
Robust Recognition of a Flying Ball with
a Moving Camera-Inertial Sensor

Diplomarbeit

Universität Bremen, Fachbereich 3 - Mathematik und Informatik
Florian Penquitt

10. März 2008

Erstgutachter und Betreuer Dr. Ing. Dipl. Inform. Udo Frese
Zweitgutachter Prof. Dr. rer. hum. Biol. Kerstin Schill

Erklärung

Hiermit versichere ich, dass ich die vorliegende Diplomarbeit bis auf die oXzielle Betreu-
ung selbst und ohne fremde Hilfe angefertigt habe. Sämtliche aus anderen VeröUentlich-
ungen wörtlich oder sinngemäß entnommene Formulierungen bzw. Abbildungen sind als
solche kenntlich gemacht worden. Alle weiteren Hilfsmittel sowie verwendete Fremdar-
beiten wurden ebenfalls vollständig angegeben.

Lohmar, den 10.03.2008
(Florian Penquitt)

Inhalt

Im Rahmen dieser Diplomarbeit wurde ein Hard- und Soft-
waresystem zur automatischen Erkennung Wiegender Bälle mit
Hilfe eines freibeweglichen Kamera-Inertial Sensors entwickelt.
Das System ist in der Lage, einen Wiegenden Ball in einem zuvor
aufgezeichneten Datensatz zu erkennen und benötigt hierzu
keine oder nur sehr geringe Einstellungszeit.

Die Arbeit beschäftigt sich hauptsächlich mit den Problemen und
Lösungsansätzen, die sich aus der unsicheren Umgebung des
Systems ergeben. Des Weiteren werden die Vorteile einer Kombi-
nation von Informationen über Bild und Flugbahn zur Erkennung
des Balles untersucht, welche sich ähnlich den Vorgängen im
menschlichen Gehirn gegenseitig stützen und zu einem robusten
Gesamtsystem führen sollen. Die zusammengetragenen Inhalte
sollen im letzten Schluss die Frage beantworten, ob bzw. wie
weit ein Softwaresystem für das Fernziel 2050 des RoboCup
bereits heute entwickelt werden kann. Hierbei müsste ein
humanoider Roboter in der Lage sein, in einer Mannschaft mit
anderen Robotern gegen den menschlichen Fussballweltmeister
nach oXziellen FIFA Regeln zu gewinnen.

Die noch nicht realisierbaren Anforderungen an die Mechanik
für einen humanoiden Roboter werden dabei durch einen
Experimentaufbau umgangen, wobei ein menschlicher Spieler
alle notwendigen Sensoren zur Datenaufzeichnung trägt und
wodurch der Wahrnehmungsteil bereits jetzt unter authentischen
Bedingungen untersucht werden kann.

Abstract

This diploma thesis describes a hard- and software system
that is capable of detecting a Wying soccer ball in a data set
previously obtained with a free-moving camera-inertial sensor.
The proposed system does not require the user to make a lot of
adjustments, but basically works out-of-the-box under natural
outdoor conditions.

The thesis focuses on the problems arising from the uncer-
tain environment conditions, points out the beneVts and Waws
of the chosen approaches and ultimately tries to answer the
question whether it is already possible to build at least a part of
the essential software that could be used for a humanoid soccer
robot competing in a 2050 RoboCup scenario today. Hereby a
humanoid robot within a team of other humanoid robots would
have to be able to win against the human worldchampion team
according to oXcial FIFA rules. The still too complex mechanical
demands for building a robot with human-like movement
capabilities are avoided by using an experiment setup where the
sensors are carried by a human player.

The thesis also examines the possible beneVts of a combi-
nation and optimisation of image processing data and trajectory
prediction information. These information shall backup each
other like it is propossed to happen within the human brain and
in the end form a more robust overall system compared to a
common image processing system.

CONTENTS 4

Contents

1 Introduction 6

1.1 Overview . 6

1.2 Motivation . 6

1.2.1 Similar Existing Systems . 8

1.3 Outline of the Proposed System . 12

1.4 Goals . 13

1.5 Preparations . 14

1.5.1 Hardware . 14

1.5.2 Software for Sensor Synchronisation 17

1.5.3 Data Acquisition . 17

2 Theory 19

2.1 Rotations in 3D . 19

2.2 Image Processing . 21

2.2.1 Circle Detection . 21

2.2.2 DiUerence Images . 28

2.2.3 Blob Building . 30

2.3 Gradient Descent Optimiser . 34

3 Software 36

3.1 General Architecture . 36

3.2 Implementation . 37

3.2.1 Optimiser . 37

3.2.2 Evaluators . 39

3.2.3 Unscented Kalman Filter . 40

3.2.4 Motion Detector . 40

3.2.5 GUI . 42

3.2.6 Comparison with other Approaches or Applications 43

4 Results 45

CONTENTS 5

4.1 Evaluation . 45

4.1.1 Test Scene 1: Close Pass with a red Ball 45

4.1.2 Test Scene 2: Far Pass with a red Ball 47

4.1.3 Test Scene 3: Authentic Corner Kick with a black and white Ball . . 48

4.1.4 Test Scene 4: Very far Corner Kick with red Ball 49

4.2 Optimiser Correctness and Overall Evaluation 50

4.3 Conclusion . 53

4.4 Future Work . 54

5 Acknowledgements 56

List of Figures 57

List of Tables 59

References 60

A Software 63

1 INTRODUCTION 6

1 Introduction

1.1 Overview

This document is organised into Vve major sections. The Vrst section forms the Introduc-
tion to the general context of this work and presents its motivation. After similar systems
have been brieWy introduced, an outline of the proposed system and its design will be given.
This outline is used to set goals and to identify the necessary preparations for achieving
these goals.

The Theory section describes relevant algorithms from areas of computer science such as
image processing, optimisation or dealing with movement in three-dimensional space. The
third section presents the Software that was developed, shows its architecture and reviews
the approaches, tools and problems during the development. The performance of other
(tested but rejected) solutions will be pointed out for comparison reasons and in order to
give the reader a better impression of the actual system’s quality.

Afterwards, the Results section presents a comparison of the system’s output for some se-
lected scenes which will allow the reader to judge whether and to what extend the system
Vts the set demands and goals. A Vnal conclusion and outlook of possible future work
together with a statement of acknowledgements and the mandatory lists of references,
Vgures and tables form the end of this document.

1.2 Motivation

RoboCup [1] is an international project to propel artiVcial intelligence, image processing,
robotics and similar related Velds of computer science. There are currently two diUerent
types of predeVned scenarios within the RoboCup: Within diUerent Soccer leagues the
teams compete against each other in soccer matches that resemble the rules and settings of
real soccer matches as well as possible under consideration of the technical circumstances
of the league.

The Rescue leagues provide catastrophe scenarios in which the robots have to locate as
many human victims inside an area of debris as quickly as possible. Both scenarios may ei-
ther be simulated or real, forming currently 10 diUerent leagues in total. RoboCup@Home
is a recent addition to the Vrst two leagues. Teams in this league demonstrate robots that

1 INTRODUCTION 7

are capable of dealing with everyday problems inside a human living room, e.g. Vnding
and retrieving a speciVc item or operating home entertainment devices. Within all of these
scenarios a very wide range of technologies can be applied and tested. The RoboCup fed-
eration’s very ambitious goal is to "develop a team of fully autonomous humanoid robots
that can win against the human world champion team in soccer" [1] by the year of 2050.
As will soon be clariVed, this goal implies much more requirements than one might think
at the Vrst glance.

Without question the mechanics that will be necessary to build a robot with actual human-
like locomotion capabilities still need more development time. The RoboCup humanoid
league and other robot research labs have also already shown that even simple looking
tasks like bipedal walking, getting up from the Woor or kicking a ball are very tough chal-
lenges for both hard- and software of the corresponding robot system. Honda’s humanoid
robot ASIMO [2] has been among the world’s state of the art humanoid robots for a very
long time now. Its latest version is already able to actually run at about 6 km/h, can move
or manipulate objects and interact with humans. Still, when compared to human motions
all of the currently possible actions are only at a fraction of human capabilities. Actuators
are still too weak, the power sources and light-weight building materials with appropriate
characteristics can be hard to Vnd and will be very costly in the majority of cases.

Sure enough there were a lot of noticeable advancements in every RoboCup league during
the past years. Field sizes were extended, the number of landmarks was reduced and the
lighting conditions became more and more variable. The recognition of balls has already
been researched multiple times, especially within the RoboCup were this is a very vital
aspect in every soccer related league. All the systems used in RoboCup still have the
very large advantage of a well speciVed environment. Even though these speciVcations
are constantly relaxed they still include fairly constant lighting, predeVned colours for the
involved objects like the ball, orientation landmarks and most importantly the very liberal
setup times of at least an entire day to conVgure and Vne-tune the systems.

The main motivation of this thesis is to ease several of the existing vision related restric-
tions and to examine the eXciency of combining and optimising visual and trajectory
information to a robust fused output. By having a component that allows the rating of
the ball trajectory (dynamic model Z2), another component to rate the resemblance of an
object on the Veld to a ball and a third component to optimise these inputs, the problems
that arise from easing the restrictions can hopefully be dealt with.

A common image processor would most likely recognise player heads or other round ob-
jects on the Veld as a ball over and over again. The proposed system would remove these
preceptions because they might Vt the image component but not the trajectory. By using

1 INTRODUCTION 8

optimisation on a segment of preceptions it would be possible to not only detect the ball (or
other objects) in the current system state but to also incorporate past and even future mea-
surements. Assuming that computation power will continue to increase a system would
be able to work on a very large segment of data instead of only a single image which is
evaluated by common image processing systems. Combining several sensors and bringing
context into play could also reduce the error rate of a system, because it does not depend
on a single information source anymore.

The main reason why a vision system with fewer conVguration requirements could still
work properly is the fact that its environment (Veld, landmarks, player characteristics)
remains well deVned. By easing restrictions and developing solutions for the arising prob-
lems it will hopefully be possible to give an answer to the question whether the software is
already capable of dealing with the circumstances of the RoboCup goal for 2050. In order
to give the reader a better impression of this task’s scope we will now have a brief look at
already existing systems and examine the diUerences between them and the system that is
to be developed.

