the experiments show sufficient results, it might be of interest to investigate
the source of the estimation error. Actually, during the analysis of this work an error in
the estimation of the sensor height was experienced. While the system knew where the
ball was relative to the sensors on the head, it was unsure where the head was relative
to ground. One way to handle this specific problem would be the parallel usage of a
wearable self-contained motion capturing system. By tracking the information about the
body’s joint structure, the height of the sensor could be obtained resulting in a reduction
of the uncertainty.

Obviously, before benefiting from the results of this work in real soccer scenarios more
work needs to be done. Research within the near future may include:

• Replace the manual vision by a computer vision, making the process of extracting
features from the images autonomous.

• Development of a multi-state estimator, which is not only capable of estimating the

Conclusion and Outlook 84

state of a flying ball but also of balls which are rolling or just lying.

• Build a robust ball recognition which may be used in conjunction with the estima-
tor for better reliability. Such a system might rely on bioliogically inspired image
processing methods to mimic human recognition abilities.

• Use not only points between lines and goal posts, but also the lines and goal posts
themselves for vision-based localization. This will improve the localization, espe-
cially in places where only a few lines are in the field of view of the camera.

• Perform the computation of the state estimation in real-time using the unscented
Kalman filter.

• Add the Magnus effect to the dynamic model so the estimation and prediction of
banana-shaped trajectories will perform more accurate.

• Presentation of the information obtained through state estimation and prediction
in an augmented reality application. For example, a head mounted display may be
used to show the predicted trajectory as an overlaid graph within the camera or the
real image. A possible application would be the observation of a real soccer match
by a human player equipped with such an augmented reality setup.

85

Bibliography

[1] M. Sahota and A. K. Mackworth. Can Situated Robots Play Soccer? In Proc. Artificial
Intelligence’94, pages 249–254, Banff, AB, May 1994.

[2] R. A. Brooks. Intelligence Without Reason. In Proceedings of the 12th International
Joint Conference on Artificial Intelligence (IJCAI-91), pages 569–595, 1991.

[3] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa. RoboCup: The Robot
World Cup Initiative. In Proceedings of the First International Conference on Autonomous
Agents (Agents’97), pages 340–347, New York, 5–8, 1997. ACM Press.

[4] RoboCup Federation. RoboCup Website, 2008. http://www.robocup.org/

overview/22.html. Accessed January 24, 2008.

[5] Honda Worldwide. ASIMO, 2008. http://world.honda.com/ASIMO/. Ac-
cessed January 24, 2008.

[6] J. Kurlbaum. Verfolgung von Ballflugbahnen mit einem frei beweglichen Kamera-
Inertialsensor. Master’s thesis, Universität Bremen, 2007.

[7] U. Frese, B. Bäuml, S. Haidacher, G. Schreiber, I. Schaefer, M. Hähnle, and
G. Hirzinger. Off-the-Shelf Vision for a Robotic Ball Catcher. Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1623–1629,
2001.

[8] M. Simon. Ein robustes Echtzeit-Vision-System für die Robocup F180 Small-Size
Liga. Master’s thesis, Institut für Informatik, Freie Universität Berlin, 2006.

[9] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in
C: The Art of Scientific Computing. Cambridge University Press, New York, NY, USA,
1992.

[10] U. Frese and L. Schröder. Theorie der Sensorfusion, 2007. Lecture notes.

[11] K. Levenberg. A Method for the Solution of Certain Non-Linear Problems in Least
Squares. The Quarterly of Applied Mathematics, 2:164–168, 1944.

http://www.robocup.org/overview/22.html
http://www.robocup.org/overview/22.html
http://world.honda.com/ASIMO/

BIBLIOGRAPHY 86

[12] D. W. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear Param-
eters. Journal of the Society for Industrial and Applied Mathematics, 11(2):431–441, June
1963.

[13] A. Ude. Nonlinear Least Squares Optimisation of Unit Quaternion Functions for
Pose Estimation from Corresponding Features. In Proceedings 14th International Con-
ference on Pattern Recognition, pages 425–427, 1998.

[14] R. E. Kalman. A New Approach to Linear Filtering and Prediction problems. Trans-
actions of the ASME–Journal of Basic Engineering, 82(Series D):35–45, 1960.