1.2.1 Similar Existing Systems

Ballcatcher Frese et Al. worked on a German Aerospace Centre demonstrator (Figure
1) [3] which was shown at the Hannover Fair 2000. A newly developed lightweight robot
arm and a new type of hand autonomously caught a ball thrown towards the stationary
system. The Wying ball was detected with a stereo camera under the condition that there
were no other moving objects (e.g. bypassing humans) in the sight of the camera. Under
these conditions diUerence images could be used to quickly identify the current location
of the ball in the images and 3D space. The extracted information could then be used
to predict the ball’s trajectory with an Extended Kalman Filter (EKF). As will be shown
later, the proposed system also uses diUerence images to detect a ball to start calculations
with. Before the Ballcatcher could operate properly it needed to be conVgured by doing
several test throws. Once calibrated it was able to precisely catch the Wying ball without
any problems.

Hawk-Eye The Hawk-Eye [4] system (Vgure 2 is the currently most sophisticated com-
mercial oXciating tool used in any type of sports. It makes use of multiple stationary
high-speed cameras that track the ball in realtime, and outputs television-ready anima-
tions showing a high-precision ball trajectory e.g. for game analysis or to assist the referee
in diXcult situations. It has already successfully been used in cricket and tennis and is es-

1 INTRODUCTION 9

Figure 1: DLR robotic ballcatcher

Figure 2: Hawk-Eye system

pecially interesting because of its capability to recognise balls at very high velocities under
natural game settings. Neither the ball(s) nor the game Veld need any modiVcations. Still,
even this professional system has problems with bright sunlight or reWections from metal
surfaces. The only restriction compared to the proposed system is the stationary camera
that is used to retrieve the images and the absence of secondary sensors that provide ad-
ditional data. Unfortunately, it is not easy to Vnd detailed information about the technical
background of this system because of its commercial use.

Balltracker During his thesis Jörg Kurlbaum developed a system [5] (Vgure 3) for track-
ing a Wying ball with a free-moving camera inertial sensor. This thesis continues his work
by moving onward towards a more uncertain environment and also by emphasising the
importance of camera calibration and sensor synchronisation to get more accurate results.
Kurlbaum’s Balltracker was already able to track an indoor Wying ball and to predict its
trajectory in realtime by using a Unscented Kalman Filter (UKF) [6] [7]. Since parts of his
system were based on RoboCup components used by B-Smart [8], the Balltracker needed
to be conVgured before use. Both systems use colour thresholds to segment the images
in order to detect the ball and the landmarks afterwards. It will quickly have problems

1 INTRODUCTION 10

Figure 3: Jörg Kurlbaum’s Balltracker

detecting the ball or landmarks when the lighting conditions change. This or a similar
type of architecture is quite established and often used by RoboCup teams, e.g. the cur-
rent world champion team "CMDragons" from the Carnegie Mellon University [9]. Data
Wows top-down from module to module whereas every module performs a certain com-
putation (segmentation, blob construction, shape Vtting, higher tactics, etc.) and passes
on its output to the other modules. Therefore, every module only knows a small part of
the overall information. Both the requirement of a mandatory conVguration as well as the
system architecture are main changes which hopefully results in a more robust and Wexible
system.

RoboCup Humanoids Figure 4 shows a typical game situation in the 2007’s RoboCup
kidsize humanoid league Vnal match between "Team Osaka" from Japan and team "Nim-
bRo" from Germany. The general principle of these systems Vts the proposed system
already quite well. The robots have free-moving cameras and autonomously track the
moving ball. Using deVned landmarks they can also locate themselves on the Veld. High-
ranking teams also locate opponent players and try to avoid collisions with them. Since the
rules allow additional sensors like gyroscopes or acceleration sensors, most of the teams
make use of these to improve their system’s performance. Even though the ball is rolling
instead of Wying in most cases, the scenario is quite similar to a real soccer Veld when
not considering the scaling aspects. Yet there is a very critical diUerence between these
systems and the proposed system. Once the light changes even a little bit, most RoboCup
systems will fail to localise the ball or landmarks. This is due to the fact that almost all of

1 INTRODUCTION 11

Figure 4: RoboCup Humanoids

these systems use colour lookup tables to segment the images. These tables are adjusted
before every game and immediately become useless once the light changes. Of course there
already are approaches that try to compensate light changes, but from personal experience
it should be safe to say that most teams still rely on constant lighting in order to play at a
competitive level.

Other approaches for detecting objects in the environment are of course possible and also
already used, but since most platforms only carry PDAs or at most an embedded system
with CPU frequencies of about 1.0 to 1.5 GHz computationally expensive algorithms on
such machines may be problematic to use. Since the proposed system is currently not
meant to be realtime capable and may run on a standard state of the art PC the space
of possible solutions and approaches immediately increases. As it will be pointed out
later, many of these possible approaches will unfortunately still not be applicable. Table
1 summaries the characteristics of the presented systems and shall give the reader a Vrst
impression of the complexity of the proposed system. The next section will then outline
the proposed system more detailed.

1 INTRODUCTION 12

System Hawk-Eye Balltracker RoboCup Ballcatcher Proposed

Natural lighting Yes No No No Yes

PredeVned colours Yes Yes Yes Yes No

Distracting objects 1 Yes Yes Yes No Yes

Realtime Yes Yes Yes Yes No 2

Free-moving camera No Yes Yes No Yes

Secondary sensors No Yes Yes No Yes

Frames per second ≈ 200 ≈ 30 ≈ 30 ≈ 50 ≈ 54 3

Table 1: Overview and comparison of existing systems

1.3 Outline of the Proposed System

Overall, a special challenge is the free movement of the camera, which is directly attached
to a helmet on the head of a human soccer player. This setup forms a very simple imitation
of a possible humanoid robot of 2050 with human-like movement capabilities. Even though
the software was originally intended to be as realtime capable as possible this is no demand
of this thesis but could of course be a good follow-up topic. During my work on this thesis
I quickly noticed that the high amount of uncertainty calls for algorithms that take up a lot
of memory resources and computation time. The Vrst experimental realtime version was
therefore abandoned after a short period of time.

Most existing systems for recognising balls or other objects are mostly bottom-up designs
[10]. After classifying pixels to certain predeVned colour classes, the results will be grouped
into regions (also called blobs) and then are Vtted to circles or other typical shapes of
involved objects that shall be detected.

From the movement of this shape a simple direction or full trajectory can be calculated later
on. This approach is fast, but not very robust since the modules in most cases do not have
access to the information of other modules and rely on thresholds and parameters tweaked
during setup time. The pixel classiVcator for example will simply classify the pixels, e.g.
as presented according to a colour lookup table, and does not have the information that a
round object shall be recognised. Thus, the classiVcator will not prefer pixels that would
generate round blobs if they do not Vt the colour table values well enough.

1e.g. humans, robots, multiple balls, etc.
2reasons will be given later on
3technical maximum of the camera used

1 INTRODUCTION 13

The proposed system shall follow a diUerent approach by optimising the trajectory data
combined with the image processor values. This should provide a greater robustness in sit-
uations where a far away or otherwise complicated ball could not be detected by the image
processor, but can be found retroactively once the dynamic model has been established.
The higher demands to computation speed and resources of the proposed system will most
likely not be a problem in the future because one can assume an onholding positive growth
rate in processor capabilities.

The information Wow of this system is neither pure bottom-up nor pure top-down; instead
the information and modules shall support each other. This approach also complies with
the ideas of cognitive oriented and biology inspired image processing. Scientists have pro-
posed that the reason for the high performance of the human visual system is the reciprocal
combination of many diUerent information levels inside the human eye and especially in-
side the brain instead of only relying on single local information [11] [12] [13] [14]. The
proposed system shall make use of this general thought without developing a pure biology
inspired system. The goals of this thesis will be deVned in the following section.

1.4 Goals

This thesis uses the data and models generated in cooperation with or by Oliver Birbach
[15] and its Vnal goal is to develop a software which can recognise a standard soccer ball
(and ideally also the position of a human soccer player on a real soccer Veld) under natural
outdoor conditions. Recognising the landmarks (Veld points and additional marks at the
Veld corners) proved out to be more complex than expected. Information about the position
of these landmarks within the scene images is therefore received from an external log Vle
that was also used by Oliver Birbach in his thesis.

The aim is to provide a robust system to process the data that has been previously collected
in experiments without any or with only very few prior conVguration. Before the actual
software can be written an appropriate mount for the camera and inertial sensor needs
to be constructed and all involved sensors need to be calibrated and well synchronised in
order to provide the most accurate results possible.

A comparison of the proposed system and a system that only relies on image processing
information shall furthermore prove the usefulness or at least the potential value of the
previously outlined system’s functionality.

1 INTRODUCTION 14

1.5 Preparations

Before beginning with the actual work for this thesis several preparations had to be made.
All of these preparations were done with great care in order to provide more accurate
results later on. The preparations were carried out in collaboration with Oliver Birbach
and provided the basis for his thesis, too. In order to begin constructing the hardware we
were missing the following components:

• a suitable wide-angle lens for the existing camera

• a solid chessboard-like pattern for the camera calibration

• appropriate building materials (mechanics and electronics)

• appropriate tools

During the B-Smart [16] project we had contact with several companies and other univer-
sity work groups or institutes that could provide us with all of the necessary components.
Therefore we had everything we needed in about two weeks of time and could start the
actual construction.

1.5.1 Hardware

Camera - Basler A312fc A Basler A312fc Vrewire camera (Vgure 7, left) is used to re-
trieve the images. The Vrewire port provides the power for the camera which is why no
additional power source besides the laptop needs to be attached. During the experiments
the laptop was either stored inside a backpack or carried by an additional assistant.

The camera can be used with a free Vrewire library and is running at its maximum reso-
lution to FPS ratio which is 720x580 pixels at about 54 Hz. The images are saved in a raw
Bayer format because online conversion would have taken up too much CPU resources.
Attached to the camera is a Pentax H416(KP) wide angle lens with a manual aperture
which allows a very wide Veld of view just like a human player would have. This positive
feature comes along with the necessity of calibrating the camera in order to deal with the
high distortion. The calibration was part of Oliver Birbach’s diploma thesis [15] and allows
pixel accurate detection in the output images when used together with Udo Frese’s camera
model software [15].

1 INTRODUCTION 15

Figure 5: Schematics for camera synchronisation

The camera has a well-documented RJ50 (10P10C) port which is used for the synchroni-
sation with the inertial sensor mounted on top of it. In order to use the synchronisation
a special cable that connects the RJ50 port of the camera with the inertial sensor had to
be constructed. For this purpose, the Basler manual recommended the assembly shown in
Vgure 5 4 which could be built and tested in very short time. With the described setup
the two sensors were successfully synchronised so that the camera triggered the inertial
sensor everytime an image was taken. Of course there is still a slight delay because of data
transmission and storage when saving the image to the harddrive of the computer. This
delay was ignored for the time being.

The MTx connectors shown in Vgure 6 5 were very hard to Vnd and even harder to solder.
Since the MTx sensor is also used by other workgroup members we decided to construct
the cable as an adapter that could easily be attached and removed from the sensor without
actually altering the MTx hardware. The synchronisation output pin (3) on the RJ50 con-
nector was soldered to the corresponding syncIn pin (3) at the MTx connector after a 1kΩ
resistor was added according to the schematics in Vgure 5. Finally the ground pins were
interconnected and the cable was carefully shielded with a heat shrink tube.

4taken from Basler A312f manual, section 2 - 8, Vgure 2 - 6
5taken from MTx manual, section 4 - 4 - 5

1 INTRODUCTION 16

Figure 6: Schematics for inertial sensor connector

Inertial Sensor - XSens MTx The inertial sensor used is a XSens MTx (Vgure 7, left)
model which has integrated gyroscopes, acceleration and magnetic Veld sensors for three
axes. During the experiments the sensor proved to be very robust and also quite accurate.
The hard- and software documentation which we needed to synchronise it with the Basler
camera was very easy to use.

In order to equip a human player with the camera and the inertial sensor – and still en-
abling him to move around as freely as possible – a suitable carrying equipment was nec-
essary. We decided that the sensors would be safe and easy to carry on a standard cycling
helmet. The cycling helmet is made of reinforced styrofoam and plastic components into
which we could very easily drill holes for properly mounting the camera and the MTx
sensor.

We looked for an appropriate material for the sensor attachment starting oU with some
thin metal plates we found in the storage room. The metal could be easily bent and drilling
holes was also possible. Since the sensor attachment could only be locked into position on
very few points at the helmet, we looked for a more suitable material and Vnally decided
to use Makrolon, which is a special kind of lightweight plastic. It could easily be formed
when carefully heated, but remained in its formed shape once it cooled down. Drilling
holes into this material was also very easy to do. The Vnal construction was a lightweight,
comfortable to wear, adjustable but still robust solution shown in Vgure 7.

1 INTRODUCTION 17

Figure 7: Inertial sensor and camera (left), worn system (right)

1.5.2 Software for Sensor Synchronisation

In order to use the hardware synchronisation feature of the camera and the inertial sensor,
only the software for reading out the inertial sensor needed to be slightly modiVed. The
camera by default already triggered the corresponding pin on the RJ50 port everytime a
picture was taken. The XSens MTx inertial sensor has an integrated triggering mechanism
for starting a measurement. The measurement can be activated either on a rising or a
falling edge on the corresponding pin, which for our application did not seem to make any
noticeable diUerence. Jörg Kurlbaum’s inertial server [5] was extended to make use of
this synchronisation feature by simply implementing methods for sending the packets for
activating the hardware synchronisation.

1.5.3 Data Acquisition

The data (images and inertial sensor values) was recorded in cooperation with Oliver Bir-
bach and two fellow students on a soccer Veld of the Universität Bremen. After the Veld
was carefully admeasured, we recorded about 100 scenes (approximately 25GB of raw data)
of typical soccer situations like freekicks, throw-ins, goal kicks or passes. An average scene
has a duration of about 3 to 5 seconds, long scenes may vary between 10 to 20 seconds.

1 INTRODUCTION 18

The ball is either kicked or thrown by a human player while another human player, who
carries the constructed camera-inertial system, observes the trajectory of the ball while
slightly moving or remaining in his starting position. Movement of the observer was done
carefully because we still were not sure about how stable the entire system would be. The
observer still tried to act like a normal soccer player in the corresponding situation as well
as possible.

After the Vrst session we noticed that data could not simply be written to the harddrive,
because the laptop used – a state of the art MacBook – had an agitation sensor which
deactivated the harddrive when the laptop was moved to roughly. To compensate for this
problem, Jörg Kurlbaum’s camera server [5] was also slightly changed so that images were
temporarely stored in the main memory and not written to disk until the end of a scene
recording. Scenes with overly large gaps were recorded again in a second session a few
days later. Most scenes were taken in bright sunlight, but there are also several scenes with
partly or completely clouded skies available.

The ball used in the scenes was switched frequently because we assumed that a red ball
might be better for the image processing algorithms, especially at the beginning of the
development phase. Since a normal soccer match is typically not played with such a ball
we also used a genuine black and white soccer ball. The next section will provide some
theoretical backgrounds that the reader should be familiar with, before reading the main
chapters about the proposed system.

2 THEORY 19

2 Theory

2.1 Rotations in 3D

Axis Angle Representation A possible way to represent a rotation in 3D space is the
Axis Angle form. The rotation is represented by two values: a vector component for the
direction of the rotation and an angle value which describes the rotation about the denoted
axis. This way of representing a rotation is quite easy to understand. The downsides of
the Axis Angle form is that it is not free of singularities and that it is not capable of trans-
forming a point or vector in 3D space. The following simple example 6 shall demonstrate
its usage:

Assuming we are standing on an even ground and choose to have the negative Z axis point
just like the gravity’s direction. So in other words the Z axis is pointing straight downward
into the ground. We furthermore pick the positive X axis to point left and the positive Y
axis to point forward from our current point of view. If we now want to denote a rotation
of 45 degrees to the left (rotating about the Z axis) we could write this as the following
axis angle representation:

〈angle, axis〉 =

x
y
z

 , θ

 =

0
0
π
4

 , π
4


We can also represent this as a rotation vector pointing in Z axis direction with a magnitude
of π

4
:

0
0
π
4



Quaternions Quaternions are another way of representing rotations in 3D space and
can be found throughout the proposed system’s software components. The reason why
quaternions were used as representation form for coordinates is mostly because it was

6adapted from http://en.wikipedia.org/wiki/Axis_angle

http://en.wikipedia.org/wiki/Axis_angle

2 THEORY 20

i j k

i -1 k -j

j -k -1 i

k j -i -1

Table 2: Quaternion combination conditions

successfully used in Kurlbaum’s thesis [5] which was the predecessor for this thesis. Math-
ematically seen, quaternions are simply an extension of the complex numbers deVned as
the ring

H = {a + bi + cj + dk | a, b, c, d ∈ R}

where each quaternion is deVned as a quadruple with the form

q = (a, b, c, d)

and deVned addition and multiplication operations which can be ascribed to the corre-
sponding operations for real numbers. Quaternions can describe a rotation around three
axes with four numbers and a quaternion magnitude of 1. It is important to know that
multiplication of quaternions is not commutative and is subject to the combination table
shown in table 2. Multiplication is done from the outer left column element to the corre-
sponding top row element, e.g. i·j = k. Note that all squares of the imaginary components
are -1.

Multiple rotations can be achieved by simply successively multiplying (and normalising)
the corresponding quaternions. A rotation by α around an axis u axis can be represented
with the quaternion

qrotation = (cos(
α

2
), sin(

α

2
),

u

|u|
)

and a point (X, Y, Z) in 3D space may be represented with the quaternion

qpointInSpace = (0, x, y, z)

2 THEORY 21

The combination (rotated point) of these quaternions is deVned as

qrotated = qrotation · qpoint · qrotation

A very useful and intuitive way of writting down rotations is the form of A2B where
A and B are two diUerent coordinate systems, e.g. camera and world coordinates. The
quaternion camera2world would then be a transformation of a point from camera coordi-
nates into world coordinates. There are several good sources for more information about
quaternions, beginning with the publication of the inventor of quaternions - Sir William
Rowan Hamilton [17] up to modern books [18] or online resources [19].

2.2 Image Processing

This section discusses state of the start approaches for detecting circle objects in images and
their application possibilities for the proposed system. It also presents a newly-developed
approach for evaluating the quality of a circle and for detecting a moving ball within a
sequence of images recorded with a free moving camera-inertial sensor.

2.2.1 Circle Detection

Detecting circles – or other types of shapes – in images is a very fundamental part of
image processing. Eye recognition, medical applications like brain scanning, industrial
applications for verifying the quality of products or the RoboCup with its demands to
recognise diUerent objects on the playing Veld are only a few examples for the wide range
of use of circle detection algorithms.

Before working on the system’s image processing component a few simple tests and in-
quests were made, in order to Vnd a suitable method for detecting the Wying ball within
the recorded images. The following subsections each point out the positive and negative
aspects of the considered methods and Vnally give a reason why the particular method was
selected or abandoned.

2 THEORY 22

Contracting Curve Algorithm The detection capabilities of Robert Hanek’s contract-
ing curve density (CCD) algorithm [20] were quite stunning when Vrst reading the paper
about this shape detection method. The algorithm was said to achieve "a high level of
robustness and subpixel accuracy even in the presence of severe texture, shading, clut-
ter, partial occlusion, and strong changes of illumination". The example images showed
various shaped objects like balls, circles, cups or even humans being perfectly Vtted and
therefore recognised in the source images.

The CCD algorithm "applies a novel likelihood function for the assessment of a Vt between
the curve model and the image data which can cope with highly inhomogeneous image
regions" and "uses blurred curve models as eXcient means for iteratively optimising the
posterior density over possible model parameters".

Even though this algorithm seemed to be very promising and interesting, it also seemed to
be very complex and challenging. After a discussion with Udo Frese we decided that this
algorithm would not be suited because of its diXculty and the small amount of available
time to implement it. Therefore it was abandoned without any experiments at all. For
future work it still might be an interesting alternative to look further into.

Robust Circle Detection using a Weighted MSE Estimator Prof. Dr. Guido Schuster
and Aggelos K. Katsaggelos presented a new way of detecting circles with a weighted
minimum mean square error formulation in 2003 [21]. This method also seemed to be very
interesting for usage in the proposed system because it claimed to achieve "its robustness
by operating in one step, using all pixels of the image (correctly weighted) and not using
any thresholds" unlike the traditional approaches which in general always consist of two
stages. In that Vrst stage the source image is usually input into an edge detector (e.g.
Sobel or Canny) which of course is "sensitive to noise". The second stage – which is the
actual circle detector – now works on the reduced information generated in the Vrst stage
and cannot correct any errors made in the previous stage. Working without thresholds
sounded promising because of the natural lighting conditions the proposed system should
be able to deal with. The method furthermore claimed to consume fewer resources than
the standard Hough transformation, which of course was yet another positive point.

But while looking deeper into this approach it more and more became obvious that it would
not be a suitable method for detecting the ball in the scene images. The Vrst fundamental
assumption of the MSE circle detector is "that there is only one circle in the image" which
for the recorded scenes of course is not true. There is currently at least on other human
player on the Veld, possible artifacts in the surrounding fence and shadows from player
heads and the ball on the ground. But at the time being this method was further investi-

2 THEORY 23

Figure 8: Circle model of MSE approach

gated anyway, under the assumption that this problem could somehow be coped with. In
order to give the reader at least a slight impression of the functionality of the method –
even though it was not used for the proposed system later on – the following paragraphs
shall explain the approach. All of this information has been adopted from the listed paper.