[15] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005.

[16] S. J. Julier and J. K. Uhlmann. A New Extension of the Kalman Filter to Nonlin-
ear Systems. In In The Proceedings of AeroSense: The 11th International Symposium on
Aerospace/Defense Sensing, Simulation and Controls, Multi Sensor Fusion, Tracking and
Resource Management II, 1997.

[17] P. Lang and A. Pinz. Calibration of Hybrid Vision / Inertial Tracking Systems. In
2nd InverVis 2005: Workshop on Integration of Vision and Inertial Systems, Barcelona,
April 2005.

[18] J. Lobo and J. Dias. Relative Pose Calibration Between Visual and Inertial Sensors.
In ICRA 2005 Workshop on Integration of Vision and Inertial Sensors (InerVis2005), 2005.

[19] U. Frese. Camera Sensor Model, 2007. Not published.

[20] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cam-
bridge University Press, 2004.

[21] Z. Zhang. A Flexible New Technique for Camera Calibration. In IEEE Transactions
on Pattern Analysis and Machine Intelligence, volume 22, pages 1330–1334, 2000.

[22] E. Salamin. Application of Quaternions to Computation with Rotations. Technical
report, Stanford AI Lab, 1979.

[23] B.K.P Horn. Closed-Form Solution of Absolute Orientation using Unit Quaternions.
Journal of the Optical Society of America, 4(4):629–642, April 1987.

[24] U. Frese. Local Marker Detector, 2007. Not published.

[25] J.-Y. Bouguet. Camera Calibration Toolbox for Matlab, 2007. http://www.

vision.caltech.edu/bouguetj/calib_doc/. Accessed January 24, 2008.

[26] J. Wesson. The Science of Soccer. IOP Publishing Limited, 2002.

http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/

BIBLIOGRAPHY 87

[27] R. G. Watts and R. Ferrer. The Lateral Force on a Spinning Sphere: Aerodynamics of
a Curveball. American Journal of Physics, 55:40–44, January 1987.

[28] F. S. Grassa. Practical Parameterization of Rotations Using the Exponential Map. The
Journal of Graphic Tools, 3.3, 1998.

[29] A. Dempster, N. Laird, and D. Rubin. Maximum Likelihood From Incomplete Data
via the EM Algorithm. Journal of the Royal Statistical Society, 1977.

	Introduction
	Motivation
	Goals of the Thesis
	Experimental and Estimation Procedure
	Benefits of Camera-Inertial Sensors
	Related Work
	Guide to the Thesis

	Stochastic Estimation
	Nonlinear Least Squares Estimation
	Gradient Descent Algorithm
	Gauss-Newton Algorithm
	Levenberg-Marquardt Algorithm
	Estimation of Orientations
	Estimation of Dynamical Systems

	Estimation of Dynamical Systems Using Kalman Filters
	Linear Gaussian Systems
	Kalman Filter Algorithm
	Unscented Kalman Filter
	Filtering Orientations

	Sensor Calibration
	Calibration Principle
	Camera Model
	Rotation Between the Camera Coordinate System and the Inertial Coordinate System
	Least Squares Estimation
	Initial Camera Parameters
	Initial Rotation Between Camera and Inertial Sensor
	Calibration Procedure
	Results

	Modeling a Ball in Flight
	System State
	Underlying Dynamic Model
	Integration Into the Unscented Kalman Filter
	Integration Into the Least Squares Method

	Measurement Model
	Noise
	Model Parameter Determination
	Algorithm
	Mathematical Derivation
	Counter Example

	Summary

	Experimental Setup and Implementation
	Sensor Setup
	Experimental Environment
	Experimental Procedure
	Image Preprocessing and Field Model
	Measuring Ground Truth
	Estimator Implementation
	Relationship Between Measurement Data and States
	Initial State Determination
	Unscented Kalman Filter
	Least Squares Method
	Prediction

	Analysis
	Analysis Goals and Constraints
	Expected Results
	Analysis Results
	Short-Distance Ball Flight Towards the Observer
	Ball Flight Passing by the Observer
	Long-Distance Ball Flight Towards the Observer

	Estimator Difference
	Summary

	Conclusion and Outlook