With the circle model illustrated in Vgure 8 of the MSE method the circle’s centre and
radius can be calculated if the pixels, that belong to the circle, are known. The MSE circle
model assumes a ray at an angle α ranging from 0 to 360 degrees originating at the image
centre and covering the entire image. This circle is deVned with the centre at the point of
(Cx, Cy) where

Cx = r · sin(γ), Cy = r · cos(γ))

and a radius rwith the length of the ray which is tracing the circle. The model furthermore
assumes that a(α) · cos(α) and/or a(α) · sin(α) can be measured within pixel accuracy
and therefore the circle parameters Cx, Cy and r can be calculated from the measurements.

2 THEORY 24

To calculate the horizontal centre of the circle, the following holds:

a(α) · cos(α) = Cx + r · cos(β(α))

with β(α) depending on α, butCy being independent of α. The r·cos(β(α)) termmay now
be removed by taking the average over all pixels that belong to the circle. This operation
is indicated by a line above the expression in the following.

Since for every pixel on the circle there is a pixel diametrically opposite to it where the
cos(β(α)) term has the same magnitude but opposite sign, the terms already listedabove
hold for the horizontal dimension and in similar way for the vertical dimension. The radius
of the circle can be calculated with the average distance between the estimated circle centre
and all circle pixels. Even though this approach is faster than a Hough transformation, it
requires that the pixels belonging to the circle can be easily detected, which is not that easy
in noisy images. The scene images also have a much higher resolution than the example
images shown in the paper pixels which will increase computation time again.

To be able to deal with gaussian-noised images the MSE approach does not actually detect
the pixels that belong to the circle, but instead uses the weighted values of all pixels to
estimate the circle characteristics. The approach uses the well known concept of MSE
estimation via a the Moore-Penrose (generalised) inverse [22] of a matrix. Details about
this can be found in [21] but have been omitted since they are of no importance to this
thesis.

After a few Vrst tests and consultation with the method’s creator Schuster, it quickly be-
came obvious that this method will have problems working with realistic images that con-
tain more than one circle object (ball, heads of other players, parts of the fence, etc.) and
have non-gaussian noise aUecting the circles. It therefore was abandoned and not further
tested.

2 THEORY 25

Figure 9: Source image (left), Standard Sobel image (right)

Hough Transformation The Hough transformation was originally developed by Paul
V.C. Hough in 1962 [23] in order to detect lines in images. After Richard Duda and Peter
Hart generalised the method in 1972, Dana H. Ballard Vnally popularised this method [24]
which it is still used today. Since 1981 several possible improvements and modiVcations
have been published [25], e.g. the Fast Hough Transformation [26].

Since this method was part of several lectures at the Universität Bremen, is widespread and
not too diXcult to implement it was considered for the proposed system’s circle detector.
The principle of this method shall be explained according to a well known example 7 in
which coins are to be automatically detected.

Figure 9 shows the original raw image with the already detected coins (white circles) and
the Vrst step for detecting these, a Sobel Vltered image with only the edges of the coins
remaining, on the right. The Sobel image is generated with a standard method not further
discussed.

7taken from http://www.math.tau.ac.il/ turkel/notes/hough4.html

2 THEORY 26

Figure 10: Coins Hough space (Pennies left, Quarters right)

After the edge image has been generated the Hough space may be generated. Circles can
be represented with the term

(x − Cx)
2 + (y − Cy)

2 = r2

The Hough space is formed by all possible circle parameter (Cx, Cy , r) combinations. When
visualised like in Vgure 10, every pixel of the Hough picture represents one speciVc com-
bination of parameters. The brighter that pixel is, the bigger the evidence for a circle with
exactly these parameters would be. The Hough image’s pixel values are generated by ac-
cumulating the edge values from the source image. For every set pixel in the edge image
each Hough space pixel whose circle lines would run through that pixel is increased ei-
ther by a constant (depends on threshold) or by the corresponding edge value (stronger
edges are rated stronger). The radius is set to a speciVc minimum and maximum value
when doing the Hough transformation. The best circles in the image can later be found by
simply searching for the maxima in the Hough space. In any case, the time and memory
consumption of the method is high and will increase with the image resolution and radius
range.

As will be shown in the Software section later, the OpenCV [27] library’s circle Hough
transformation was not very satisfying. That is why yet another circle detection method
had to be examined.

2 THEORY 27

Radial and/or Tangential Error Values Even though the proposed system needs a
method to actually Vnd circles when looking for a starting ball to work with, it also needed
a method to rate a potential circle’s shape and colour at a speciVed location. The algorithm
shown in Vgure 11 and several slight modiVcations of it were integrated into the system
for rating the shape of a circle.

rateCircle(x, y, r : double , sobelImg : SobelImage)

1 minContrast = 2.0;

2 mCT = minContrast/sqrt(2.0);

3

4 for (alpha = 0; alpha < 360; alpha + +)

5 do
6 xp = floor(0.5 + x + cos(alpha) ∗ r);

7 yp = floor(0.5 + y + sin(alpha) ∗ r);

8

9 sobelX = sobelImg[xp, yp].x;

10 sobelY = sobelImg[xp, yp].y;

11

12 sobelLen = sqrt(sobelX ∗ sobelX + sobelY ∗ sobelY));

13 sobelT = fabs(−sin(alpha) ∗ sobelX + cos(alpha) ∗ sobelY);

14 Error = Error + ((sobelT + mCT)/(minContrast + sobelLen));

15 PixelsAnalysed + +;

16

17 mean = −Error/P ixelsAnalysed;

18 return (mean);

Figure 11: Circle rating algorithm

The algorithm accesses a previously generated Sobel image. This image has the same
dimensions as the source image it was generated from. The Sobel image can be interpreted
as an "edge image" in which every pixel’s brightness – which corresponds to the magnitude
of the Sobel vector – indicates how strong each source pixel may be considered an edge
inside the image. In other words the Sobel value is the gradient of the image brightness as
a vector in X and Y direction. This vector is orthogonal to the edge.

2 THEORY 28

Given the circle’s centre at x and y and with a radius of r, the circle points can easily be
calculated by using sinus and cosinus functions with an angle from 0 to (a full circle) 360
degrees (6)(7). Every circle point’s Sobel length as the square root of the squared X and Y
Sobel values is calculated in (12). This value simply indicates the strength of the contrast
in the direction of the edge (radial).

The SobelT value computed in (13) indicates the quality of the edge in tangential direction
of the assumed circle. If this pixel is really part of a circle edge this value needs to be small
because the circle’s border pixels would be similar. If the value is high, it would indicate a
break or inhomogeneity within the circle’s outer border and therefore raise its error value.

The Vnal value for this pixel (14) is accumulated to the overall error for this circle and is
the quotient of the previously computed radial and tangetial values modiVed by constant
values for a minimum contrast for the circle edges. The basic idea behind this quotient is
that the error value will increase if the radial contrast decreases and if the tangetial contrast
increases. The result of the algorithm is an error value for the entire circle (17), which is the
mean of the accumulated values previously described. It is returned as a negative value so
that it may be used as a believe value when substracted from 1. This value then indicates
the likelihood that there really is a circle with radius r at the passed coordinates x and y.

2.2.2 DiUerence Images

A diUerence image is an image which shows the numeric diUerence between the pixel
values of two source pictures. The higher the value of a pixel in the resulting diUerence
image, the more this pixel diUered in the two source images. If the camera is supposed to
remain at the same location the diUerence of two consecutive images could be interpreted
as some kind of movement that happened during the time these two images were recorded.

When using a stationary camera a diUerence image of two images with the same width and
height is very easy to create. Since every pixel of the Vrst image corresponds to the pixel
with exactly the same coordinates in the second image the diUerence can be calculated
using the algorithm in Vgure 12.

Since the proposed system uses a free-moving camera, the diUerence images cannot be
generated with this simple algorithm. In order to do this one needs camera calibration
information, which were a part of Oliver Birbach’s thesis [15] and a camera model, which
was implemented by Udo Frese [28]. The calculated calibration data is passed to the cam-
era calibration software on startup and calculates all necessary parameters for the actual

2 THEORY 29

DifferenceImage(img1 : sourceImage , img2 : sourceImage)

1 for y ∈ height

2 do
3 for x ∈ width

4 do
5 differenceImage[y][x] = abs(img1[y][x] − img2[y][x]);

Figure 12: DiUerence image algorithm for stationary camera

camera (aUected by the wide angle lens) used. Afterwards it is possible to deal with even
highly distorted images provided by the camera and to map 3D objects within the environ-
ment to a 2D image and vice versa. The algorithm ignores the translation on the Veld that
happened between two images for the time being, since the relative movement which can
be calculated from the gyroscope values is suXcient for the current state of development.
When considering the translation between the images one would also need information
about the camera’s location on the Veld which is currently not tracked yet.

Due to this circumstances the diUerence image generation algorithm must be extended in
a way shown in Vgure 15 to calculate at which position every pixel in the second image
was previously in the Vrst. A 2D Pixel in the old camera coordinate system is transformed
into a 3D ray in world coordinates (6). As mentioned the translation is not used, so a
Vxed distance of one meter is used for the pixel’s distance. In the next step the relative
movement of the camera is used to calculate a new transformation which is applied to the
camera model (7)(8). We now can use the new transformation to transform the world point
back to a 2D pixel (9). This pixel is the corresponding pixel in the second image and we
can now calculate the diUerence between these two pixels. When calculating this value a
contrast normalisation is performed Vrst in order to reduce noise in the resulting diUerence
image. If the pixel in the second image shows something that was not part of the Vrst
image the diUerence image for this pixel will simply be blank.

Figures 13 and 14 show sample diUerence images from an actual scene computed with the
proposed system. While the second example in 14 only has one valid blob resulting from
the moving ball in the original image the Vrst example shows a lot of set pixels in an area
where no actual movement took place. How these blobs are created, merged and Vltered
will be described in the following section.

2 THEORY 30

Figure 13: DiUerence Image with ball blob

Figure 14: DiUerence Image with a lot of invalid movement

2.2.3 Blob Building

The term blob is well known in almost every RoboCup related software system which has
an image processing component. The traditional blob in these systems is a shape that
consists of connected or at least adjoining pixels that were previously segmented to be of
the same colour class. Typically objects that are made of one or multiple blobs are: ball,
landmarks, goals or opponent robots.

Detecting ball movement – in order to have a starting ball for the calculations – is done
by grouping several pixels together which have changed between two consecutive images.
This is done by using the already described diUerence images. To be considered a valid blob

2 THEORY 31

DifferenceImage(img1, img2 : sourceImage , relativeRotationData : inertialData)

1 for (y = 0; y < img1.height; y + +)

2 do
3 for x = 0; x < img1.width; x + +

4 do
5 setSensor2World(cameraIsWorld)

6 3DRay = image2SensorRay(img1.x, img1.y)

7 newCamera2world = calculateNewCamera2world(relativeRotationData)

8 setSensor2World(newCamera2world)

9 2DPixel = world2Image(3DRay, newX, newY)

10 if (hasV alidLimits(newX, newY)

11 then
12 differenceImage[y][x] =

13 normalizedContrastDiff(img1[y][x] − img2[newY][newX])

14 else
15 differenceImage[y][x] = 0

Figure 15: DiUerence image algorithm for free-moving camera

from two consecutive images, the potential blob must fulVl several conditions, which diUer
from the wide-spread conditions of most RoboCup systems. Table 3 shows an overview of
the conditions.

In comparison to most – if not all – RoboCup systems, a blob with the proposed system
may consist of multiple pixels which are not directly connected to each other but have
unset pixels throughout the entire blob. A very superVcial deVnition of a blob within the
proposed system could be that a blob is just a cluster of nearby pixels.

This tradeoU needed to be introduced because even with very strong movement between
two images there are still pixels inside the ball that do not change signiVcantly enough.
Figure 2.2.3 illustrates the sequence of how a blob is actually built:

The image is scanned pixel by pixel beginning in the top left corner of the diUerence image.
Once a set pixel has been found, this pixel will either be added to an already existing blob

2 THEORY 32

Common RoboCup systems Proposed system

Blob has minimum size Yes Yes

Blob has maximum size Maybe No

Blob pixels are directly connected Yes No

Blob has a predeVned shape Yes Yes

Table 3: Blobs in RoboCup and proposed system

within its vicinity or to a new blob that is created at that time. When a pixel is added to
a blob – as step 2 illustrates – the new borders of the resulting blob are the lowest and
outmost X and Y coordinates of the pixels the blob consists of. Even though this approach
might seem not very sophisticated, it worked out quite well.

Unfortunately, with this procedure a lot of false blobs will be detected in the diUerence
images, especially inside the fence that surrounded the soccer Veld on which the scenes
were recorded. To get rid of these blobs, which deVnitely have nothing to do with a
moving ball, the previously mentioned procedure was extended by merging nearby blobs
together to a single bigger blob. Figure 16 shows the sequence of two blobs being merged
together.

By merging the blobs inside the fence – or elsewhere on the Veld – a very long blob will
be created which resembles the form of a slender column. Figure 13 shows a resulting
diUerence image from the pictured source image and its predecessor. Since this column’s
height is by far bigger than its width the rectangular blob will be deleted at the end of
the blob building sequence because it does not fulVl the last condition for a blob, which
demands that all valid blobs are of quadratical shape at a maximum width to height ratio
of 1.5 to 1.0 and vice versa.

Even though this approach is not very complex, it still worked out quite well in the tests
as the following sections will show. The next section will introduce the reader to the
optimisation method used in the proposed system.

2 THEORY 33

Step 1 Step 2 Step 3

Step 4 Step 5 Step 6

Result

Table 4: Blob building sequence

2 THEORY 34

Figure 16: Blob merging procedure

2.3 Gradient Descent Optimiser

The gradient descent [29] is a standard algorithm for general purpose function optimisa-
tion. The algorithm Vnds a local minimum of the function F (xlast) by continuously taking
steps in the direction of the negative gradient −δF (xlast) at the last evaluated point xlast,
Vnally converging in a functions’s local minimum. A step width factor ε is used for the
actual range of the step since the gradient only indicates the direction of the step but not
the length. A constant a calculated value for ε may be used where the constant value is
of course easier to implement but a dynamic step width will most likely result in better
performance.

There are two variations of the algorithm when implementing it: the usage of analytical or
numerical derivation. The Vrst alternative requires that the function that shall be optimised
can be derived arbitrarily. This is possible for trivial functions but very diXcult for the error
calculation function used in the proposed system. This function is complex and its precise
characteristics are uncertain. The error calculation in the proposed system depends on 16
values and has dependencies that are hard to determine.

Hence the second alternative – numerical derivation – was used for the implementation.
Hereby the gradient of the function is calculated by evaluation the function at F (x) and
slightly altering the n-th component of the input vector by ε either up or down. By using
this method one does not need to construct or even know the Vrst derivation of the function
that is to be optimised.

2 THEORY 35

Blob-Building-Algorithm(DifferenceImages)

1 for y ∈ height

2 do
3 for x ∈ width

4 do
5 if pixelIsSet(y, x)

6 then
7 if !blobIsNear(y, x)

8 then
9 createNewBlobAt(y, x);

10

11 addP ixelToBlobNear(y, x);

Figure 17: Blob building sequence

But even though the algorithm is known to Vnally converge into a local minimum of the
function there are several problems especially when considering the use in the proposed
system. The algorithm will quickly descent into the right direction of the minimum of
F (x) but Vnal convergence will take up a lot of time. It will take even more time when
the algorithm is started with poor starting values. Guessing these values for a complex
function as it is used in the proposed system is not easy. The solution for this problem is
described in the Implementation section.

3 SOFTWARE 36

3 Software

3.1 General Architecture

Figure 18 shows an illustration of the general architecture of the proposed system. The
scene data, which in the current state of development consists of the visual image data,
the inertial sensor information and the locations of landmarks in the individual images,
is loaded into appropriate storage containers at the start and can be accessed from the
optimiser and each evaluator.

The GUI component is used for visualising the scene data in its latest state. A sub-
component of the Optimiser - the Motion Detector - is able to Vnd a suitable start ball
for the optimisation process. TheMotion Detector detects balls in an adjustable amount of
consecutive frames and updates the scene data accordingly. In the next step, the optimiser
is able to optimise the scene frames by using the initial balls found by theMotion Detector
and predicted balls in the following frames.

All evaluators receive the ball position or other important scene data converted into a 2D
perspective position since the work on 2D images. They can therefore evaluate the quality
of potential balls at the corresponding locations and indicate how "ball-ish" the target zone
looks. All evaluators return error values which can be used as a part of the entire scene
error. The second part from the scene error is the result of the dynamic Z2 function which
outputs an error value for the ball trajectory.

In the current state of development there are two evaluators: one for the ball’s colour and
one for its shape. Additional evaluators can be easily be added by using the evaluator base
class and overloading the evaluation method with custom user code. The evaluators’ error
values will be summed up and are combined with the trajectory error values. This input
is used within the optimiser during each step of optimisation until the combined error has
reached its minimum.

The following Implementation section describes the details of each component from a more
technical point of view.

3 SOFTWARE 37

Figure 18: Proposed system’s architecture

3.2 Implementation

The entire software was written in C++. Most of the described parts, as for example the
optimiser or the Kalman Vlter, have been implemented as independent classes, which have
access to the separated GUI components. A mathematical framework by Udo Frese has
been used extensively throughout the entire system in order to work with matrices, vectors,
transformations and camera calibration.

3.2.1 Optimiser

The optimiser component currently uses the already described Gradient Descent algorithm
to optimise the trajectory data. The function that is optimised outputs the total error value
for the set segment of trajectory data and is a combination of trajectory error and image
processing errors. In contrast to Oliver Birbach’s thesis the location of the ball was not
measured before and input into the system. Instead this (image processing) part was re-
placed with another real error value, which indicates how "ball-ish" the area in the image
where the trajectory assumes the ball actually is. Hence by reducing this output value the
quality of the ball recognition will increase. The optimiser currently works on a Wat vector

3 SOFTWARE 38

Vector index Data

01-03 Ball position in world-coordinates (X, Y, Z)

04-06 Ball velocity in world-coordinates (X, Y, Z)

07-09 Camera position in world-coordinates (X, Y, Z)

10-12 Camera velocity in world-coordinates (X, Y, Z)

13-16 Rotation (inertial2camera) in quaternion form

Table 5: Optimiser vector

(shown in Vgure 5 consisting of 16 values:

This vector contains the parameter values such as the balls position that is forwarded
into the dynamic model functions from Oliver Birbach’s thesis [15] and is also used by
the evaluators described later on. Before the values can be used, they have to be converted
into a 2D perspective which is done by using existing transformation code from the camera
model class. The evaluators now calculate their own fraction of the frame’s error just like
the dynamic model functions do. The overall frame error is the sum of all evaluator errors
and dynamic model errors. Summing up all total frame errors results in the overall scene
error that the optimiser is working on and which we want to reduce to a minimum.

After working on the Wat vectors, the scene data is written back to the high level scene
data containers, so that the data may be visualised by the GUI component. The optimiser
implemented in the proposed system uses a dynamical scaling of the step width factor ε.
The scaling is not very sophisticated and just follows two simple rules:

1. If the error is currently being reduced, which means we are going into the right
direction, we might even go faster into this direction and therefore increase the step
width by using the old value multiplied with an adjustable constant.

2. If the error is not reduced, which means we have gone into the wrong direction we
reduce the step width by scaling it down with an adjustable value. We now hope
that we have not gone too far into the wrong direction and by scaling down the step
width will soon more into the right direction again.

As mentioned in the Theory chapter the gradient descent algorithm only converges into
a local minimum and needs plenty of time to do so. Since the error calculation function
does not necessarily have only one minimum this algorithm is actually not very suited for

3 SOFTWARE 39

the proposed system, especially when considering the fact that it will take an excessive
amount of time when the algorithm is not started up with some appropriate values.

But since the system should only show that the general idea behind all this (combining
vision and trajectory data to an optimised, more robust result) is worth exploring, this
method was used because it is known to be easy to implement. As the later Tests will
show it deVnitely was not the best choice, but at least provided results in time.

3.2.2 Evaluators

Colour Evaluator The Colour Evaluator rates the resemblance of a circle with given
values to either a colour or black and white ball. When rating the resemblance to a colour
ball the evaluator must be told which average colour (RGB value) the real ball will have.
Unfortunately, the evaluator will also need thresholds for the RGB values in order to decide
whether a circle’s pixel matches the real ball or not. Since the ball is aUected by lighting
changes while Wying, evaluating the colour can quickly become complicated.

Rating a black and white ball is done by just counting circle’s pixels that are within a
predeVned range, either close to black or close to white. For both colour evaluations the
ball matching pixels compared to the entire amount of pixels the ball consists of will form
the returned value. Since there might be other objects on the Veld which resemble the balls
colour using only this evaluator would be ineXcient and most surely produce bad results.

Shape Evaluator The Shape Evaluator is an exact implementation of the algorithm al-
ready described in the Theory section before. During the development phase the core
algorithm for evaluating a circle was tested with slight modiVcations, e.g. either using the
tangential or radial error values, using a mean of all pixel errors or weighting the errors
diUerently. A small test application was developed to test the eXciency of four diUerent
circle algorithm versions. Two versions did not rate the real ball as best circle in the im-
age while the other two had noticeable time diUerences. The currently used version was
chosen because it was noticeably faster while rating the real ball as the best circle in the
image.

More Custom Evaluators A base for future evaluators is provided as part of the software
system. The evaluator method must be provided with an image to work on and has access
to other important scene data it might want to use. The user should thereby be able to

3 SOFTWARE 40

quickly integrate more evaluators into the system.

3.2.3 Unscented Kalman Filter

The Unscented Kalman Filter (UKF) was ported from a Vlter originally written in JAVA,
which was part of Udo Frese’s "Theorie der Sensorfusion" lecture. The UKF is currently
only used for Vltering the camera-inertial system’s rotation that will be used when dis-
playing the artiVcial horizon. The Vlter works just like the UKF that was the main part of
Kurlbaum’s thesis in 2007 [5] and Oliver Birbach’s thesis in 2008 [15].

The artiVcial horizon is a useful hint for the human user but is also used when looking for
start balls. Balls above the artiVcial horizon will thereby be ignored and are not considered
as valid start balls.

An artiVcial horizon can be created by building a complete 360 degrees circle of points
around the observer with a speciVed distance between the points, e.g. 10 degrees. The
location in world coordinates of this point can be calculated by using trigonometric func-
tions with the running degree value. If this world point can currently be seen in the image,
the point is added to an array of points that will Vnally be interconnected by a simple line.
Figure 19 illustrates the algorithm for creating the artiVcial horizon.

At an early state of development a Statistics Evaluator was meant to be implemented, too.
This evaluator should have previously recorded (learned) information about the charac-
teristics of the involved balls and then compare these to the balls in the recorded images.
This evaluator was left out in agreement with the tutor because it would have used up too
much of the remaining time.

3.2.4 Motion Detector

Based on the presented blob building method a Wying ball may be recognised. Since the
ball is moving in the image sequence once it is kicked, it will generate movement blobs
after entering a certain perimeter (about 15 meters) around the observer. A compromise
was made that only scenes would be used where the ball’s starting position was directly
on the ground. By making this assumption false movement blobs – e.g. inside the fence –
could be eliminated because they were above the calculated horizon.

3 SOFTWARE 41

drawHorizon(currentRotation : Quaternion)

1 inertial2world.setRotation(currentRotation);

2 world2camera = inertial2world ∗ camera2inertial;

3 for point ∈ horizonPoints

4 do
5 degrees = (10 ∗ point) ∗ (PI/180);

6 nextHorizonPoint = (45 ∗ cos(degrees), 45 ∗ sin(degrees), 0);

7 cameraModel.world2Image(nextHorizonPoint, x, y);

8 if (validImageBoundaries(x)ANDvalidImageBoundaries(y))

9 then pointsToDraw.insert(nextHorizonPoint);

10

11 drawLineFromPoints(pointsToDraw);

Figure 19: ArtiVcial horizon algorithm

A big disadvantage of this constraint is that it leads to late ball recognition if the ball is
kicked from greater distance. Once the movement is detectable the ball might already have
risen above the horizon. It will be considered a valid start ball once it falls below the
horizon which unfortunately might be at a late phase of the trajectory. In other scenes
where the ball is away about 10 meters the starting ball is detected about 1 to 2 frames
after it leaves the ground.

In order to be considered as a starting ball the following conditions must be fullVlled:

1. There must have been movement (blobs) in a sourrounding area over a speciVed
number of frames (currently 3)

2. Area must be below the horizon

The Motion Detector was able to detect correct start balls in most of the scenes (shown in
Vgure 20, even though these balls sometimes may be not at the beginning of the ball tra-
jectory. Due to sunlight eUects on the ball, the detection is sometimes not exactly accurate
as shown in Vgure 21. The number of balls to detect can be freely adjusted and is currently
set to 2 balls. Ball positions for the frames will be calculated from the previous ball position
and its speed.

3 SOFTWARE 42

Figure 20: Correctly detected start balls with displayed (negative) error values

3.2.5 GUI

The GUI was written using the free Trolltech Qt library [30] in version 4.2. Even though
the Qt library has a very comprehensive amount of classes for almost every purpose and
it is quite easy to generate good results in only a short amount of time, it proved out to be
not the best choice for the proposed system during the implementation.

Drawing functions are event based. So in order to draw within a Qt widget the user must
overload a protected method with his own code. This means, that the component that
shall be redrawn needs to know the latest state of the involved information to draw at all
time. The scene display has extensive update methods which set the information to be
visualised to the passed values. These methods may then be called by other components,
e.g. the optimiser or the evaluators. The big disadvantage of this event based drawing is
that other components cannot just draw debug shapes into the scene images, which can
be very useful during the development of a new evaluator or while debugging it. Having
the system read in all necessary data from a command line argument, processing it and
writing the results consisting of images with output overlays and some logVle back to the
harddrive would have been suXcient. The output images could then be displayed with
the users image viewer of choice or be converted into a standard AVI video e.g. using the
freely available MEncoder [31].

Other image processing related parts of the system were developed with the OpenCV li-
brary [27]. In the current state of development only the OpenCV resource containers have

3 SOFTWARE 43

Figure 21: Incorrect start ball

been used, the internal Hough algorithm for example turned out to be not very eXcient.
Still, the OpenCV library includes methods for displaying these images, so it would have
been better to write the complete GUI in OpenCV or maybe even to have no GUI at all.

3.2.6 Comparison with other Approaches or Applications

Even though the results of the circle detection algorithm were quite satisfying, the OpenCV
circle Hough transformation was also tested. The library provides a 320x240 test image
(shown in Vgure 22, left) for demonstrating the internal circle Hough algorithm. The circle
inside this test images is detected within only a few milliseconds of time (shown in Vgure
22, right).

But if the algorithm is used with the actual scene images the results are clearly unaccept-
able. As shown in Vgure 23, neither the genuine black and white ball nor the coloured ball
were recognised correctly. The documentation on this algorithm is unfortunately short,
there are only two parameters that inWuence the algorithm. A small test application was
developed in order to examine the algorithms behaviour, but without having a documented
method for determining these "magic" parameters no satisfying results could be achieved.

3 SOFTWARE 44

Figure 22: OpenCV circle Hough transformation example

Figure 23: OpenCV circle Hough transformation results

4 RESULTS 45

4 Results

4.1 Evaluation

Since it is diXcult to display test images in suXcient resolution within this document, the
entire test results have been added to the attached DVD as full quality images. Also note
that the following images have been slightly brightened and that their contrast was slightly
increased. This was only done for technical reasons in order to have a well readable printed
version.

4.1.1 Test Scene 1: Close Pass with a red Ball

Course of Events The observer starts at the penalty point facing the goal directly. Slowly
turning his view left, he awaits a pass from about 10 meters away. The ball is kicked
in the direction of the observer who attempts to stop the ball with his right foot while
following the trajectory of the ball for the entire Wight time. The observer is moving
casually backwards in order to line up himself with the passing player and the ball. Table 6
illustrates the scene’s course of action while table 7 summarises the overall results for this
test.

Table 6: Scene 1: A close pass with a red ball

4 RESULTS 46

Duration 2.94 seconds

Frames 159

Ball red

Start ball detection 5 frames after ball leaves ground

Number 11

Table 7: Scene 1 results

Analysis The motion detector is able to Vnd the Wying ball almost exactly at the time it
enters the air. Since the ball is only about 10 meters away from the observer, it is lying
below the horizon and the movement is therefore be considered as a possible ball. The
optimiser using the trajectory and image processing data combination did not alter the
recognised ball to a worse result, which is an indication for the correctness of the proposed
system. The scaling factors for the image processing error fraction have been set to be
around the same bounds as the errors from the dynamic model functions.

4 RESULTS 47

4.1.2 Test Scene 2: Far Pass with a red Ball

Course of Events The observer again starts at the penalty point facing the goal directly.
Slowly turning his view left he awaits a pass from about 20 meters away. The ball is kicked
in the direction of the observer who follows the trajectory of the ball while again casually
aligning himself with the passing player and the ball.Table 8 illustrates the scene’s course
of action while table 9 summarises the overall results for this test.

Table 8: Scene 2: A far Pass with a red Ball

Duration 4.95 seconds

Frames 269

Ball red

Start ball detection 112 frames after ball leaves ground

Number 20

Table 9: Scene 2 results

Analysis The increased distance between ball and observer has a noticeable impact on
the ball recognition in this scene. The ball is again lying below the horizon, but the motion
detector is unable to detect the movement at such a great distance. At the time the detector
might be able to locate the ball, it is already Wying above the horizon and therefore the
movement is ignored until the ball drops below the horizon. Unfortunately, this happens
not until the ball has already completed about half of its trajectory.

4 RESULTS 48

4.1.3 Test Scene 3: Authentic Corner Kick with a black and white Ball

Course of Events The observer starts at the right corner of the goal box facing the right
goal pole. Slowly turning his view left, he awaits a pass from about 35 meters away.
The ball is kicked in the direction of the observer who follows the ball trajectory without
moving himself. The ball passes the goal in a high Wight path and hits the ground about 5
and 10 meters to the right of the observer. Table 10 illustrates the scene’s course of action
while table 11 summarises the overall results for this test.

Table 10: Scene 3: An Authentic Corner Kick with a black and white Ball

Duration 5.3 seconds

Frames 287

Ball black & white

Start ball detection 106 frames after ball leaves ground

Number 27

Table 11: Scene 3 results

Analysis The results resemble the results of test scene 2. Detection of a start ball is
diXcult because of the distance to the ball. At the beginning of the trajectory, the ball is
still to far away to be detected and once it reaches the detection range it is already above
the horizon and therefore not a valid starting ball anymore. It is immediately detected once
it falls below the artiVcial horizon.

4 RESULTS 49

4.1.4 Test Scene 4: Very far Corner Kick with red Ball

Course of Events The observer again starts at the right corner of the goal box facing the
right goal pole. Slowly turning his view left, he awaits a pass from about 35 meters away.
This time the ball is kicked in the direction of the penalty point while the observer follows
the trajectory of the ball and very slowly moves in the same direction the ball is Wying.
The ball hits the ground about twice in about 5 meters distance to the observer. Table 12
illustrates the scene’s course of action while table 13 summarises the overall results for this
test.

Table 12: Scene 4: Very far corner kick with red ball and long Wight path

Duration 5.5 seconds

Frames 298

Ball black & white

Start ball detection 105 frames after ball leaves ground

Number 33

Table 13: Scene 4 results

Analysis The late detection resembles that circumstances of the previously evaluated
scene. Another reason why the start ball detection is bad in this scene is because of the
fact that the external vision data (landmarks, etc.) is only provided from the time the ball
bounces for the Vrst time. The start ball detector was restricted to not detecting start balls

4 RESULTS 50

Figure 24: Total error for optimal values (left) and development per step (right)

Figure 25: Total error for slightly altered values (left) and development per step (right)

for frames it does not have any external vision data for. Otherwise the optimiser would
later not be able to calculate the error in frames for which it has no external data available.

4.2 Optimiser Correctness and Overall Evaluation

To prove that the optimiser actually reduces the errors in the ball Wight trajectory, the error
reduction of the second test scene was logged in detail. The following results resemble test
runs with the other scenes.

The optimiser improves the errors in the trajectory for optimal external data (shown in
Vgure 24) and for data that was altered to be continuously worse. The ball position was
therefore changed more signiVcantly than the remaining vector data.

4 RESULTS 51

Figure 26: Total error for signiVcantly altered values (left) and development per step (right)

Figure 27: Total error for highly altered values (left) and development per step (right)

As the images in Vgure 28 and 29 show, the ball position cannot be corrected suXciently
once the input values (ball position in world coordinates) are signiVcantly altered. Even
though the error is constantly reduced, the gradient descent step width reaches the termi-
nation limit after several hundred of steps, which causes the optimiser to abort. As the
images show, the position of the estimated ball is still a little bit oU compared to the real
ball in the image.

The reason for this eUect is that the image processing related evaluators cannot output any
useful values once the position of the ball is too far of the actual ball. When used on free
ground, it is unlikely that the evaluator will be able to return the ball position back to the
correct location because the circle values on free ground will be more or less the same.

4 RESULTS 52

Figure 28: No modiVcation of external input values (left), ball position changed by 5cm

(right)

Figure 29: Ball position changed by 10cm and remaining values altered by 0.001 (left), ball

position changed by 25cm and remaining values altered by 0.01 (right)

4 RESULTS 53

4.3 Conclusion

The set goals have been achieved, although the system’s performance due to the ap-
proaches that were used is far away from being eUective. The ball can be recognised in the
selected test scenes even though this currently takes up an incredible amount of computa-
tion time. If used with accurate external data the system will not noticeable decrease the
accuracy the trajectory data. But if the initial data is signiVcantly altered, the optimisation
process is not able to correct the ball position suXciently.

This thesis has shown that combining visual information with additional trajectory data
and optimising the overall result is an interesting approach for building a more robust sys-
tem. There is also still other information that could have been merged into the computation
(e.g. a game state that limits the ball position) which would further improve the system’s
performance but was left out due to lack of time. The downside of bringing other context
into play is that errors are harder to Vnd.

During the development of the software new problems emerged quite frequently. Most of
these problems for themselves were not very diXcult to solve, but they still took up time
to eliminate them. This was also due to the fact that even though I tried hard, I just could
not really get familiar with this area of computer science and only started understanding
it when the time for development was already exhausted. New aspects that I did not think
about before, called for changes at several software components which in most cases also
were not too hard to introduce by themselves. Taken together, even though the software
was designed to be clearly structured and easy to extend, the lack of time sometimes called
for quick solutions which corrupted the original clean design. To sum up all problems
during this thesis one can actually say: I underestimated the complexity of this thesis,
made several wrong decisions when choosing tools and spent too much time on irrelevant
tasks, for example implementing my own Kalman Filter instead of just using Kurlbaum’s.

Still, the developed system proved that the original setup for dealing with the inferior
mechanical capabilities of state of the art humanoid robots is useful when concentrating
on the software aspects and that this approach is worth of being further investigated. Using
only image processing related methods (movement between frames combined with circle
detection on a limited surrounding area) on the other hand also produced good results. As
Vnal conclusion the usage of optimisation should be a part of the overall system but other
methods should deVnitely be considered, too.

The developed system furthermore served as a visualiser for Oliver Birbach’s prediction
data for a short period of time. By the time this and his work was Vnished, this data could
already be visualised by his own software, too. The developed head-camera system was

4 RESULTS 54

also already used to gather new data for SLAM experiments and could easily be used in
future lectures or other related experiments.

Future work should also consider some technical insights of this project. C++ is a very ver-
satile and powerful programming language, but if this thesis would have to be done again,
it should deVnitely use MATLAB [32] instead. Dealing with vectors, matrices, deriva-
tions and related mathematical operations can be done a lot easier in MATLAB than in
C++. Even though most students (like myself) might not be familiar with the MATLAB
software the amount of time saved by using MATLAB compared to the amount of time
necessary for learning it would beneVt the usage of MATLAB. Debugging the code (espe-
cially the Unscented Kalman Filter) took up a very large amount of time and would be a
lot more comfortable in MATLAB. Since Oliver Birbach’s related thesis was also done in
MATLAB, a lot of work and time could have been saved because results could have been
exchanged in an easier way.

4.4 Future Work

Hardware The camera-inertial system should be suXcient for the Vrst future applica-
tions. Still, it would be possible to invert the synchronisation signal so that the inertial
sensor may trigger the camera and not vice versa. In the current state of development
the inertial sensor is triggered by the camera which results in only 54 (of a maximum of
400) sensor measurements per second. This was suXcient for both Oliver Birbach’s and
my thesis but might not be for future applications. It would also be interesting if this did
actually cause a noticeable improvement of performance. We originally intended to have
twice as many sensor measurements as pictures per second, but due to the lack of time
and expertise hardware changes in the inertial sensor were not made. The manufacturer’s
technical support conVrmed that it would be possible to change the SyncIn to a SyncOut
signal with a few simple hardware modiVcations. This should only be done if one has good
knowledge about electronics and would also void any remaining warranties for the sensor.
If the sensor actually triggers the camera, the maximum FPS of the camera would be about
one Vfth of the maximum sensor frequency. A possible solution might be an intermedi-
ate microcontroller that reads the sensor synchronisation signals and only forwards every
second signal to the camera.

Realtime The Gradient Descent optimising algorithm which is currently be used is ter-
ribly slow and deVnitely not the best choice for this application. It should be replaced with
another kind of faster algorithm which would decrease the computation time dramatically.

4 RESULTS 55

For a realtime system a clean and eXcient redesign and/or portation of the available code
would of course also be possible. The use of parallel hardware or GPU implementation
might also be of interest.

Scenes Except for the throw-in scenes, almost every recorded scene has the ball lying on
the ground at the start and then Wying in some sort of curve. Once this can be recognised
satisfactorily other scenes with the ball already in the air or simply rolling on the Veld
could be interesting. For the actual long-term RoboCup objective this would be deVnitely
be necessary.

5 ACKNOWLEDGEMENTS 56

5 Acknowledgements

I would like to thank my tutor Dr. Udo Frese for his extensive help and support during
my thesis. The used core algorithm for rating circles was part of his experiments, the
ported Unscented Kalman Filter was part of one of his courses that I participated in and
the Gradient Descent algorithm was also integrated according to one of his experiments.

Also, I would like to thank my fellow students and friends Armin Burchardt as well as Se-
bastian Schleusener for their help during the data acquisition experiments. Special thanks
go to Oliver Birbach for the excellent collaboration with our shared material and his very
helpful support during development and tests of my software. The developed system uses
the dynamic model and Chi square (dynamic model scene error) computation algorithm
from his thesis.

I am also thankful for the help of Jörg Kurlbaum who provided a good basis for my thesis
(that I unfortunately did not use like I should have) and also helped me getting started with
all of this. The software that was used to record the scene data was part of this thesis and
was only slightly modiVed by Oliver Birbach and myself.

Furthermore Dr. Christoph Zetsche and Dr. Kerstin Schill also provided some useful
thoughts and ideas that contributed to my thesis. Last but not least I would like to thank
my parents who always supported me during my studies and my Iaido Sensei René Ne-
ufang and Senpai Jörg Gissel who kept me motivated during my thesis and my friend
Christian Lauterbach for Vnal proofreading.

Thank you!

LIST OF FIGURES 57

List of Figures

1 DLR robotic ballcatcher . 9

2 Hawk-Eye system . 9

3 Jörg Kurlbaum’s Balltracker . 10

4 RoboCup Humanoids . 11

5 Schematics for camera synchronisation . 15

6 Schematics for inertial sensor connector 16

7 Inertial sensor and camera (left), worn system (right) 17

8 Circle model of MSE approach . 23

9 Source image (left), Standard Sobel image (right) 25

10 Coins Hough space (Pennies left, Quarters right) 26

11 Circle rating algorithm . 27

12 DiUerence image algorithm for stationary camera 29

13 DiUerence Image with ball blob . 30

14 DiUerence Image with a lot of invalid movement 30

15 DiUerence image algorithm for free-moving camera 31

16 Blob merging procedure . 34

17 Blob building sequence . 35

18 Proposed system’s architecture . 37

LIST OF FIGURES 58

19 ArtiVcial horizon algorithm . 41

20 Correctly detected start balls with displayed (negative) error values 42

21 Incorrect start ball . 43

22 OpenCV circle Hough transformation example 44

23 OpenCV circle Hough transformation results 44

24 Total error for optimal values (left) and development per step (right) 50

25 Total error for slightly altered values (left) and development per step (right) 50

26 Total error for signiVcantly altered values (left) and development per step
(right) . 51

27 Total error for highly altered values (left) and development per step (right) 51

28 No modiVcation of external input values (left), ball position changed by
5cm (right) . 52

29 Ball position changed by 10cm and remaining values altered by 0.001 (left),
ball position changed by 25cm and remaining values altered by 0.01 (right) 52

LIST OF TABLES 59

List of Tables

1 Overview and comparison of existing systems 12

2 Quaternion combination conditions . 20

3 Blobs in RoboCup and proposed system . 32

4 Blob building sequence . 33

5 Optimiser vector . 38

6 Scene 1: A close pass with a red ball . 45

7 Scene 1 results . 46

8 Scene 2: A far Pass with a red Ball . 47

9 Scene 2 results . 47

10 Scene 3: An Authentic Corner Kick with a black and white Ball 48

11 Scene 3 results . 48

12 Scene 4: Very far corner kick with red ball and long Wight path 49

13 Scene 4 results . 49

REFERENCES 60

References

[1] RoboCup Federation. OXcial RoboCup Homepage, 2007. http://www.robocup.

org (last visited 28.12.2007).

[2] Honda Worldwide. The Honda Humanoid Robot ASIMO, 2008. http://world.

honda.com/ASIMO/ (last visited 25.12.2007).

[3] U. Frese, B. Bäuml, S. Haidacher, G. Schreiber, I. Schaefer, M. Hähnle, and
G. Hirzinger. OU-the-Shelf Vision for a Robotic Ball Catcher. Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1623–
1629, 2001. http://www.informatik.uni-bremen.de/~ufrese/published/

freseiros.pdf.

[4] Hawk-Eye Innovations. OXcial Hawk-Eye Homepage, 2007. http://www.

hawkeyeinnovations.co.uk (last visited 28.12.2007).

[5] J. Kurlbaum. Verfolgung von BallWugbahnen mit einem frei beweglichen
Kamera-Inertialsensor. Master’s thesis, Universität Bremen, 2007. http:

//www.informatik.uni-bremen.de/~ufrese/teaching/thesis/kurlbaum_

thesis_07.pdf (last visited 01.07.2007).

[6] R. E. Kalman. A New Approach to Linear Filtering and Prediction Problems. Trans-
actions of the ASME–Journal of Basic Engineering, 82(Series D):35–45, 1960.

[7] E. Kraft. A Quaternion-based Unscented Kalman Filter for Orientation Tracking.
Proceedings of the Sixth International Conference of Information Fusion, 1:47–54,
2003.

[8] A. Hoppe, J. Kurlbaum, B. Mohrmann, M. Poloczek, D. Reinecke, T. Röfer, and
U. Visser. Bremen Small Multi-Agent Robot Team (B-Smart) Team Description for
RoboCup 2003. 7th International Workshop on RoboCup 2003 (Robot World Cup
Soccer Games and Conferences), 2004. To appear.

[9] J. Bruce, S. Zickler, M. Licitra, and M. Veloso. CMDragons 2007 Team De-
scription, School of Computer Science Carnegie Mellon University, 2007.
http://reports-archive.adm.cs.cmu.edu/anon/home/ftp/2007/

CMU-CS-07-173.pdf (last visited 03.01.2008).

[10] T. Röfer, J. Brose, E. Carls, J. Carstens, D. Göhring, M. Jüngel, T. Laue, T. Oberlies,
S. Oesau, M. Risler, M. Spranger, C. Werner, and J. Zimmer. GermanTeam 2006.
RoboCup 2006: Robot Soccer World Cup X Preproceedings, 2006.

http://www.robocup.org
http://www.robocup.org
http://world.honda.com/ASIMO/
http://world.honda.com/ASIMO/
http://www.informatik.uni-bremen.de/~ufrese/published/freseiros.pdf
http://www.informatik.uni-bremen.de/~ufrese/published/freseiros.pdf
http://www.hawkeyeinnovations.co.uk
http://www.hawkeyeinnovations.co.uk
http://www.informatik.uni-bremen.de/~ufrese/teaching/thesis/kurlbaum_thesis_07.pdf
http://www.informatik.uni-bremen.de/~ufrese/teaching/thesis/kurlbaum_thesis_07.pdf
http://www.informatik.uni-bremen.de/~ufrese/teaching/thesis/kurlbaum_thesis_07.pdf
http://reports-archive.adm.cs.cmu.edu/anon/home/ftp/2007/CMU-CS-07-173.pdf
http://reports-archive.adm.cs.cmu.edu/anon/home/ftp/2007/CMU-CS-07-173.pdf

REFERENCES 61

[11] G. Fritz, L. Paletta, and H. Bischof. Object Recognition Using Local Information
Content. Proceedings of the 17th International Conference on Pattern Recognition,
2:15–18, 2004.

[12] G. Fritz, C. Seifert, L. Paletta, and H. Bischof. Rapid Object Recognition from Dis-
criminative Regions of Interest. http://citeseer.ist.psu.edu/725199.html

(last visited 14.10.2007).

[13] C. Hudelot and M. Thonnat. A cognitive vision platform for automatic recognition of
natural complex objects. 15th IEEE International Conference on Tools with ArtiVcial
Intelligence, pages 398–405, 2003. http://citeseer.ist.psu.edu/717874.html
(last visited 14.10.2007).

[14] V. Vu, F. Bremond, and M. Thonnat. Video interpretation: human behaviour represen-
tation and on-line recognition. "The Sixth International Conference on Knowledge-
Based Intelligent Information and Engineering Systems", 2002. http://citeseer.
ist.psu.edu/vu02video.html (last visited 16.02.2008).

[15] O. Birbach. Accuracy analysis of camera-inertial sensor-based ball trajectory pre-
diction. Master’s thesis, Universität Bremen, 2008. http://www.informatik.

uni-bremen.de/~ufrese/teaching/thesis/birbach_thesis_08.pdf (pend-
ing).

[16] T. Laue, T. Schindler, F. Penquitt, A. Burchardt, O. Birbach, C. Elfers, and K. Stoye.
B-Smart (Bremen Small Multi-Agent Robot Team) Team Description for RoboCup
2006, 2006. http://www.b-smart.de/wiki/images/8/8d/B-Smart_TDP2006.

pdf (last visited 01.01.2008).

[17] Sir W. Hamilton. Lecture on Quaternions, 1853. http://historical.library.

cornell.edu/cgi-bin/cul.math/docviewer?did=05230001&seq=9 (last vis-
ited 05.01.2008).

[18] J. H. Conway and D. A. Smith. On Quaternions and Octonions: Their Geometry,
Arithmetic, and Symmetry. B&T Publishing, 2003.

[19] Wikipedia. Quaternion, 2008. http://en.wikipedia.org/wiki/Quaternion

(last visited 05.01.2008).

[20] R. Hanek andM. Beetz. The Contracting Curve Density Algorithm: Fitting parametric
curve models to images using local self-adapting separation criteria. International
Journal of Computer Vision, 59:233–258, 2004.

[21] G. M. Schuster and A. K. Katsaggelos. Robust line detection using a weighted MSE
estimator. Proceedings of the 2003 IEEE International Conference on Image Pro-
cessing (ICIP), Barcelona, Spain, 2003.

http://citeseer.ist.psu.edu/725199.html
http://citeseer.ist.psu.edu/717874.html
http://citeseer.ist.psu.edu/vu02video.html
http://citeseer.ist.psu.edu/vu02video.html
http://www.informatik.uni-bremen.de/~ufrese/teaching/thesis/birbach_thesis_08.pdf
http://www.informatik.uni-bremen.de/~ufrese/teaching/thesis/birbach_thesis_08.pdf
http://www.b-smart.de/wiki/images/8/8d/B-Smart_TDP2006.pdf
http://www.b-smart.de/wiki/images/8/8d/B-Smart_TDP2006.pdf
http://historical.library.cornell.edu/cgi-bin/cul.math/docviewer?did=05230001&seq=9
http://historical.library.cornell.edu/cgi-bin/cul.math/docviewer?did=05230001&seq=9
http://en.wikipedia.org/wiki/Quaternion

REFERENCES 62

[22] A. Ben-Israel and T. N. E. Greville. Generalized Inverses: Theory and Applications.
Springer, New York, 2003.

[23] P. V. C. Hough. Method and Means for Recognizing Complex Patterns, 1962. U.S.
Patent 3069654.

[24] D.H. Ballard. Generalizing the Hough Transform to Detect Arbitrary Shapes. Pattern
Recognition, Vol. 13(No. 2):111 – 122, 1981.

[25] H. K. Yuen, J. Princen, J. Illingworth, and J. Kittler. Comparative study of hough
transform methods for circle Vnding. Image Vision Computing, 8(1):71–77, 1990.

[26] H. Li, M. A. Lavin, and R. J. Le Master. Fast Hough transform: A hierarchical ap-
proach. Computer Vision, Graphics, and Image Processing, Volume 36(Issue 2-3):139
– 161, 1986.

[27] Intel. Open Computer Vision Library, 2008. http://www.intel.com/technology/
computing/opencv/index.htm (last visited 07.02.2008).

[28] U. Frese. Camera Sensor Model, 2007. Not published.

[29] J. A. Snyman. Practical Mathematical Optimization: An Introduction to Basic Op-
timization Theory and Classical and New Gradient-Based Algorithms. Springer,
2005.

[30] Trolltech. Qt: Cross-platform rich client development framework, 2008. http://

trolltech.com/products/qt.

[31] The MPlayer Project. MPlayer/MEncoder Homepage, 2008. http://www.

mplayerhq.hu/ (last visited 08.02.2008).

[32] The MathWorks Deutschland. MATLAB - The Language of Technical Computing,
2008. http://www.mathworks.de/products/matlab/ (last visited 16.02.2008).

http://www.intel.com/technology/computing/opencv/index.htm
http://www.intel.com/technology/computing/opencv/index.htm
http://trolltech.com/products/qt
http://trolltech.com/products/qt
http://www.mplayerhq.hu/
http://www.mplayerhq.hu/
http://www.mathworks.de/products/matlab/

A SOFTWARE 63

A Software

The enclosed CD contains:

1. A digital version of the Vnal thesis paper with all Vgures in original resolution

2. The repository of the actual proposed system with all its sources and in binary form
together with the user and developed documentation (/thesis/repository/code).

3. Some of the cited and several other interesting papers on related topics as PDF ver-
sions (/thesis/papers).

4. The four test scenes which were analysed within the Test section and some (inter-
mediate) results in image or video form (/thesis/scenes/, thesis/scenes/results).

5. Miscellaneous material like hardware documentation, the original MATLAB sources
of the used dynamic model functions and the Libertine fonts which were used for
this document (/thesis/misc/).

	Introduction
	Overview
	Motivation
	Similar Existing Systems

	Outline of the Proposed System
	Goals
	Preparations
	Hardware
	Software for Sensor Synchronisation
	Data Acquisition

	Theory
	Rotations in 3D
	Image Processing
	Circle Detection
	Difference Images
	Blob Building

	Gradient Descent Optimiser

	Software
	General Architecture
	Implementation
	Optimiser
	Evaluators
	Unscented Kalman Filter
	Motion Detector
	GUI
	Comparison with other Approaches or Applications

	Results
	Evaluation
	Test Scene 1: Close Pass with a red Ball
	Test Scene 2: Far Pass with a red Ball
	Test Scene 3: Authentic Corner Kick with a black and white Ball
	Test Scene 4: Very far Corner Kick with red Ball

	Optimiser Correctness and Overall Evaluation
	Conclusion
	Future Work

	Acknowledgements
	List of Figures
	List of Tables
	References
	Software

